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MANIFOLDS WITH A SPECIAL TYPE OF
CONELIKE SINGULARITIES

MARCEL BOKSTEDT and SOREN VAGNER

0. Introduction.

Manifolds with singularities have been studied by Sullivan [12], Baas [1],
and others. In particular Levitt [10] considers a certain category of such
manifolds, with the underlying structure of PL-manifolds.

The manifolds of Levitt’s category are constructed inductively. The first step
is to consider manifolds of the form M= M, UU;S; where M, is a smooth
manifold, S; is a PL-manifold with boundary, and where each S; is equipped
with a standard PL-equivalence

fiiVi x cZi— §;

Here is V; a smooth manifold, and ¢Z; the cone on a smooth sphere X

Some of these manifolds have the underlying structure of a PL-sphere.

We can now inductively consider manifolds M =M,U;S,, where M, is a
manifold with singularities constructed in a previous step, and each §; is
equipped with a PL-equivalence

fiVi x cZ;— Si’

where ¥, is smooth, and cZ; is the cone on a previously constructed manifold,
with the underlying structure of a PL-sphere.

We imitate this procedure, to construct our category of C-manifolds as
follows.

Let bP, denote the group of concordance classes of homotopy spheres that
bound n-dimensional framed manifolds.

As a preliminary step we construct a category of C,-manifolds. A C,-
manifold is a manifold of form M = M, U U, S; where each S, is provided with a
PL-isomorphism

fitVixcXi—§;

where V; is a smooth manifold, and Z; is a homotopy sphere that represents an
element in bP,.
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Let Sc, (M) denote the set of concordance classes of C,-manifolds with
underlying PL-manifold M. There is a forgetful map

it So(M) — S¢,(M)

from the set of smooth structures So(M) on M to Sc,(M).

In particular there is a forgetful map i: So(S") — Sc,(S") which factors over
So(S"/bP, ;.

Next we extend the C,-category inductively to a category of manifolds with
singularities, the C-manifolds, such that the composite So(S")/bP, , ,
— 8¢, (8") = S¢(8") is a close as possible to an isomorphism.

.In order to do so, we construct a natural transformation X1:S¢,(M)
— N(M), which for a given smooth manifold M maps Sc,(M) into the group of
cobordism classes of normal maps M’ — M.

We can introduce a bundle category containing “tangent bundles” of C,-
manifolds. The set of C,-bundles of a finite complex X is classified by a space
BC,. : ’

One can show by a formal argument that the set of C,-structures on a
smooth manifold M is classified by homotopy classes of maps of M into the
fiore PL/C, of the natural map BC; — BPL. Again by formal arguments we
can show that y, induces a map y,: PL/C, — G/O.

Using this map we construct the category of C,-manifolds as a category of
manifolds with singularities containing C,. In sections 3-4 we continue this
process. We obtain inductively the categories C;. At each step the definition of
the next category involves choices.

. Let C be the union of the categories C;. There is a corresponding bundle
category with classifying space BC. The set of C-structures on a smooth
manifold M are classified by the set of homotopy classes [M, PL/C].

The homotopy types of PL/C and BC depend in a curious way on the
(unresolved) Kervaire invariant conjecture.

Let A = Z: be the set of numbers of form n=2"—2 such that there exists a
framed manifold of dimension n with Kervaire invariant 1.

THEOREM A. There is a category C of manifolds with singularities containing
the category C, constructed by the inductive procedure outlined above.

(i)  Let C' be another category, constructed by the same inductive procedure,
but possibly by making different choices.

There is a natural equivalence
E:Sc(=)— Sc(-).

(i)  There is a fibration
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PL/C — G/O — [] K(Z/2,n),

ne A

(i) There is a fibration

BC - G/PL x BO — [] K(Z/2,n).

ne A

By modifying our argument we construct other similar categories.
In particular'we give an interpretation of Coker J and of BSO localized at
the odd primes.

THEOREM B. There is a category C of manifolds with singularities, unique in
the same sense as C above, such that there are homotopy equivalences

4:PL/C — (Coker J)[}]
0:PL/C — BSO[4] .

We finally want to thank our advisor Ib Madsen for many helpful
discussions.

1. The C,-category.

In this paragraph the C,-category will be defined and studied. This
represents the first step in the inductive construction of the C-category.

A_C,-manifold M is a PL-manifold with extra structure. This extra structure
consists of two elements: A smooth, codimension 0 submanifold M, with
boundary, and certain conelike singularities in the complement. More
precisely, the complement will be the disjoint union of manifolds, each PL-
homeomorphic to V x D. Here the V’s are smooth manifolds, and the D’s are
PL-discs. The boundary V x S is assumed to be contained in the boundary of
the smooth submanifold My, so it inherits a smooth structure. We demand that
as a smooth manifold it is a product V x X where X is a smooth manifold, PL-
equivalent to a sphere.

We can think of a C,-manifold as a smooth manifold, with cone-singularities
glued onto the boundary.

The next inductive step will be to glue singularities onto a C,-manifold. If we
do not put any restrictions on the singularities, we will essentially end up with
the PL-category. This is a theorem of Levitt [10].

There are various ways to specify allowable sets of singularities. In this
paper, we shall allow singularities of Milnor- and Kervaire-spheres.
Specifically, recall the cyclic group bP,; of (2i—1)-dimensional homotopy
spheres which bound parallellizable manifolds. The elements of bP appear to
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be the simplest, and are the best understood exotic spheres. We allow only
singularities of the form V x ¢ X, where X € bP,, and c X denotes the cone on X.
For each concordanceclass in bP,, choose a particular representative.

