MATH. SCAND. 53 (1983), 33-38

PLURISUBHARMONIC FUNCTIONS
ON SMOOTH DOMAINS

JOHN ERIK FORNAZSS

In this short note we will discuss regularization of plurisubharmonic
functions. More precisely, we will address the following problem:

QUuESTION. Assume Q is a bounded domain in C* (n=2) with smooth (%)

boundary and that g: @ — RU{—o00} is a (discontinuous) plurisubharmonic
function. Does there exist a sequence

{Qn}?:o=l’ Qn: Q—R ’

of ¥ plurisubharmonic functions such that g, ¢ pointwise?

If ¢ is continuous, the answer to the above question is yes (see Richberg [3]).
On the other hand, when ¢ is allowed to be discontinuous and Q is not
required to have a smooth boundary, the answer is in general no (see [1], 2]
for this and related questions).

Our result in this paper is that the answer to the above question is no. We
present a counterexample in the next section. The construction leaves open
what happens if we make the further requirement that Q has real analytic
boundary. Another question, suggested to the author by Grauert, is obtained
by replacing Q by a compact complex manifold with smooth boundary, and
assuming continuity of g.

In the next section we need of course both to construct the domain Q and the
function . These constructions are intertwined and therefore we need at first
to define approximate solutions Q; and ¢, and then use both to define Q and .
The geometric properties we seek of © are the following. There exists an
annulus A < @ such that 4 Q. Furthermore there exist concentric circles Cy,
C,, C, in the relative interior of 4 arranged by increasing radii such that C,,C,
=dQ and C, Q. Finally there exists a sequence {4,};%, of annuli such that
A, — A and A,cQ Vn. The properties we seck of ¢ are as follows. The
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function g is strictly positive on C, and is strictly negative on dA4. A simple
application of the maximum principle now shows that smoothing is
impossible.

The example we construct is in C%. This is with no loss of generality as one
obtains then an example in C" by crossing with a smooth domain in C"~2,
rounding off the edges and pulling back ¢ to the new domain.

All domains and functions which we will consider in C%(z,w) will be
invariant under rotations in the z-plane, i.e. will depend only on |z|. They will
also be invariant under the map (z,w) — (1/z, w). Because of the latter we will
describe only those points (z, w) in these domains or domains of definitions for
which |z|< 1.

If U is a domain in C2(z,w), we let U, denote the part of U over z, ie.

U,:={(n,w)eC?: n=zand (n,w)e U}.

Abusing notation we will also take U, to mean the set {w € C; (z,w) € U}.
Similarly, if 6: U — RU {—o00} is a function, then g, denotes the restriction of
g to U,

Let 4 be the annulus in C? given by

A = {(z,w); w=0 and 1/25(z|<2} .
This is then the limit of a sequence of annuli {4,},-,, where
A, = {(z,w) ; w=1/n and 1/25|z|<2} .

We will next describe a bounded domain ©, in C? with €° boundary
containing all 4,’s (and hence A) in its closure. It will suffice to describe @, ,
for various z’s. That these can be made to add up to a domain with ¢*
boundary will be clear throughout.

