PLURISUBHARMONIC FUNCTIONS ON SMOOTH DOMAINS

JOHN ERIK FORNÆSS

1.

In this short note we will discuss regularization of plurisubharmonic functions. More precisely, we will address the following problem:

QUESTION. Assume Ω is a bounded domain in C^n $(n \ge 2)$ with smooth (\mathscr{C}^{∞}) boundary and that $\varrho \colon \Omega \to R \cup \{-\infty\}$ is a (discontinuous) plurisubharmonic function. Does there exist a sequence

$$\{\varrho_n\}_{n=1}^{\infty}, \quad \varrho_n \colon \Omega \to \mathbb{R} ,$$

of \mathscr{C}^{∞} plurisubharmonic functions such that $\varrho_n \setminus \varrho$ pointwise?

If ϱ is continuous, the answer to the above question is yes (see Richberg [3]). On the other hand, when ϱ is allowed to be discontinuous and Ω is not required to have a smooth boundary, the answer is in general no (see [1], [2] for this and related questions).

Our result in this paper is that the answer to the above question is no. We present a counterexample in the next section. The construction leaves open what happens if we make the further requirement that Ω has real analytic boundary. Another question, suggested to the author by Grauert, is obtained by replacing Ω by a compact complex manifold with smooth boundary, and assuming continuity of ϱ .

In the next section we need of course both to construct the domain Ω and the function ϱ . These constructions are intertwined and therefore we need at first to define approximate solutions Ω_1 and ϱ_1 and then use both to define Ω and ϱ . The geometric properties we seek of Ω are the following. There exists an annulus $A \subset \overline{\Omega}$ such that $\partial A \subset \Omega$. Furthermore there exist concentric circles C_1 , C_2 , C_3 in the relative interior of A arranged by increasing radii such that C_1 , $C_3 \subset \partial \Omega$ and $C_2 \subset \Omega$. Finally there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of annuli such that $A_n \to A$ and $A_n \subset \Omega \ \forall n$. The properties we seek of ϱ are as follows. The

Received May 21, 1982.

function ϱ is strictly positive on C_2 and is strictly negative on ∂A . A simple application of the maximum principle now shows that smoothing is impossible.

The example we construct is in C^2 . This is with no loss of generality as one obtains then an example in C^n by crossing with a smooth domain in C^{n-2} , rounding off the edges and pulling back ρ to the new domain.

2.

All domains and functions which we will consider in $C^2(z, w)$ will be invariant under rotations in the z-plane, i.e. will depend only on |z|. They will also be invariant under the map $(z, w) \to (1/z, w)$. Because of the latter we will describe only those points (z, w) in these domains or domains of definitions for which $|z| \le 1$.

If U is a domain in $C^2(z, w)$, we let U_z denote the part of U over z, i.e.

$$U_z := \{ (\eta, w) \in \mathbb{C}^2 : \eta = z \text{ and } (\eta, w) \in U \}.$$

Abusing notation we will also take U_z to mean the set $\{w \in C; (z, w) \in U\}$. Similarly, if $\sigma: U \to R \cup \{-\infty\}$ is a function, then σ_z denotes the restriction of σ to U_z .

Let A be the annulus in C² given by

$$A = \{(z, w) ; w = 0 \text{ and } 1/2 \le |z| \le 2\}.$$

This is then the limit of a sequence of annuli $\{A_n\}_{n=1}$, where

$$A_n = \{(z, w) ; w = 1/n \text{ and } 1/2 \le |z| \le 2\}.$$

We will next describe a bounded domain Ω_1 in \mathbb{C}^2 with \mathscr{C}^{∞} boundary containing all A_n 's (and hence A) in its closure. It will suffice to describe $\Omega_{1,z}$ for various z's. That these can be made to add up to a domain with \mathscr{C}^{∞} boundary will be clear throughout.

Choose a sequence of positive numbers $\{r_k\}_{k=1}^{\infty}$, $0 < r_1 < r_2 < \ldots < 1$, with $r_3 = 1/2$. We let $\Omega_{1,z} = \emptyset$, if $|z| \le r_1$ and $\Omega_{1,z}$ be a nonempty disc, concentric about the origin if $r_1 < |z| \le r_4$. Recall that $\Omega_{1,z} = \Omega_{1,|z|}$ for all z. If $r_2 \le |z| \le r_4$ we make the extra assumption that $\Omega_{1,z}$ has radius 2. For $|z| > r_4$ we will break the symmetry in the w-direction at first by letting $\Omega_{1,z}$ gradually approach the shape of an upper-disc. (This is a rough description to be made more precise below.) Increasing |z| further we will rotate this approximate upper half disc 180° clockwise until it becomes approximately a lower half disc. Then we proceed by reversing the process, first by rotating counterclockwise back to an approximate upper half disc and then expanding this back to a disc of radius 2 near |z| = 1. As mentioned earlier, if |z| > 1, then $\Omega_{1,z} := \Omega_{1,1/z}$.