DEriNITION 1.1. A C;-manifold M is a quadruple (M,, V,, Z,, ) consisting of

() A smooth manifold with boundary M,

(i)  Smooth compact manifolds V,, i=1,...,p.
V; may or may not have boundary.

(i) Smooth spheres X, which are among the particular representatives
chosen.

(iv) Disjoint inclusions f;: V; x Z; — dM, of V;x X, in dM,, as codimension 0
submanifolds.

This definition only mentions the smooth part of the manifold. In order to
get the underlying PL-manifold of M, we glue in the singularities:

DEeFINITION 1.2. The underlying PL-manifold Mp, of a C,-manifold M is the
union ,

MpL = MgUUJ (V;xcE) .

The C,-category does not possess a natural Cartesian product. There is,
however, a natural product of a smooth manifold and a C,-manifold.

Let X be a PL-manifold. A C,-structure on X is a pair (M, h), where M is a
C,-manifold, and h is a PL-homeomorphism h: Mp. — X. A concordance
between the two C,-structures (M, hy) and (M 1-hy) is a C-structure W on
X x I, which restricts to (M, h;) on X x {i}.

The usual version of 'smoothing theory uses tangent microbundles. This
approach involves the smooth structure on the product of a manifold with
itself. In the C,-category, products are not available. For this reason we have to
generalize smoothing theory using thickenings (see Wall [14]), not
microbundles.

A k-dimensional thickening of the CW-complex X is a compact k-
dimensional manifold with boundary M, with n,(6M)=n,(M) and a simple
homotopy equivalence i: X — M. Two thickenings are equivalent if there is a
concordance Wbetween M, and M,, and a homotopy commutative diagram:

X — (MI)PL

! !
(Myp. — Wp
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where (M;)p. and Wp; denote the underlying PL-manifolds.

If M is a thickening of X, M x I will also be a thickening of X. This allows us
to consider “stable thickenings”.

We did not specify which structure M should have. We could choose M to
be smooth, C, or PL. Then we obtain the concepts of smooth thickening, C,-
thickening or PL-thickening.

The set of stable thickenings is in all three cases a representable functor on
finite CW-complex. See e.g. Levitt [10] for the C,-case.

In the smooth and the PL-case there is a natural equivalence between the
stable thickening functor, and the corresponding bundle theory. Leti: X — M
be a thickening, and (M) be the tangent bundle of M. The equivalence maps
the thickening i to the bundle i*(t(M)). The trivial bundle on a manifold N is
represented by the thickening i: N =— D(v(N)) where i is the inclusion of the
zero section in the normal disc bundle.

This equivalence shows that the smooth and PL-thickening functors are
classified by BO, respectively BPL. We let BC, denote the classifying space for
C,-thickenings. A smooth thickening is also a C,-thickening, and a C;-
thickening is also a PL-thickening. Thus we have maps BO — BC, and BC,
— BPL. The composition is the natural map BO — BPL.

These maps are only defined on finite subcomplexes. In the rest of the paper
we will not worry about these questions. Maps will only be specified on finite
complexes.

Let X be a PL-manifold. We consider the set % (X) of concordance classes
of C,-structures on X.

THEOREM 1.2. There is a 1-1 correspondence between & ¢ (X) and homo-
topy classes of liftings of the map classifying the PL-tangent bundle of X

_BC,
-7

X<— BPL
fpL

SKETCH OF PROOF. Let f: M — X be a C,-structure. Then f~*: X —» Misa
C,-thickening. This thickening determines a lifting of tp;. We need an inverse
of this construction. Let t¢ : X — BC, be a lifting of tp.. By stability we can
represent it by a PL-embedding in a C,-manifold X <> N. X has trivial
normal bundle in N. Using the PL s-cobordism théorem, we conclude that N is
PL-equivalent to X x I" for some n. It is possible to generalize the product
theorem of smoothing theory to show that there is a 1-1 correspondence
between &c,(X)and ¢ (X xI). (See Levitt [10] for details.) The C,-structure
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N — X xI" thus determines a unique C,-structure on X. It is easily checked
that the constructions above are inverses.

The space BC, is not an H-space, but BO acts on it. Let ugo: BO x BO
— BO and pupp: BPL x BPL — BPL be the familiar maps characterizing
Whitney sum. From the viewpoint of thickenings ugo and pppp classify the
following constructions. Let f,: X — M, and f,: X — M, be two thickenings.
Then f, xf,: X x X — M, x M, is a thickening. Take the induced thickening
over the diagonal 4: X — X x X. The map classifying this thickening is the
sum of f, and f,.

LemMa 1.3. There is a natural map pgc,: BO x BC; — BC, and the following
diagram is homotopy commutative.

HBO
BO x BO —— BO
! uee, 1
BO x BC, — — BC,
! uprL
BPL x BPL ——— BPL

PRrOOF. Suppose X is a PL-manifold. We construct a natural transformation

[X:BO x BC,]— [X,BC,].

Consider (a,8): X —» BOxBC,. Its first coordinate defines a smooth
thickening a: X — M,, its second a C,-thickening B: X — Mc. The
restriction of the C,-thickening axf: X xX — Myx M, to the diagonal
determines a C,-thickening, classified by y: X — BC,. This determines the
transformation. It is easy to check that it is natural, and that the diagrams of
the lemma commute.