Choose a sequence of positive numbers {r,};, 0<r,<r,<...<1, with r,
=1/2. Welet Q, .=, if|z}]<r, and Q, , be a nonempty disc, concentric about
the origin if r, <|z| Sr,. Recall that Q.= forall z. If r, <|z| Sr, we make
the extra assumption that €, , has radius 2. For |z|>r, we will break the
symmetry in the w-direction at first by letting Q, , gradually approach the
shape of an upper-disc. (This is a rough description to be made more precise
below.) Increasing |z| further we will rotate this approximate upper half disc
180° clockwise until it becomes approximately a lower half disc. Then we
proceed by reversing the process, first by rotating counterclockwise back to an
approximate upper half disc and then expanding this back to a disc of radius 2
near |z|=1. As mentioned earlier, if |z|> 1, then @, ,:=@Q, , /2
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We now return to the more precise description of Q, , for |z|>r,. Writing
w=u+iv in real coordinates u, v, let v={ (1) be a ¥* function defined for u € R
with f(u)=0if u<0oru=2, f20and f(u)=0 on (0,2) if and only if u=1/n for
some positive integer n. We may assume that |f], |f'], | /| are very small and
therefore in particular that the graph of f only intersects the boundary of any
disc 4(0; R)={|w|<R} in exactly two points. If r, <|z|<rs, we let Q; , be a
subdomain of 4(0; 2) containing those u+iv € 4(0; 3/2) for which v=f(u).
When rs<|z|<re we choose Q, , independent of z with the properties that
Q,,<4(0;7/4N{v>f(w)} and 4(0;3/2)N{v>f(W)}<Q, . Let 6(x) be a
real > function on R with 8(x)=0if x<r, B(x)=nif x=r,, and (x)>0if rg
<x<r, Then we can rotate Q, , 180° clockwise for rg<|zj<r, by defining
Q, ,=e ?®DQ for such z. Further, we let Q, .=, ,, when r;<|zl<rs.
Reversing the procedure, we rotate €, , back 180° when rg<|z|<ry so that
Q, ,, again equals Q, , . Continuing, we let Q, ,=Q, , whenever ro<|z|=ry,.
Reversing the procedure between r, and rs we obtain Q, s, rigSlz|Sry, S0
that in particular Q, ,,, is the disc 4(0,2). When r,; <|z| < 1, we let Q, , always
be this same disc. This completes the construction of ,.

The next step is to define an (almost) plurisubharmonic function g,. Let

{e.}3%, be a sufficiently rapidly decreasing sequence of positive numbers,
&, % 0. Then

oo

o.(w) 1= ) ¢g,log

1
w——
n=1 n

is a subharmonic function on the complex plane and ¢, (0) € (— 00,0). Letting
o(w)=0,(w)+1—0,(0) we obtain a subharmonic function on C(w) with ¢(0)
=1and g(1/n)= —o0 Vn e Z™. If the constant K> 0 is chosen large enough,
the plurisubharmonic function a(w) + K log (|z|/rs) will be strictly less than —1
at all points (z,w) € Q, for which |z|<r,. The function ¢,: 2, = R is defined
by the equations

01(z,w) = 0,(1/z,w)
and

0,(z,w) = max {o(w)+Klog (lzl/rs), —1}, when |z|<1.

Then g, is the restriction to €, of the similarly defined function on C? and g,
is plurisubharmonic at all points (z,w) with |z]#1. This completes the
construction of g,.

We have two main problems left. The annuli 4, all lie partly in the boundary
of Q,, so ©, has to be bumped slightly so that they all lie in the interior.
However, this bumping should not change the extent to which A lies in the
boundary. The other main problem is the failure of plurisubharmonicity of g,
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at |z|=1. We will change g, near |z|=1 so that it will equal max {a(w), —1} ina
neighbourhood of this set. In order to deal with both these problems, we will at
first construct a subharmonic function t(w) which can be used for patching
purposes.

Our first approximation to t will be t,. The domain of 7, will be

D:={w; |wl<2, wé¢ (—2,0], wé {1/n}}.

The properties we will require of t, are that t,(u+iv)=0 when v> S (u),
7y (u+iv)2 1 when v<0, 7, is ¥* and 1, is strongly subharmonic at all points
u+iv with v<f(u).

Let K, denote the compact set {w=u+iv; |w|<2 and v2f(u)}. Since K, is
polynomially convex, there exists a € subharmonic function 4,: C — [0, 00)
which vanishes precisely on K, and which is strictly subharmonic on C — K,
Choose an increasing sequence of compact sets

Fy cintF, c F, cintFyc ... <« D, D=|JF,.

Letting K;=K, U F, we may even assume that each bounded component of C
— K, clusters at some 1/n and in particular therefore that there are only finitely
may of these components. With these choices it is possible for each /2> 1 to find
a non-negative ¥ function A, such that 4 |K,=0, 4>1 and strongly
subharmonic on {u+iv € K;,,—intK,, ;; v<0} and 4, fails to be subharmonic
only on a relatively compact subset of (intK,,;—K,,,)N{v<0}. But then, if
{Ci}i2, is a sufficiently rapidly increasing sequence,

has all the desired properties.

