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MONOMIAL IDEAL RESIDUE CLASS RINGS
AND ITERATED GOLOD MAPS

JORGEN BACKELIN

Introduction.
Ghione and Gulliksen proved in [2, § 4, Ex. 4] that if

R = k[[Xsz,Xa]]/(Mb- . "Mr) s

where k is a field, and M,,. . ., M, are monomials in the ring k[[ X, X ,, X3]] of
formal power series, then R is the image of a ring S under a Golod
homomorphism, where S is either a Golod ring or a complete intersection
(a c.i.). They were able to conclude that the Poincaré series of R i.e. the
power series
Pr(t) = Pk(t) = dim, TorR (k, k)¢’
iz0

(where k is identified with the residue field of R), is the series expansion at the
origin of a rational function. The main result in this article is that such an R is

always the image of a c.i. under a Golod homomorphism. Thus, by a result of
Levin [3], the Poincaré series

P¥(@) = Y dim, TorR (M, k)t
iz0

of any finitely generated R-module M is rational. This result in its turn, with
the help of methods from [2], proves that if

A= k[[Xl’XZ’XS’X4]-]/(M1" . "Mr') ’

where M,,..., M, are monomials, then P ,(¢) is rational.

The article is formulated in terms of residue rings of polynomial rings
k[X,,...,X,] rather than residue rings of formal power series rings. This
makes it possible to employ a structure of multiple degrees, which is introduced
in section 1.

In section 2, a method by Ghione and Gulliksen [2] is introduced in the
form of a sequence of Golod homomorphisms, which attaches any such
“monomial ideal residue class ring to the corresponding polynomial ring.
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In section 3 the theorem and its corollaries are stated, and the theorem is
proved in the last two sections.

0. Notations and conventions.

All rings are assumed to be unitary, associative, commutative and
noetherian, and all modules are assumed to be unitary and finitely generated,
hence noetherian. No distinction is made between right and left modules.

The letter n always denotes a positive integer. Boldface letters and words
stand for n-tuples of integers; the corresponding ordinary letters and words,
subindexed from 1 to n, stand for the entries of the n-tuples. Thus deg x=i if
and only if deg, x=i, for v=1,...,n.

0=(0,...,0) (n copies).

itj=iy+jp . in+i)-

By definition, i <j if and only if i,<j, for v=1,.. ., n. If degx=i, then

Suppx = Suppi = {ve{l,...,n} : i,*0}.

Graded objects are non-negatively graded.

If U=U,=1l;,U, is a graded object, then U, =11, U.

The letter k denotes a fixed field.

A (k-)augmented ring is a triple (R, k,¢), where R is a ring and & R — k
is an epimorphism of rings. Then edim R = the embedding dimension
of R =dim, Ker¢/(Kere)

0% denotes the Kronecker delta:

(1 ifi=j
J =
% {0 ifidj’

1. SMH rings.

Local rings with a fixed residue class ring k form a special class of k-
augmented rings, and many definitions in local algebra may be extended in a
natural way to such rings and their corresponding modules. In the sequel 1
shall quote some results formulated in terms of local rings, but apply them in
terms of connected graded (commutative noetherian) k-algebras. (Such an
~algebra R=11,,,R; is augmented by ¢: R - R/R, = R, 5 k.) The reader
may verify that the proofs referred to hold also in this case, and that on the
other hand there are local counterparts to the theorem and the corollaries in
section 3.

In the light of Lemma 1 below, a ring which is isomorphic to some residue
ring of a polynomial ring modulo an ideal generated by monomials should
perhaps be called a “standard multihomogeneous” ring. In this article such a
ring is called an SMH ring.
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18 JORGEN BACKELIN

LEMMA 1. Let (R, k,¢) be an augmented ring, and let n=edim R. Then R is an
SMH ring if and only if (i) and (ii) below hold:

(1) R can be given the structure of an (n-tuply) multihomogeneous ring, i.e. as a
k-vector space R=11;R;, where i runs through all n-tuples of non-negative
integers, in such a way that for any i and j, R;" R;= R;;; and

(ii) the multidegree of R is standard in the sense that Ry=k, and that Kere
has a minimal set of generators (x,,...,x,), such that for i=1,...,n
X; € Reror. o

)

If R is multihomogeneous, elements in U; R; are called multihomogeneous
(or mhom). If x € R; then degx=i. (As usual the definition is ambigous for
x=0.)