In accordance with usual notation we let PL/C, denote the homotopy
theoretical fibre of the map BC, — BPL. In analogy with smoothing theory,
one would suspect that C,-structures on a C ,-manifold M are classified by
homotopy classes in [M; PL/C,]. The lack of a multiplication in C, prevents
us from proving this, but the following restricted version is true.

LeEmMA 1.4, Let M be a smooth manifold. There exists a 1--1 correspondence
between ¥ ¢ (M) and [M,PL/C,].

Proor. First we construct a map [M,PL/C,] —» ¢ (M) as follows. If
to: M — BO is the tangent bundle, and a: M — PL/C, a map, then
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(to,®)

M -, BOxPL/C, » BO x BC, — BC,

is a lifting of the PL tangent bundle tp: M — BPL, so it determines a C,-
structure on M.

Next we construct the inverse map ¢ (M) — [M, PL/C,]. Let7: M - M
be a C,-structure on M, and y: M — BC, the corresponding lifting of the PL
tangent bundle map tp.. We have the homotopy commutative diagram

M =P, BOxBC, - BC,

l |
BPL x BPL > BPL

where both t, and y are liftings of tpp. The composite is trivial, in fact
canonically trivialized. This trivialization defines an element of [M,PL/C,].

Finally, it is easy to see that the two maps are inverses of each other.

On the homogenous space level we get an action of PL/O on PL/C, which
lifts the action from lemma 1.3. Indeed, let M be a smooth manifold, and o: M
— PL/O, p: M — PL/C, two maps. They give M x M a C,-manifold structure
which induces a C 1-structuré 7 on the smooth tangent bundle T(M) of M via
1(M) = M x M. We get amapy: M = t(M) — PL/C,, and set a*f=y. The
action is natural and gives rise to a map

pprsc,: PL/OxPL/Cy — PL/C,
such that the following diagrams homotopy commute

PL/O x PL/O— PL/O

! !
PL/O x PL/C, —> PL/C,
| !

BO x BC,—— BC,

Given two maps a,,a,: M — PL/O, then a, - (2,8 and (a,-ap)* B are the
pullbacks of («;,a,, f) by

M4 MxM-T2, MxMxM  and
M A MxM Axd MxMxM, respectively -
These maps are homotopic, so on classifying space level we see that

PL/O x PL/O x PL/C, +"°*%, PL/O x PL/C,

tid X UpL/C, l HPL,/C,

PL/O x PL/C;, —<— PL/C,

is homotopy commutative.
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2. The map x,: PL/C, — G/O.

When we constructed the C,-category we had to decide on a particular set of
singularities. We chose the set of singularities that involves cones of spheres in
bP,. Recall that bP, ., can be characterized as the kernel of the map y,,:
7, (PL/O) — n,(G/O), see for example Sullivan [13]. In this section we shall
extend the natural map yx,: PL/O — G/O to a map x,: PL/C, — G/O, which
will play an analogous role in the definition of the C,-category. With later
generalizations in mind, we will give a purely homotopy theoretical definition.
First, however, we outline a more conceptual, geometric definition.

Let M be a smooth manifold, and ¢ € [M;PL/C,]. Further, let

g: My U <U I/,.ch,.)—» M

be a C,-structure represented by o. By the assumption, X, is the boundary of
some parallelizable manifold M(Z;). The manifold M =M, U (U, V; x M(Z) is
a smooth manifold, and there is a degree one normal map M — M whose
normal cobordism class is classified by a homotopy class M — G/O. We will
prove in lemma 2.2 that this defines a natural transformation, inducing a map
at classifying spaces y,: PL/C, — G/O. ,

In this construction we have to specify for each given homotopy sphere X a
particular parallelizable manifold M (ZX), such that ¢(M(2))=2X. We will now do
that. )

Recall that bP,, is a cyclic group of finite order, say 6, For n>1 we
construct the Milnor manifold M*" of index 8 by plumbing together 8 copies of
the tangent disc bundle of $?", see Browder [4] for details. The boundary of
M*" is a homotopy sphere, generating bP,,.

The group bP,, _, is either Z/2 or 0. The case bP,,_, =0 can, according to
Browder [3], only occur if n is a power of 2. We now choose for each X € bP,,
a framed bounding manifold M (Z). The only restriction we make on the choice
is that if 2 is the (4n-1)-dimensional generator mentioned above, then M(Z) is
the Milnor manifold.

We point out that M(ZX) defines an extensions of the classifying map of X

st 2, pL/O

(2.1) i !
b %2, G/O

Now we will give the homotopy theoretical definition. Suppose that M is a
smooth manifold, ¢ € [M,PL/C,] and that 6:M,U (U, V;xcZ)—> M is a
representative of the class of C,-structures on M defined by o. If we consider
M, V, and X, as pieces of PL-submanifolds of the smooth manifold M, they
will all inherit a standard smooth structure from the smooth structure on M.
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The manifold 6(M,) is a codimension zero submanifold of M, so it inherits a
smooth structure. Let M, be M, with this new structure. In the same way a(V;
xcZ;) inherits a smooth structure. The product structure theorem of
smoothing theory tells us that G(V;xcZ)) is concordant to V; x D; where v, is
some smooth structure on V, and D; is a standard disc. By restricting to the
boundary we find that OMy=U, V;x S, Here §; is a standard sphere.

The differences between the smoothings induced via 4, and the given
smoothing correspond to homotopy classes of maps

go: My — PL/O
gy;: Vi —» PL/O
gs,: Z;— PL/O.