We now return to the more precise description of $\Omega_{1,z}$ for $|z| > r_4$. Writing w = u + iv in real coordinates u, v, let v = f(u) be a \mathscr{C}^{∞} function defined for $u \in \mathbb{R}$ with f(u) = 0 if $u \le 0$ or $u \ge 2$, $f \ge 0$ and f(u) = 0 on (0, 2) if and only if u = 1/n for some positive integer n. We may assume that |f|, |f'|, |f''| are very small and therefore in particular that the graph of f only intersects the boundary of any disc $\Delta(0; R) = \{|w| < R\}$ in exactly two points. If $r_4 < |z| < r_5$, we let Ω_1 , be a subdomain of $\Delta(0; 2)$ containing those $u + iv \in \Delta(0; 3/2)$ for which $v \ge f(u)$. When $r_5 \le |z| \le r_6$ we choose $\Omega_{1,z}$ independent of z with the properties that $\Omega_{1,z} \subset \Delta(0;7/4) \cap \{v > f(u)\}$ and $\Delta(0;3/2) \cap \{v > f(u)\} \subset \Omega_{1,z}$. Let $\theta(x)$ be a real \mathscr{C}^{∞} function on **R** with $\theta(x) = 0$ if $x \le r_6$, $\theta(x) = \pi$ if $x \ge r_7$, and $\theta'(x) > 0$ if r_6 $< x < r_7$. Then we can rotate $\Omega_{1,z}$ 180° clockwise for $r_6 \le |z| \le r_7$ by defining $\Omega_{1,z} = e^{-i\theta(|z|)}\Omega_{1,r_0}$ for such z. Further, we let $\Omega_{1,z} = \Omega_{1,r_0}$ when $r_7 \le |z| \le r_8$. Reversing the procedure, we rotate $\Omega_{1,z}$ back 180° when $r_8 \le |z| \le r_9$ so that Ω_{1,r_0} again equals Ω_{1,r_0} . Continuing, we let $\Omega_{1,z} = \Omega_{1,r_0}$ whenever $r_0 \le |z| \le r_{10}$. Reversing the procedure between r_4 and r_5 we obtain $\Omega_{1,z}$'s, $r_{10} \le |z| \le r_{11}$ so that in particular Ω_{1,r_1} is the disc $\Delta(0,2)$. When $r_{11} < |z| \le 1$, we let $\Omega_{1,z}$ always be this same disc. This completes the construction of Ω_1 .

The next step is to define an (almost) plurisubharmonic function ϱ_1 . Let $\{\varepsilon_n\}_{n=1}^{\infty}$ be a sufficiently rapidly decreasing sequence of positive numbers, $\varepsilon_n \leq 0$. Then

$$\sigma_1(w) := \sum_{n=1}^{\infty} \varepsilon_n \log \left| w - \frac{1}{n} \right|$$

is a subharmonic function on the complex plane and $\sigma_1(0) \in (-\infty, 0)$. Letting $\sigma(w) = \sigma_1(w) + 1 - \sigma_1(0)$ we obtain a subharmonic function on C(w) with $\sigma(0) = 1$ and $\sigma(1/n) = -\infty \ \forall n \in \mathbb{Z}^+$. If the constant K > 0 is chosen large enough, the plurisubharmonic function $\sigma(w) + K \log(|z|/r_5)$ will be strictly less than -1 at all points $(z, w) \in \Omega_1$ for which $|z| \le r_4$. The function $\varrho_1 \colon \Omega_1 \to \mathbb{R}$ is defined by the equations

$$\varrho_1(z,w) = \varrho_1(1/z,w)$$

and

$$\varrho_1(z, w) = \max \{ \sigma(w) + K \log (|z|/r_5), -1 \}, \text{ when } |z| \le 1.$$

Then ϱ_1 is the restriction to Ω_1 of the similarly defined function on C^2 and ϱ_1 is plurisubharmonic at all points (z, w) with $|z| \neq 1$. This completes the construction of ϱ_1 .

We have two main problems left. The annuli A_n all lie partly in the boundary of Ω_1 , so Ω_1 has to be bumped slightly so that they all lie in the interior. However, this bumping should not change the extent to which A lies in the boundary. The other main problem is the failure of plurisubharmonicity of ϱ_1

at |z|=1. We will change ϱ_1 near |z|=1 so that it will equal max $\{\sigma(w), -1\}$ in a neighbourhood of this set. In order to deal with both these problems, we will at first construct a subharmonic function $\tau(w)$ which can be used for patching purposes.