ProoF oF LEmMA 1. If R=k[X,,...,X,]/(M,,...,M,) is an SMH ring, let
Xy,...,X, be the images of X,..., X,, respectively, and let
deg (xi ... x" = (i,...,i,) =i for any such i=0.
Conversely, if (i) and (ii) are satisfied, induction on ¥"_, i, yields that

v=1F%y
R; = kxi-...-x for i20,
whence the k-algebra homomorphism
fik[X,,....X,]— R

X, X,

is onto, and its kernel is generated by monomials.

2. The Ghione-Gulliksen sequence.

Assume that a is an ideal in R=k[X,,. . ., X,], which is minimally generated
by the non-trivial monomials M,,. .., M,, i.e. by monomials of ordinary degree
>2. Let R=R/a. If i is an integer such that 0<i<n, we define

a' = (M,: SuppM,c{1,...,i})
and
R' = R/a'.

Then R°=R, R"=R, and in a natural way there is a sequence of augmented
ring epimorphisms '

(1) R=R° >R 5R*-> ... 5 R"=R.
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Recall that an augmented ring epimorphism (4,k,¢4) — (B,k,¢p) is a Golod

homomorphism if P

Pg(t) = P4()(1—t(P()—1)"*
or if any other of a number of equivalent conditions are satisfied; cf. [1, Def.
3.6]. (Another of the conditions will be introduced in section 4.)
The following lemma is essentially proved in [2, section 4, Ex. 4], though the
authors assumed i=2 in their example, since they employed only this special

case. Their proof is independent of this assumption. (A proof closely related to
theirs is also sketched in section 4.

LemMa 2. If 0<i<n—1 in the situation above, then R® — R'*' is a Golod
homomorphism.

DeriniTION. (1) is called the Ghione—Gulliksen sequence (the G-G sequence)
belonging to R.

The G-G sequence thus defined depends on the (somewhat arbitrary) order of
the indexes of the variables of R. We sometimes have to reindex these variables
in order to get a new G-G sequence with better properties, while R is not
essentially changed.

3. The main result.

THEOREM. Let R be an SMH ring with edim R =n=3, such that R*=R. Then
there is a p € {0,1,2} and a way to reindex the three first variables, such that R?
is a complete intersection, and that R — R*=R is a Golod homomorphism.

The theorem is proved in section 5.

COROLLARY 1. If R is an SMH ring such that R*=R (in particular, if edim R
=3), and M is a (graded, finitely generated) R-module, then P¥(t) is rational.

This follows by an implicit result of the proof of [3, Theorem 6.3].

COROLLARY 2. If R is an SMH ring such that R*=R (in particular, if edim R
=4), then Pg(t) is rational.

ProoF. By Lemma 2,
PR(t) = Pre(t) = Pro(®)(1—t(PR(O)=1))""

which is rational by Corollary 1.
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4. Homology in the G-G sequence.

Through this section, let i, j, and n be integers such that 0<i<j<n,letk be a
field, let R=k[X,,...,X,], let M,,...,M, be non-trivial monomials in R
(where r20), and let R=R/(M,,...,M,). We shall study TorX (R’ k), with
respect to multidegrees. For simplicity we assume that R'=R/(M,,. .., M) and
that R*=R(M,,...,M,), where 0<s<t<r.

Following Tate ([4]) we may extend the Koszul complex K=K, of R' to an
Ri-free DGA resolution Y, of k. Let x,,...,x, be the images of D, ST, ¢
respectively, in R’. Then K may be defined as the exterior Ri-algebra on the
variables T,..., T, with the differential d given by dT,=x, for v=1,...,n
Note that K inherits the multihomogeneous structure from R’ if we put

deg T, = degx, = (8.,...,8") for v=1,...,n,

and extend deg by the condition that deg (a-b)=deg a+deg b. Then d becomes
mhom, with degd=0. Thus (K, d) is a mhom complex.

Let §=k[X,,...,X,] and S=5/(M,,...,M,). Then Ri=S[X,,,,...,X,],
whence

H,(K) = Tor® (R k) = Tor’ (5,k),
whence
() Suppa c {1,...,i} if a e H(K) is mhom and a+0 .

When we successively extend K to Y by Tate’s method, we may preserve these
properties, and thus achieve that Y is mhom, that its differential d preserves
multidegree, and that all of the variables which generate Y as an R'-algebra,
except T;,,,..., T, have supports contamed in {1,...,i}.

Let Y, R'® R Y (whence Tor*(RJ ky~H ,(Y)). Then Y is mhom. In fact,
Y is the dlrect sum as a k-vector space complex of the subcomplexes Y;., where
Y;,;=(Y,); for all i20 and ¢20. If deg M, £i for p=s+1,...,t, then ¥, Y,
whence H,(Y),~H,(Y);=0 if i+0. We have proved the second half of
the following lemma: '

LemMma 3. If a€ Tor’f (R%,k) is non-zero and multihomogeneous, then
Suppac{l,...,j}, and there is a p € {s+1,...,t} such that degM,<dega.