These classes are related by the equations

8o
v.xz, = MpLo- (81, % 8s) -

We define the homotopy class M — G/O as follows
i On M, it is the map M, -~ PL/O > G/O.
i1) On V,xcZ; it is
V,x ez, 2255, PLIO x G/O — G/O % G/O — G/O
where g 5, is the extension of gz, defined by 2.1.
The map , is an H-map, so the two maps agree up to canonical homotopy on
V,x 2. We can glue them together to get a welldefined element

x:(0) € [M,G/O]. It is not difficult to check that this agrees with the
geometrical definition.

LemMma 2.2, x,:[—;PL/C,] = [-;G/O] is a natural transformation.

ProOF. Let M,N be smooth manifolds, ¢:N— PL/C, represent a
homotopy class, and let f: M — N be a continuous map. Note that homotopic
maps N — PL/C, determines the same element in [N, G/O].

Cask 1. Suppose f: M — N=D(¢) is the inclusion of M as the zerosection in
a discbundle. We can represent the homotopy class of o by the homotopic map

DIGES ML DE S PL/C, .
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The map oof induces a C,-structure n M

oof: MOU(U (Kxc[,-)) M

ainduws a C,-structure on D(¢)

ooforn: D(¢|y,) U (U (DCly) ch.-)) — D(9)

whose classifying map is goform. Thus oo f represents the restriction f*(o) of ¢
to the zerosection. The maps oof and gofon define gy € [M,G/O] and
gp € [D(£), G/O] respectively, and it is easily concluded that gpof=gy.
This proves lemma 3.1 in this case.

Cask 2. Using case 1 we replace N by N x D, where D is a large disc. Thus we
can assume that f: M — N is an embedding. The image (M) has a normal
disc bundle D(v) in N. Then the map f: M — N factors as

ML DwLN.

Case 1 applies to the inclusion f’. The map f” is an inclusion of a submanifold
of codimension zero. Assume without loss of generality that f is of this form.
Let 0: N — PL/C, induce the C,-structure

é: Ny U<U (V,.xcz,.))—» N.

The submanifolds &(V;x cZ;) are also of codimension zero. As we already
remarked, this structure is of the form V; x D, where V; is some smoothing of
¥, By smooth transversality we can assume that § restricted to ¢~ ! (M) is of
the form

oof : (Noﬂa“(M))U(U Vix cz,.> - M,

where V} is a smooth submanifold of V,. This induces a C,-structure > on M.-The
induced element in [M,PL/C,] is oof. The C,-structures 6 and oof defines
gm € [M;G/O] and gy € [N,G/O] and gyof =gy This proves the lemma in
general.

A smooth surgery problem is a degree one normal map M — M. Normal
cobordism classes of such maps are classified by elements of [M,G/O].
Similarly, PL-surgery classes by elements of [M, G/PL]. The homotopy type of
G/PL localized at 2 was determined by Sullivan in [13]. Essentially G/PL,,is a
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product of one copy of each of the Eilenberg-MacLane spaces K(Z/2,4n—2)
and K(Z,),4n) for each i. In particular there are indecomposable classes
k*"=% e H*~2(G/PL; Z/2) inducing characteristic classes for surgery problems.

The natural transformation which forgets the smooth structure of a smooth
surgery problem induces a map j: G/O — G/PL. For suitable choice of the
k*"=2 above (related to the surgery invariant) it was proved in Brumfiel-
Madsen-Milgram [8] that j*(k*"~2)=0 if n42", but j*(k¥ ~2) +0.

In dimensions 4n—2+42"-2, bP,,_,=2Z/2. It is conjectured that bP,_; is
always trivial. This will be the case if k¥ =2 is spherical. When we study the
homotopy of PL/C in section 4, the dimensions where bP,,_,=0 have to be
treated separately. We will then need the following lemma.

LEMMA 2.3. If bP,,_,=0, then k*~2 pulls back to zero under the composite

k:PL/C, 5 G/O 1> G/PL .

ProoF. We use the geometrical interpretation of y,. Let M be a smooth
manifold, and let 6: MU (U;V;xcZ) - M be a C,-structure on M. Since
bP,,_,=0, none of spheres X; has dimension 4n—3.

Let n: M — M be the surgery problem associated to 6. It is classified by
gm € [M,G/O]. On the smooth part (M) is the surgery problem m a PL-
equivalence. In particular, it is a trivial PL-surgery problem. Over the singular
part our surgery problem is the disjoint sum of surgery problems of the form

Vix (M(Z),0M(Z) TR Vox ez, £y,
where the M (2)) are parallelizable manifolds, and 0M (X)) PL-spheres. The map
Jjogum classifying the original surgery problem considered in the PL-category,
will factor over a wedge of spheres

M- V (VixcZ/Z) — V (cZ/Z) .

Since no spheres of dimension 4n—2 occur in the wedge, any cohomology class
in H**~2(G/PL) will pull back to zero over M. This proves the lemma.

Next we prove that y,:PL/C, — G/O preserves the action of PL/O.

LEMMA 2.4. The following diagram is homotopy commutative

PL/O x PL/C, -2*“%, PL/C,

lXoth JX'

G/OxG/O -, G/O
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Proor. The spaces PL/O and G/O are loop spaces, in fact infinite loop
spaces (see Boardman-Vogt [1]). This means that the multiplication can be
chosen to be strictly associative.

The map PL/O — G/O is a loop map, so we can assume that the following
diagram is strictly commutative

PL/Ox...xPL/O - PL/O
(*) ‘ ! !
G/Ox...xG/O — G/O

Now we can test the diagram in the statment of the lemma on a smooth
compact manifold M. Suppose (o, f): M — (PL/O xPL/C)) is a given map.

