EIGENSPACE REPRESENTATIONS OF NILPOTENT LIE GROUPS II

JACOB JACOBSEN*

1. Introduction.

The present paper generalizes and completes the results of [2] on eigenspace representations and invariant differential operators on homogeneous spaces for nilpotent Lie groups.

Let G be a connected and simply connected, complex or real, nilpotent Lie group with Lie algebra g. Let $\alpha: g \to C$ be a linear functional on g and let \mathfrak{k} be a subalgebra of g subordinate to α , i.e. with $\alpha([\mathfrak{k},\mathfrak{k}]) = \{0\}$.

For G complex we consider the left regular representation $\zeta_{\alpha, t}$ of G on the joint eigenspace

$$\mathscr{H}_{\alpha,\mathfrak{f}}(G) := \{ f \in \mathscr{H}(G) \mid Xf = \alpha(X)f \ \forall \ X \in \mathfrak{f} \}$$

of holomorphic functions on G, and for G real we consider the left regular representation $\lambda_{\alpha,t}$ of G on the joint eigenspace

$$\mathscr{E}_{\alpha,\,\mathfrak{k}}(G) := \{ f \in \mathscr{E}(G) \mid Xf = \alpha(X)f \,\,\forall \, X \in \mathfrak{k} \}$$

of C^{∞} -functions on G.

We show that these representations may be realized on $\mathscr{H}(C^n)$ (respectively $\mathscr{E}(R^n)$), $n = \dim g/f$, in such a way that if f satisfies a certain maximality condition relative to α , then the derived representation $d\zeta_{\alpha,f}$ (respectively $d\lambda_{\alpha,f}$) maps the universal enveloping algebra $\mathscr{U}(g)$ onto the algebra of all differential operators on C^n (respectively R^n) with polynomial coefficients (Theorems 3.1 and 3.2). From this, irreducibility of the group representations is derived (Corollary 3.3).

These results contain and extend Theorems 4.1 and 5.1 of [2], where only real groups were considered and where it was assumed that α is of the special form $\alpha = c\beta$ for some $c \in C$ and $\beta \in g^*$.

We prove that the maximality condition on f relative to α , imposed as a sufficient condition in the above irreducibility statement, is also a necessary one (Corollary 4.4). No result of this kind was obtained in [2].

We also obtain a necessary and sufficient condition on the Lie algebra of a

^{*} Supported by a fellowship from the Danish National Science Research Council. Received March 15, 1982.

connected subgroup H of G ensuring that the algebra D(G/H) of G-invariant differential operators on the homogeneous space G/H is generated by a single vector field (Theorem 4.5). Sufficiency of this condition was proved (for real G) in [2].

The results on the eigenspace representations $\zeta_{\alpha,1}$ and $\lambda_{\alpha,1}$ described above are analogous to classical results on the unitary representations of nilpotent Lie groups, Theorems 7.1 and 5.2(1) of Kirillov [3].

2. Definitions and preliminaries.

Throughout this paper G denotes a connected and simply connected, real or complex nilpotent Lie group with Lie algebra g of left invariant vector fields on G. The universal enveloping algebra of g is denoted $\mathcal{U}(g)$.

The dual space of g is denoted g^* , and for g real we denote by $(g^*)^C$ the set of all complex-valued, real linear functionals on g. For g real and $\alpha \in (g^*)^C$ we denote by α^c the extension of α to an element of $(g^C)^*$, where g^C denotes the complexification of g.

For $\alpha \in \mathfrak{g}^*$, or $\alpha \in (\mathfrak{g}^*)^C$ if g is real, $S(\alpha, \mathfrak{g})$ denotes the set of subalgebras \mathfrak{k} of g which are subordinate to α , i.e. for which $\alpha([\mathfrak{k},\mathfrak{k}]) = \{0\}$, and $M(\alpha,\mathfrak{g})$ the subset of $S(\alpha,\mathfrak{g})$ consisting of the subalgebras in $S(\alpha,\mathfrak{g})$ of maximal dimension.

Since g is nilpotent we have for $\alpha \in \mathfrak{g}^*$ (g real or complex) that a subalgebra f of g belongs to $M(\alpha, \mathfrak{g})$ if and only if it, as a subspace of g, is maximally totally isotropic with respect to the bilinear form $\alpha([\cdot, \cdot])$, i.e. iff

$$\forall X \in \mathfrak{g} : X \in \mathfrak{f} \Leftrightarrow \alpha([X,\mathfrak{f}]) = \{0\} .$$