The first half of Lemma 3 may be proved as was (2).
As a corollary to Lemma 3 we see that if O%a e Tor'f (R’, k) is mhom, then

there are integers v and m such that i <v<j and that deg,a=m > 1. Because of
the properties of the algebra generators of Y, any mhom cycle z' € ¥,
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representing a must be on the form z' =T x7'~ g’ +x™a’, where deg,a’' =deg, a”
=0. Another representative of a is

z=27—d(Tx" 'a") = Tx" '(d +da") .
Since T2=0 and 0=dz= — T,x" " 'da’ + x7(a' +da"), we have T,z=x,z=0. We

thus have proved

LeMMA 4. Assume that a € Tor'f (R%, k) is non-zero and multihomogeneous,
and that v € SuppaN{i+1,...,j}. Then, if we realize Tor® (R/, k) as H(Y) as
above, a may be represented by a multihomogeneous cycle z= T,x4e9-lgecy,.
Moreover zY;=0 for any i such that i,#0.

As a corollary we get

LEMMA 5. If a and b are multihomogeneous elements in Tork (R4, k), such that
ab=0, then SuppaNSuppbN{i+1,...,j}=&.

Recall that an augmented ring homomorphism f: (4,k,&4) — (B,k, ep) 1s
called small if the induced homomorphism f,: Tor* (k, k) — Tor® (k, k) of
graded vector spaces is a monomorphism. Cf. e.g. ([1]).

The referee has kindly supplied the proof of the following lemma.
LEMMA 6. R® — RJ is small.

Proor. Note that x;,,,...,X; is an R'-sequence, and that
Ker (R — R) © (Xi4 105 X) N (Xp,- 00X
Now apply [1, Prop. 4.3].
Since R' — R’ is small, one of the equivalent conditions for R* — R’ to be

Golod is the following (essentially (1) of [1, Def. 3.6]): For every positive
integer g there is an application

y: H,(Y)xH,(Y)x...xH, (Y)— Y. + (Kereg)Y,

(g copies of H, (Y))
such that

(i) For any a € H,(Y), y(a) is a cycle which represents a; and
(i) For any ¢=2 and any ay,...,a, € H,(Y),

q-1
(3) dy(ala' . ‘9aq) = kzl f(y(al" . "ak))‘))(ak+la- . "aq)
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where f: Y— Y is the R’-linear mapping defined by f(b)=(—1)**'bifb e ¥,
and by linear extension.

It is of course sufficient to find applications which satisfy (i) and (ii), except
that they are defined only for (multiples of) elements in a k-vector space basis
{h.}sca of H,(Y). The applications then may be linearly extended to all
(multiples of) elements in H, (Y).

We may now give a fast proof (essentially almost the same as that in [2]) of
Lemma 2:

Assume that j=i+1. Let {h,}, be a mhom k-vector space basis of H , (Y).

By Lemma 3, deg;,, h,>0 for any « € A. By Lemma 4, we may choose
a representative y(h,)=T,, i’ for h, Let y(h,,.. . h,)=0 for g=2. Since
T?.,=0, (3) is trivially verified.

Next, we may consider the case when j=i+2. Under what conditions will
R’ — R*? be Golod?

LeMMA 7. The following conditions are equivalent.

(i) R — R*2 is Golod
(i) (Tor® (R*2 k)2=0
(iii) For any multihomogeneous elements a and b in TorX (R**2 k), such
that SuppaN{i+1,i+2}={i+1} and SuppbN{i+1,i+2}={i+2}, ab=0.

Proor. It obviously follows from the definitions that (i) = (ii) = (iii).
Assume that (iii) holds. Let {h,},. , be a mhom k-vector space basis of H +(Y).
For any a € A4, choose a mhom representative y(h,) of h, in the following
manner:

If deg;,, h,+0, then by Lemma 4, choose y(h,) =T, k., for some mhom
h, € Y. If deg;,, h,=0, then by Lemma 3, deg;,,h,+0, and we may choose
y(h) =T, k.