We can map M into G/O in two distinct ways. The action of PL/O on
PL/C, allows us to compose « and f. The product o f induces a C,-structure
on M. This defines a class y,(x*f) € [M,G/O].

But we also know that « and B defines a smooth structure & and a C,-
structure B on M. These structures define elements x, (o) and ,(f) € [M, G/O].
Using the multiplicative structure of G/O, we can form their product
%1(®) %, (B). The lemma states that y,(a-f)=y,(x) x;(f). To prove this we
factor (o, ) over M x M

0 f): M5 MxM 8 pLioxpLC, .

By naturality it is enough to calculate the two classes y; ((o x *)-(* x f)) and

x1(@x *) gy (x X B).
Let B be realized by

B: My U (V;xcZ)— M.
The C,-structure on M x M induced by a x § is realized by

id xB:M,xMOU<U (MaxVi)chi>—+ MxM .

i

Here M, is the smooth structure induced by a. ‘
We can now compute the two maps. On the smooth part the two maps are
given by the compositions

M,x M, - PL/OxPL/O - G/OxG/O — G/O

M,xM, > PL/OxPL/O —» PL/O - G/O .
On the singular part they are
M, xV;xcZ,:PL/OxPL/OxG/O ;
HroXi bl /O x G/O — G/O x G/O — G/O
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M, x V;x ¢Z;: PL/O x PL/O x G/O — G/O x G/O x G/O
WX460, GIO x G/O — G/O

Because the diagram (*) commutes, the maps agree in both cases.
The lemma is proved.

3. C-manifolds.

In this section we give an inductive construction of the C-category. In
analogy with the method used to construct the C,-category, we obtain a
general Co-manifold by gluing conelike singularities onto a C,_;-manifold.
This process is welldefined once we fixed an allowable set of singularities.

In order to generalize the group

bP, ., = ker {(xo),: 7, (PL/O) - =n,(G/O)}

we will define a map y,;: PL/C; — G/O for each category C,. Then we define the
C,, -category using cones on the C.spheres corresponding to elements of

ker {(1),: T, (PL/C) — m,(G/O)} .

Thus we must show that all constructions and lemmas of sections 1-2 have
counterparts in the Cg-category.

Suppose inductively that we have defined categories of C,-manifolds, 1<r
<s, and corresponding classifying spaces BC, with maps

BO — BC, ... - BC, — BPL
Furthermore, suppose there are maps
ugc,: BOx BC, — BC,
pprc,: PL/OXPL/C, — PL/C,

satisfying the obvious analogues of lemmas 1.3 and 1.5. We will finally assume
that there exist maps

x: PL/C, —» G/O
such that the diagrams below commute up to homotopy
PL/C,_; % G/O

7

PL/C,
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PL/O x PL/C, £2-% PL/C,
YoX U
G/OxG/O —— G/O
vThen we define bP’, ., as follows
bPY,.; = ker {(x): T4 (PL/C) — m,(G/O)} .

Choose a particularrepresentative for each element.

DerinimioN 3.1. A C,,,-manifold is a quadruple (Mo, {V}, {Z;}, {fi})
consisting of

(i) A C,-manifold with-boundary M,,.

(i1) Smooth compact manifolds V; = 1...p.
V; may or may not have boundary.

(iii) C.-spheres X, which are among the representatives chosen above.

(iv) Disjoint inclusions f;: V;xZ; = 0M,
of V,xcZX, in dM, as dimension 0 submanifolds.

In the same way as we did with C,-manifolds, we can glue together M, and
the singular parts of M to get the underlying PL-manifold:

Mp, = M0U<U V,.ch,->.

It is not difficult to see that theorem 1.2 and the lemmas 1.3, 1.4, and 1.5 hold, if
they are stated for C;,, instead of C,. Indeed, the proofs are quite similar.
We also have to construct a map

Xs+1: PL/Cyy —» G/O .

The construction is essentially the same as our homotopy theoretical
construction of x,. It depends on picking particular extensions to the disc for
homotopy trivial maps S — G/O.

If X ebPs is classified by a map gz: S — PL/C, we can choose a map
g.s: ¢S — G/O so that the following diagram is commutative

S %, PL/C,

! e
S %, G/O
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In the next section we discuss the question of to what extent the choices
involved will affect the category C,,,. It turns out that it is possible to give
~ conditions strong enough to guarantee that the C,,,-category is essentially
uniquely determined.

It is easy to generalize lemmas 2.2 and 2.4. The generalization of lemma 2.3
will be proved in section 4.

We now have the categories C, with classifying spaces BC,. A C-thickening
may be considered as a C,, -thickening, so we also have maps

BO - BC; - ... > BC;— ... BPL.
We set

BC = limBC .

In the same way we define the C-category to be lim C,.

For a given dimension, the direct limit system stabilizes after a finite number
of steps. Recall that bP, =0, if n<7, so that any C,-manifold of dimension 7 or
less is a smooth manifold. Because bP} consist of C,-manifolds that are not
smooth manifolds, it has to be zero if n <8. This shows that any C,-manifold of
dimension 8 or less is a C,-manifold. In general, all n dimensional C-manifolds
are C,_, manifolds.

At this point we need the following

LEMMA 3.3. Let X be a finite CW-complex, dim X =m. Any Cs-thickening is
stably equivalent to a thickening X — N", where n=dim N" =2m.

Proor. In [14] Wall proves a similar result for PL-thickenings. Suppose that
X — N’is any C,-thickening. It is stably PL-equivalent to some PL-thickening
X — N with dim N <2m. We must show that we can give N a Cg-structure so
that N and N’ are stably C,-equivalent thickenings.