Our first approximation to τ will be τ_1 . The domain of τ_1 will be

$$D := \{ w ; |w| < 2, w \notin (-2,0], w \notin \{1/n\} \}$$
.

The properties we will require of τ_1 are that $\tau_1(u+iv)=0$ when $v \ge f(u)$, $\tau_1(u+iv) \ge 1$ when $v \le 0$, τ_1 is \mathscr{C}^{∞} and τ_1 is strongly subharmonic at all points u+iv with v < f(u).

Let K_0 denote the compact set $\{w=u+iv; |w| \le 2 \text{ and } v \ge f(u)\}$. Since K_0 is polynomially convex, there exists a \mathscr{C}^{∞} subharmonic function $\lambda_0 : C \to [0, \infty)$ which vanishes precisely on K_0 and which is strictly subharmonic on $C - K_0$. Choose an increasing sequence of compact sets

$$F_1 \subset \operatorname{int} F_2 \subset F_2 \subset \operatorname{int} F_3 \subset \ldots \subset D, \quad D = \bigcup F_1$$

Letting $K_l = K_0 \cup F_l$ we may even assume that each bounded component of $C - K_l$ clusters at some 1/n and in particular therefore that there are only finitely may of these components. With these choices it is possible for each $l \ge 1$ to find a non-negative \mathscr{C}^{∞} function λ_l such that $\lambda_l \mid K_l \equiv 0$, $\lambda_l \ge 1$ and strongly subharmonic on $\{u+iv \in K_{l+2}-\mathrm{int}\,K_{l+1}; v \le 0\}$ and λ_l fails to be subharmonic only on a relatively compact subset of $(\mathrm{int}\,K_{l+3}-K_{l+2})\cap\{v<0\}$. But then, if $\{C_l\}_{l=0}^{\infty}$ is a sufficiently rapidly increasing sequence,

$$\tau_1 := \sum_{l=0}^{\infty} C_l \lambda_l$$

has all the desired properties.

We next want to push the singularities of τ_1 at the points 1/n over to the origin. First, let us choose discs $\Delta_n = \Delta(1/n, \varrho_n)$ small enough so that $\sigma(w) + K \log 1/r_5 < -1$ on each Δ_n .

We will first perturbe τ_1 inside each Δ_n . We can make a small pertubation of the situation by making a small translation parallell to the v-axis in the negative direction in a smaller disc about 1/n patched with the identity outside a slightly larger disc in Δ_n to obtain a new \mathscr{C}^2 function $\tau_2 \ge 0$ and a new \mathscr{C}^∞ function $v = f_1(u)$ with the properties that $f_1 \le f$, $f_1 < f$ near 1/n, $f_1 = f$ away from 1/n and $\tau_2 = 0$ when $v \ge f_1(u)$, $\tau_2 \ge 1$ when $v \le 0$ except in very small discs about 1/n and

$$\tau_3 = \begin{cases} 0 & \text{when } v \ge f_1(u) \\ \tau_2 + (v - f_1(u))^2 & \text{otherwise} \end{cases}$$

is strongly subharmonic when $v < f_1(u)$.

The singularities of τ_1 at the points 1/n have thus been moved down to the points $\varrho_n = 1/n + if_1(i/n)$. Let $\Delta'_n = \Delta(1/n, \varrho'_n)$, $0 < \varrho'_n \ll \varrho_n$ be discs on which $\tau_3 \equiv 0$. We may assume that $p_n \notin \bar{\Delta}'_n$. Let γ be a curve from p_1 to 0 passing in the lower half plane through all the p_n 's and avoiding all the $\bar{\Delta}'_n$'s. We can assume say that γ is linear between p_n and p_{n+1} . Let V be a narrow tubular neighbourhood of $\gamma - \{0\}$ also lying in the lower half-plane and avoding all the $\bar{\Delta}'_n$'s. The restriction $\tau_3 \mid V$ is \mathscr{C}^{∞} , subharmonic and ≥ 1 except for singularities at each p_n . Let $\tau_4 \geq 1$ be a \mathscr{C}^{∞} function on V which agrees with $\tau_3 \mid V$ on $V \cap V'$, V' some open set containing $\partial V - \{0\}$. A construction similar to the one for τ_1 yields a \mathscr{C}^{∞} subharmonic function $\tau_5 \geq 0$ on C - (0) which vanishes outside V and is such that $\tau_4 + \tau_5$ is subharmonic on V. Finally, let τ : $\{(w) < 2, w \notin [-2, 0]\}$ $\to \mathbb{R}^+$ be the \mathscr{C}^{∞} subharmonic function given by $\tau = \tau_3$ outside V and $\tau = \tau_4 + \tau_5$ on V. Then $\tau = 0$ on each Δ'_n and $\tau(w) = 0$ when $v \geq f_1(u)$ except possibly on a concentric disc Δ'_n , $\Delta'_n \subset \subset \Delta''_n \subset \subset \Delta_n$. Also, $\tau(w) \geq 1$ when $v \leq 0$, $w \notin \cup \Delta''_n$. This completes the construction of the patching function τ .