In the first case y(h,)Y;=0 for any i such that i, , +0, and correspondingly
in the second case. Thus, if «, f € A are such that

Supph, N Supph, N {i+1,i+2}+F,
then y(h,)y(hg)=0. If this is the case, choose y(h,, hg)=0.If o, € A and
Supph, N Supph; N {i+1,i+2} = &,

then h,h; =0 by (iii), whence 7(hy)y (hg)=dw, 4, say, for some mhom Wep€Y,.
W, g may be corrected by a boundary in a manner similar to that in the proof of
the first half of Lemma 4, in such a way that we may assume Wa,5=T; 11 Wy p
say. Then, put y(h,, hg)=(—1)!**w, 4, where we assume h, € H,(Y). For any
g23 and a,,.. .0, € 4, put y(h,,,.. .y he)=0.
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We now have set up a system of applications, which fulfills the prescribed
conditions necessary to prove (i) of Lemma 7. (To see that (3) holds, note that
i+1, i+2 e Suppylh,hy) if y(hy,hg)= 1w, 3+0. Hence by Lemma 4,
(hy hg)y (hs) =7 (hy)y (hg, hy) =0 for any a, B, & € A. Furthermore, since T7,; =0,
7 (hy, hg)y(hs, h,)=0 for any a, B,d,e € A.)

Thus the lemma is proved.

5. Proof of the theorem.
We may assume that

= R/C‘ = (k[Xl’XZ’X?o]/(Mh' M) X, Xl

where R=k[X,,...,X,] and where {M,,...,M,} is a minimal set of non-
trivial monomials which generate a.

If R is a Golod ring, i.e. if R®= R — Ris Golod, then the theorem is satisfied
with p=0.

Assume in the sequel that R is not a Golod ring. Since the projective
dimension of the R-module R is <3, this is equivalent to the condition
T0r+(R k)?+0, as is well known. We may identify mhom components in a
non-zero product, and thus find two mhom elements a and b in T0r+(R k),
such that a-b+0. By Lemma 5, Suppa N Supp b=, and by Lemma 3, Suppa
and Supp b are non-empty but contained in {1,2, 3}. Thus, after reindexing the
three first variables we may assume that either

4) Suppa = {1} and Suppb = {2},
or
5) Suppa = {1} and Suppb = {2,3}.

If (4) holds, then R? is a c.i.. By Lemma 2, R* — R3?®=R is Golod, whence the
theorem is satisfied with p=2.

In the sequel, assume (5) to hold (and that (4) does not hold for any choises
of a and b). R' is a c.i, and I am going to prove that R! — R is Golod, whence
the theorem is satisfied with p=1.

Let dega=(4,0,0,...,0) and degb= (0, »,v,0,. 0) Any mhom element in
the Koszul complex of R that represents ab has x}7 x4~ x5! for a factor.
Since ab+0, we thus must have

(6) degM, £ (A-1,pu—1, v—1,0,...,0) for 1=q=<r.

By Lemma 3 (with i=0 and j=3) there must be some of the ideal generators,
say M, and M,, such that deg M, <dega and deg M, <degb. Since the set
{M,,... M,} of generators is minimal, we have deg, M, <deg, M, for any g s.t.
2<g<r. This together with (6) implies
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W) If Supp M, N {2,3} = {2}, then deg, M, 2p
and
(8) If SuppM, N {2,3} = {3}, then deg; M, = v

Since the image of M, in R is 0,
9 xhxy = 0.

In order to prove that R' — R* is Golod it is by Lemma 7 sufficient to prove
that if g, h € TorR’' (R k) are mhom and deg, g = deg, h=0, then gh=0. Adopt
the definition of ¥, T}, T,, etc. from section 4, with i=1 and j=3. Then, as we
shall see,

(10) there is a mhom g’ € Y, such that x4g’ represents g ,
and
(11) there is a mhom h' € Y, such that x}h’ represents h .

Let deg, g=¢. By (7) and Lemma 3, 9> u. By Lemma 4, g may be represented
by some x§7'T,g" e Y,. If If ¢>pu, (10) follows. Assume that g=p. Let
i=degx4'g". Then i,=p—1 and i;=0, whence by Lemma 3 and (7), ¥,
~ Y Furthermore deg g +0 since the choise b=g would yield (4). Thus,
since x4~ ! is a non-zero divisor in R! and x4~ !g” is a cycle, g” is a cycle and
hence a boundary; say g” =dg'. Thus g is represented by the element x4~ T,g"
+d(x57'T,g)=x4g".

(11) is proved similarly.

By (10), (11) and (9) gh=0 indeed.

NOTE ADDED IN PROOF. The assumption R*=R of Corollary 2 is un-
necessary: all SMH rings have rational Poincaré series (J. Backelin, Les
anneaux locaux a relations monomiales ont des séries de Poincaré—Betti
rationnelles, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 607-610).
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