The concordance W between N x I” and N’ is PL-equivalent to N’ xI. We
can use this PL-equivalence to give Wa Cg-structure which is a product of N’
and I. By the C, product structure theorem, this is concordant to the product
of a C,-structure on N and the standard structure on I"*1. The Cstructure on
N allows us to consider X — N as a Cgthickening, and W is a stable C,-
equivalence between this thickening and X — N'.

Lemma 3.3 shows that for a finite complex X the sequence

[X,BO] — [X,BC,] - ... — [X,BC] — ...
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will stabilize. This shows that the space BC is the classifying space for C-
thickenings.

Since a C-thickening is a PL-thickening we have a map of classifying spaces
BC — BPL whose fibre is denoted PL/C. Then PL/C= lim PL/C; and the

maps y, induce a mapping y:PL/C — G/O. By the construction,
X% 7y (PL/C) - 7, (G/O)

is injective.

4. How to choose trivializations.

In the last section the category C,,, was defined using the map y,: PL/C,
— G/O. The construction of the map y, depended on choices. In this section,
we first limit the element of choice, and then prove that the remaining choices
are essentially equivalent. :

The map (), n,(PL/O) — 7, (G/O) has been studied by Kervaire-Milnor
[9], Sullivan [13], Brumfiel [5], [6], [7] and others. The image of (y,), is a
complicated (unknown) subgroup of n,(G/O), but the cokernel is much
simpler. '

There is a fibration

PL/O™ G/0 L G/PL.

The homotopy groups of G/PL are wellknown. They are periodical with period
4 as follows
{ T4,(G/PL) = Z T4n+1(G/PL) = 0
Man+2(G/PL) = Z/2  m,,,3(G/PL) = 0.

Since coker (x,,)=1im (j,), this group has to be cyclic. In dimension 4n we can
describe a generator of coker (y,,) = 7,(G/O) as follows.

Recall that G/O is the space classifying normal cobordism classes of degree
one normal maps. Also recall the Milnor manifold M*” with index 8 mentioned
in section 2. The boundary dM is a homotopy sphere that generates bP,,.
Consider the manifold N which is a connected sum along the boundary of
|bP,,| copies of M. Then N is framed, and its boundary ON is .a standard
smooth sphere S. The union with a standard disc N=N U,y D has a natural
smooth structure. There is a natural degree one normal map f: N — S which is
classified by f:S — G/O. The group coker (y,) is generated by f.

In dimensions 4n—2 the long exact sequence of the fibration PL/O — G/O
— G/PL specializes to

0 — (coKer Yo)en—z — Z/2 — bP4,_, — 0.
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If n£2", bP,,_,=2Z/2, so (coker yg)s,_,=0. If n=2" it is conjectured that
bP,,_,=0. Let AcZ be the set of dimensions 4n—2 for which (coker yo)4, -2
=Z/2.

Now we are able to compute (coker y; ),

The image of

X14: Tan (PL/Cy) — 74,(G/O)

contains the image of y,, in this dimension, but also the element f:S — G/O
generating (coker y,,),, for the following reason:

Take |bP,,| copies of the boundary dN*" of the Milnor manifold. The
connected sum along the boundary of the cones of these homotopy spheres is a
C,-manifold D. The boundary of D is a standard sphere, so we can take the
union with a standard disc D Ug D. This defines a C,-structure S, on a PL 4n-
sphere. From the geometrical definition of y, it is clear that

s, — PL/C, B G/O

is the element f. This is where we use that the trivialization of the generator of
bP, is chosen in a particular way.

From lemma 2.3 follows now that (coker y, ,),=Z/2if n € A4, (cokery,,),=0
else.

In 2 we discussed classes k € H “2(G/PL, Z/2) which are mapped to non-
zero elements in H? ~%(G/O). Consider the map

p: 60 05 [T kz/2m .
neA

It is proved in Madsen-Milgram [11] that each map k: G/PL — K(Z/2,2"-2)
is twice deloopable, so p is also twice deloopable.

DEeFINITION 4.1. The homotopy fibre of p is &,,.

&, is a loop space. Because PL/O — G/O — G/PL is trivial we can lift
PL/O — G/O to a loop map PL/O — @,. Let ¢:®, — G/O be the inclusion.

LEMMA 4.2. We can choose y,: PL/C;, — G/O so that it factors PL/C, L, ?,
2, G/O. ‘

Proor. We know from lemma 2.3 that py, ~0, so we can assume that
X1 =@X;. In the construction of y, we only used that PL/O — G/O is a loop
map. Suppose inductively that y,=ej%,. If

o € ker [y, : n,PL/C; — n,G/O],
then
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o € ker [#,,: m (PL/C) — 7 0,],
since ¢ is injective on homotopy groups. We can construct a map
x~s+1: PL/Cs+l g QO

in the same way as we constructed y,,, in section 3. Then put x,,,= 0%+,

If we let s increase, in the limit we obtain a map j: PL/C — &,. This map
induces an isomorphism on all homotopy groups, so it is a homotopy
equivalence. We can formulate this as follows:

THEOREM 4.3. Let A < Z be the set of numbers of form n=2"—2 such that
there exists a framed manifold of dimension n with Kervaire invariant 1. Let C be
the manifold category constructed above. Then there is a canonical fibration.