The construction of Ω can now be completed. A point $(z, 1/n) \in A_n$ lies in the boundary of Ω_1 only when |z| or 1/|z| is in $[r_5, r_6] \cup [r_7, r_8] \cup [r_9, r_{10}]$. This set is contained in the open set

$$\{(z, w) ; |z| \text{ or } 1/|z| \in (r_4, r_{11}) \text{ and } w \in \Delta'_n\} =: U_n.$$

We let Ω be a domain with \mathscr{C}^{∞} boundary which agrees with Ω_1 outside $\bigcup U_n$ and which contains all A_n 's in its interior.

Next we define the plurisubharmonic function $\varrho \colon \Omega \to \mathbb{R}$. Let $\sigma' = \max \{ \sigma, -1 \}$ and choose a constant $L \gg 1$ such that $\varrho_1 \le L - 1$ on $\overline{\Omega}$. If $|z| \le r_6$, let $\varrho_z \colon = \varrho_{1,z}$. For $r_5 \le |z| \le r_6$, this definition agrees with $\varrho_z = \max \{ \varrho_{1,z}, \sigma' + L\tau \}$, since τ is then 0 and $\varrho_1 = \sigma' + K \log (|z|/r_5)$. If $r_6 < |z| \le r_8$, let

$$\varrho_z := \max \{\varrho_{1,z}, \sigma' + L\tau\}.$$

For $r_7 \le |z| \le r_8$, this definition agrees with $\varrho_z = \sigma' + L\tau$. To see this, observe that if $w \in \Delta_n''$, then $\varrho_{1,z} = -1$ and $\sigma' = -1$ while $\tau \ge 0$. If on the other hand $w \notin \bigcup \Delta_n''$, then v < 0 and $\sigma' + L\tau \ge -1 + L \ge \varrho_1$. If $r_8 < |z| \le r_{10}$, let $\varrho_z := \sigma' + L\tau$. For $r_9 \le |z| \le r_{10}$ this definition agrees with $\varrho_z = \sigma'$ since $\tau = 0$. Also, if $r_{10} \le |z| \le 1$, let $\varrho_z := \sigma'$, and if |z| > 1, let $\varrho_z := \varrho_{1/z}$. Then ϱ is plurisubharmonic on Ω ,

$$\varrho(e^{i\theta},0)=1 \quad \forall \theta \in \mathbf{R}$$

and

$$\varrho(e^{i\theta}/2,0) = \varrho(2e^{i\theta},0) = -1 \quad \forall \theta \in \mathbb{R}$$
.

If there exists a sequence of \mathscr{C}^{∞} plurisubharmonic functions $\varrho_m \colon \Omega \to \mathbb{R}$, $\varrho_m \searrow \varrho$, then there exists an m for which

$$\varrho_m(e^{i\theta}/2,0), \varrho_m(2e^{i\theta},0) < 0 \quad \forall \theta \in \mathbb{R}$$
.

Hence, for all large enough n,

$$\varrho_m(e^{i\theta}/2, 1/n), \ \varrho_m(2e^{i\theta}, 1/n) < 0 \quad \forall \theta \in \mathbb{R}$$
.

By the maximum principle applied to the annuli $A_n \subset \Omega$, it follows that $\varrho_m(e^{i\theta}, 1/n) < 0 \ \forall \theta \in \mathbb{R}$ and all large enough n. Hence, by continuity of ϱ_m , $\varrho_m(e^{i\theta}, 0) \le 0 \ \forall \theta \in \mathbb{R}$. This contradicts the assumption that $\varrho_m \ge \varrho$ and therefore completes the counterexample.

REFERENCES

- E. Bedford, The operator (dd^c)ⁿ on complex spaces, in Seminaire P. Lelong-H. Skoda (Analyse, Années 1980/81, et Colloque Wimereux 1981: Les fonctions plurisousharmoniques en dimension finie ou infinie) eds. P. Lelong et H. Skoda, (Lecture Notes in Math. 919), pp. 294-323. Springer-Verlag, Berlin - Heidelberg - New York, 1982.
- 2. J. E. Fornæss, Regularizations of plurisubharmonic functions, Math. Ann. 259 (1982), 119-123.
- 3. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 251-286.

MATEMATISK INSTITUTT UNIVERSITETET I OSLO BLINDERN, OSLO 3 NORWAY Present address:

DEPARTMENT OF MATHEMATICS PRINCETON UNIVERSITY FINE HALL, BOX 37 PRINCETON, NEW JERSEY 08544 U.S.A.