We next want to push the singularities of 7, at the points 1/a over to the
origin. First, let us choose discs 4,=4(1/n,g,) small enough so that o(w)
+Klogl/rs< —1 on each 4,

We will first perturbe 7, inside each 4,. We can make a small pertubation of
the situation by making a small translation parallell to the v-axis in the
negative direction in a smaller disc about 1/n patched with the identity outside
a slightly larger disc in 4, to obtain a new 2 function 7,20 and a new ¢
function v=f, (u) with the properties that f, <, f, <f near 1/n, f, =f away from
1/n and 7,=0 when v 2 f] (u), 1, 21 when v <0 except in very small discs about
1/n and

_ )0 when v2f, (u)
7 s+ (0—fi(w)*  otherwise

is strongly subharmonic when v <f, (u).
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The singularities of 7, at the points 1/n have thus been moved down to the
points g, = 1/n+if, (i/n). Let 4,=4(1/n,¢,), 0< ¢, <@, be discs on which 7;=0.
We may assume that p, ¢ 4,. Let y be a curve from p, to 0 passing in the lower
half plane through all the p,’s and avoiding all the 4.s. We can assume say that
y is linear between p, and p,,,. Let V be a narrow tubular neighbourhood of
y—{0} also lying in the lower half-plane and avoding all the 4,’s. The
restriction 4| V is ¢, subharmonic and 2 1 except for singularities at each p,.
Let 1,21 be a ¥ function on V which agrees with 75|V on VNV, V' some
open set containing 8V — {0}. A construction similar to the one for 7, yields a
@™ subharmonic function t5=0 on C— (0) which vanishes outside V and is
such that t,+1s is subharmonic on V. Finally, let t: {(w)<2, w ¢ [-2, o1}
_» R* be the €™ subharmonic function given by t=1; outside Vand t=t1,+1s
on V. Then 7=0 on each 4, and t(w)=0 when v, (u) except possibly on a
concentric disc 4, 4,cc 4y cc 4,. Also, T(w)=1 when v<0, w ¢ U 45. This
completes the construction of the patching function .

The construction of Q can now be completed. A point (z,1/n) € A, lies in the
boundary of Q, only when |z| or 1/jz|is in [rs,r6] U [rs,rs] U Lre, r10)- This set is
contained in the open set ‘

{(z,w) ; |zl or 1/lz] € (r4ryy) and we 4} =2 U,.

We let Q be a domain with ¥ boundary which agrees with @, outside U U,
and which contains all 4,’s in its interior.

Next we define the plurisubharmonic function ¢: Q — R. Let ¢’ =max {o,
—1} and choose a constant L>>1 such that ¢, <L-1o0n Q. If |z|Er, let g,:
=9, ,. For rs<|z| £, this definition agrees with g, = max {g, , 0’ + Lt}, since
7 is then 0 and g, =¢' + Klog (z|/rs). If re<|z| Srs, let

0, := max{g, , ¢ +L1}.

For r, <|z| rg, this definition agrees with g, =0¢"+ L. To see this, observe that
if we 4, then g, ,=—1 and ¢’=—1 while t20. If on the other hand
wé¢ U4”, then v<Oand o'+ Ltz —1+L2g. Hrg<lz|Sryp, let g,:=0"+ L.
For ry<|z| 1y, this definition agrees with 0, =0 since 1=0. Also, if r;o =S|z
<1, let g,:=0, and if |z|>1, let g,:=0;,,- Then ¢ is plurisubharmonic on Q,
0(e?0 =1 VOeR
and
0(€9/2,0) = 0(2¢%,0) = =1 VOeR.

If there exists a sequence of ¢ plurisubharmonic functions g,: 2 — R,
0n ™ 0, then there exists an m for which
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0.(€%/2,0), 0,,(2¢,0) <0 VOeR.
Hence, for all large enough n,
0nm(€%/2,1/n), 0, (2¢%,1/n) <0 VOeR.

By the maximum principle applied to the annuli 4,c, it follows that
0m(€,1/n)<0 VO e R and all large enough n. Hence, by continuity of g,
2n(€*,0)<0 V0 € R. This contradicts the assumption that g, > ¢ and therefore
completes the counterexample.
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