PL/C — G/O — ][] K(Z/2,n)
neA

In particular it follows that PL/C is independent of the choices we made in
the construction of the C-category. But we can prove more. Assume that by
making different choices, we have arrived at two different categories C and C'.
We will construct a natural equivalence E: S¢(—) — Sc(—). The map E is
constructed inductively. We can assume that C,=C/, but that j,7.: PL/C,
— @ might be different maps.

Let X be any C,-structure on $"~! which is in be,.' The two different
trivializations of the classifying map £ — PL/C; give us a map f:5" — &.
Since =, (PL/Cy) — 7, (G/O) is an epimorphism can we lift fto f': S* — PL/C,.
This corresponds to a C,-structure f on S".

Let 2 x I be a trivial concordance. Take the connected sum of this with 7. We
obtain a C,-concordance W(Z) from X to itself.

Now we can define the map E. If M has a C structure M,:

oa: MyU (U Vixc2i>—-> M
we define Mg, to be
E@: M, U (u Vix W(z,-)) y (U I/,-chi) S MyU (U VixcE,-) om,

where
(Vix W(Z) U (VixcZ) - (VixcE)

is the obvious PL-homeomorphism,
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The following diagram is commutative

ME(a)"_) PL/Cs X

!
M, — PL/CS/,zv

Interchanging the roles of x and y’' we get a map E":%c(—) — ¥¢,(—) which
is the inverse of E. We can extend E inductively to get an isomorphism
E: (M) — S (M).

THEOREM 4.4. Let C and C' be two categories constructed using the inductive
procedure above. Then there exist S a natural equivalence

E:Sc(=)—> Sc(-).

5. The homotopy type of BC. '

In this section we determine the homotopy type of BC. We also remark that
the machine of sections 1-3 can be generalized. We consider the special case
when G/O is replaced with the localization of coker J at odd primes.

For any C-manifold M we will define a map #y: M — G/PL x BO. This will
give us a map on classifying space level

n = (1, xny): BC — G/PLxBO,

which splits BC as a product.

If M is a smooth manifold, let (5,)y be a trivial map, and (n,)y the smooth
tangent bundle.

Let N be any C,-manifold with trivial PL-tangent bundle. Then N has some
framed structure, and the C,-structure of N is given by a map f: N — PL/C,

Suppose we have defined n on C-manifolds so that for all N of the type
above, ny is equal to the composite

N pLC, 5 6/0 2P G/PLx BO,

where j and p are the natural maps. It is easy to see that this is valid for s=0,
that is PL/C,=PL/O, if n is defined as above.

Let X be a sphere with a C,-structure. It has a trivial PL-tangent bundle. If
x(2)~0 can we extend 75 from X to ¢Z as the composite

ez % 6/0Y% G/PLxBO .

Then we can define 7 in the obvious way on all C,, ,-manifold. In particular,
on V xcX it is the composite

V x 3 %%, PLIO x G/O — G/O — G/PLx BO .

Math. Scand. 53 — 6



82 MARCEL BOKSTEDT AND SOREN VAGNER

To complete the induction, let N be a framed manifold. It has a Cy-structure
induced by f: N — PL/C,. As usual we can decompose N

N = NOU(U V,.xcz,.).

Recall from section 2 that the smooth structure on N induces a smooth
structure on N, and V. This smooth structure is framed, since the smooth
structure on N is. We must prove that ny is equal to the composite

N L pLic, % G/O - G/PLxBO .

By the induction hypothesis this is true on N,. On V; x cZ; it is also true, since
the composite V; — PL/O — G/O — BO is just the tangent bundle of V,, and
since we have a commutative diagram’

V,xcZ, - PL/OxPL/C,,, — PL/C,,,
! !
PL/O x G/O —— G/O — G/PL x BO

This concludes the construction of #,. We want to construct a natural
transformation [—,BC] — [—,G/PL x BO]. Assume that X is a smooth
manifold with tangent bundle ty. Let 0: X — M be a C-thickening of X. Then
put

m = olm)i:X —> GPL,
(U(?’M)Z—Tx)ZX — BO

U]
and finally

n = (.13 X - G/PLxBO.

In particular, let M be the disc bundle D(&) of some vector bundle & on X.
Then #, is trivial, and #, represents the vector bundle (tx @ &) —(1x) = &

It is easy to see that the homotopy class of nos only depends on the stable
class of the thickening M. This defines a map

n: [X,BC] — [X,G/PL x BO] .

LemMA 5.1. The map [—,BC] — [—,G/PL x BO] is a natural transfor-
mation in the category of smooth manifolds and homotopy classes of maps.

Proor. Let X,Y be smooth manifolds, ¢: Y — BC represent a homotopy
class, and let f: X — Y be a continuous map. As in the proof of lemma 2.1, we
consider two cases. :
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Casg 1: f: X — Y=D(¢) is the inclusion of X as the zero section in a disc
bundle. Let 6: Y — M be a thickening classified by . Then ¢ is a simple
homotopy equivalence. Choose a vector bundle 6 over M such that
D(O®G ' (£))=M x D" Then there is a pullback of thickenings

D) —> M xD"
tg - 1e
X —— D(@)=Y
It is clear that of is a thickening representing of. From the definition of n we see

that
(no@(af)) ~ (md)f .

Cask 2. Now we can assume that X is a submanifold of codimension zero in
Y. Any stable thickening of Y can be represented by a C-structure on a PL-disc
bundle ¢ on Y. Take the restriction of £ to X. The total space of this bundle is a
manifold, which has an induced C-structure. The inclusion iy: X — D(¢y)is a
thickening of X. It is clear that (npy)ix ~ (Mp@)ivS

The natural transformation of lemma 5.1 defines a map of classifying spaces

n: BC — G/PLx BO .

If we approximate PL/C with a framed manifold M, and use that 5y M
— G/PL x BO is equal to the composite M — PL/C — G/O — G/PL x BO
we get a commutative diagram

PL/C 5 G/O

l G.p)

BC »— G/PL x BO

Recall the classes k¥ =2 € H¥ ~2(G/PL;Z/2). Let ®p. be the fibre of the map
G/PL —» [] K(Z/2,n),

neA
where A is the set of dimensions congruent to 2 modulo 4, for which bP,=0. If
we replace y in the argument above with the map 7:PL/C — @, defined in
section 4, we get a corresponding map #: BC — &®p; x BO.
Consider the homotopy commutative diagram

PL—— PL — *

! ! 1

o, —— GO — [] K(Z/2,n)
. neA

! ! !

®p, x BO - G/PLx BO — [] K(Z/2,n)

neA
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Since all other columns and rows are fibrations, the left column is a fibration.
Recall that PL — G/O factors as PL — PL/O — PL/C — G/O. This
shows that the following diagram is homotopy commutative

PL — PL/C — BC

idi lx 1'?

PL— ¢0 _— @pLxBO

Since both rows are fibrations, and the maps id and ¥ are homotopy
equivalences, the map # is also an equivalence. We have proved

THEOREM 5.3. There is a fibration

BC % G/PLxBO 5 [] K(Z/2,n),

neA

where k is given by the classes k" € H*(G/PL; Z/2), and A is the set of dimensions
of form 4m—2 for which bP,,, _,=0.

If X is a loop space, and PL/O — X is a loop map we can construct other
categories of manifolds, similar to C.

Assume for example that X is the localisation of Coker J at odd primes.

Recall that the localisation of G/O at odd primes splits as a product of loop
spaces

G/O[4] =te» (Coker J)[3] x BSOg[3] .
Let
Jo: PL/O — (Coker J)[4]
be the map
PL/O % G/O — G/O[4] = (Coker J)[4].

Since (Coker xo,) € 7, (G/O) contains no odd torsion, and =, (Coker J) only
contains torsion we know that

Aoy : T PL/O — m,(Coker J)[}]

is an epimorphism on homotopy groups. We define the C,-category as the
category with singularities cZ, where X are representatives of the concordance
classes satisfying 4,(2)=0.

Following the procedure in section 2 we can construct a map

A,: PL/C, — (Coker J)[}]

given by a natural transformation



MANIFOLDS WITH A SPECIAL TYPE OF CONELIKE SINGULARITIES 85

4 :[-,PL/C,] > [-,G/O].

More precisely, let M be a smooth manifold, and let ¢ € [M,PL/C,] be
represented by a C-structure

G: Mo U (VixceZ) - M.

We get a set of classifying maps
g M, - PL/O
gy, Vi — PL/O
gs, 12 — PL/O
related by
golv,xz, = MpLio(8Y, %X 8s) -
For each gz :X; — PL/O satisfying that the composite
X, - PL/O — (Coker J)[$]
is nullhomotopic, we can choose a particular nullhomotopy
8cs,: ¢Z; — (Coker J)[3] .
We can now define 4,(c) € [ M, (Coker J)[3]] by the following formulas:

i) On M, it is the composite M, % PL/O %5 G/O.
ii) On V,;xcZ; it is given by the composite

Vixcl; TR, PL/O x (Coker J)[$] —
— (Coker J)[5] x (Coker J)[3] £ (Coker J)[4].

Following section 2 we can now prove that o|— A4,(s) is a natural
transformation. In particular it does define a map

A,:PL/C, — (Coker J)[4].

By induction we, as in section 3-4 obtain a category of manifolds with
singularities we denote the-C-category. We also obtain a classifying space BC.
Let PL/C denote the fibre of the natural map BC — BPL.

The arguments in sections 3-4 generalize to yield

THEOREM 5.4. There is a category C of manifolds with singularities. This
category depends on choices, but if C' is another category, constructed in the
same way, there is a natural equivalence

E: Se(=)— Se(=).
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Furthermore, there is a homotopy equivalence
4:PL/C — (Coker J)[$].
Recall that BSPL[4] splits as a product
B(Coker J)[4] x BSO[4] 227 BSPL[4].
The right inverse of 7 is a map
¢: BSPL[4] — BSO[4].

The natural map SPL — Coker J factors as SPL —» PL/O — G/O — Coker
J. Also,

SPL — PL/O — PL/C — (CokerJ)[4]

is the natural map, since 4 is an extension of A, We conclude that the following
diagram is commutative

7, (SPL) /m*ipi '
™~ n,(Coker J)[3].

Consider the map g: BSC — BSPL % BSO.
There is a commutative diagram with exact rows:

0 — n,(BSC) - n,(BSPL) - n,_,(PL/C) — 0
lé. | id, lan
0 — n,(BSO) & n,(BSPL) — n, _,(Coker J)[4] —» 0.

THEOREM 5.5. There is a homotopy equivalence

g: BSC — BSO[4].

Finally we note that we could have defined the C-manifolds with the
additional restriction that the singular manifolds must be framed. This is the
main case considered in Levitt [10]. We can still construct the map y, and we
get a classifying space BC homotopy equivalent to the one considered in this
paper. The proofs carry over with minimal changes. In this case there is no
obvious way to construct the action BO x BC — BC, and the statement
S (M) ~ [M,PL/C] is not obvious if M is not framed.
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