For G complex, $\alpha \in \mathfrak{g}^*$ and $\mathfrak{k} \in S(\alpha, \mathfrak{g})$, the joint eigenspace $\mathscr{H}_{\alpha, \mathfrak{k}}(G)$ is defined in the introduction. There $\mathscr{H}(G)$ denotes the space of holomorphic functions on G, equipped with the topology of uniform convergence on compact subsets of G. If K denotes the analytic subgroup of G corresponding to \mathfrak{k} , there exists a character $\gamma \colon K \to \mathscr{C}$ such that $\gamma(\exp X) = e^{\alpha(X)}$ for all $X \in \mathfrak{k}$, and then

$$\mathcal{H}_{\alpha,1}(G) = \left\{ f \in \mathcal{H}(G) \mid f(gk) = f(g)\chi(k) \ \forall \ g \in G, \ k \in K \right\}.$$

The space $\mathcal{H}_{\alpha,1}(G)$ is a closed subspace of $\mathcal{H}(G)$, invariant under the left regular representation of G on $\mathcal{H}(G)$ which then restricts to a holomorphic representation $\zeta_{\alpha,1}$ of G on $\mathcal{H}_{\alpha,1}(G)$.

Similarly, for G real, $\alpha \in (g^*)^C$ and $\mathfrak{k} \in S(\alpha,g)$, the left regular representation of G on $\mathscr{E}(G)$ (= $C^{\infty}(G)$ equipped with its usual topology) restricts to a differentiable representation $\lambda_{\alpha,\mathfrak{k}}$ of G on the joint eigenspace $\mathscr{E}_{\alpha,\mathfrak{k}}(G)$ defined in the introduction. Also $\mathscr{E}_{\alpha,\mathfrak{k}}(G)$ is alternatively described in terms of the character on K determined by α .

An ordered basis $\Xi = \{X_1, \dots, X_n\}$ for g modulo a subalgebra \mathfrak{t} is called

coexponential, if for every i = 1, ..., n, $g_i := \text{span}\{X_{i+1}, ..., X_n, t\}$ is an ideal of g_{i-1} . Such a basis exists for every t since g is nilpotent.

In the rest of this section we let G be complex, the real case is quite analogous, just exchange C with R, \mathcal{H} with \mathcal{E} and ζ with λ ; cfr. [2].

Let f be a subalgebra of g, K the corresponding analytic subgroup of G and $\Xi = \{X_1, \ldots, X_n\}$ a coexponential basis for g modulo f. Then the map

$$s: (x_1,\ldots,x_n) \mapsto \exp(x_1X_1)\ldots \exp(x_nX_n)K$$

is a bianalytic diffeomorphism of \mathbb{C}^n onto the coset space G/K, and if Ξ' is another coexponential basis for \mathfrak{g} modulo \mathfrak{f} with corresponding map $s' \colon \mathbb{C}^n \to G/K$, then the composite map $s^{-1} \circ s' \colon \mathbb{C}^n \to \mathbb{C}^n$ is polynomial. Thus the identification of G/K with C^n via s gives rise to an unambiguous notion of the algebra $\operatorname{Pol}(G/K)$ of polynomial functions on G/K and the algebra $\operatorname{DP}(G/K)$ of differential operators on G/K with polynomial coefficients.

Also, if $\mathfrak{k} \in S(\alpha, \mathfrak{g})$, the map $S: \mathscr{H}(G) \to \mathscr{H}(\mathbb{C}^n)$ given by

$$(Sf)(x_1,\ldots,x_n) = f(\exp(x_1X_1)\ldots\exp(x_nX_n))$$

restricts to a topological isomorphism $S_{\alpha, t, \Xi}$ of $\mathscr{H}_{\alpha, t}(G)$ onto $\mathscr{H}(C^n)$ making $\zeta_{\alpha, t}$ equivalent to a representation $\zeta_{\alpha, t, \Xi}$ of the form

$$\left[\zeta_{\alpha, \dagger, \Xi}(g) f\right](x) = e^{\alpha(p(g, x))} f(g^{-1} \cdot x) ,$$

where $g \in G$, $f \in \mathcal{H}(\mathbb{C}^n)$, and $x \in \mathbb{C}^n$. Here p is a polynomial map $G \times \mathbb{C}^n \to \mathbb{R}$ and $g \cdot x$ denotes the action of g on x induced by the identification of G/K with \mathbb{C}^n by means of s. The formula implies that $d\zeta_{\alpha,\mathfrak{k},\mathfrak{k}}(\mathcal{U}(g))$ is contained in $DP(\mathbb{C}^n)$, the algebra of all differential operators on \mathbb{C}^n with polynomial coefficients.

If Ξ' is another coexponential basis for \mathfrak{g} modulo \mathfrak{f} then the equivalence $T = S_{\alpha,\mathfrak{f},\Xi'} \circ S_{\alpha,\mathfrak{f},\Xi'}^{-1}$ between $\zeta_{\alpha,\mathfrak{f},\Xi'}$ and $\zeta_{\alpha,\mathfrak{f},\Xi}$ is of the form

$$[Tf](x) = e^{\alpha(q(x))} f(r(x)), \quad f \in \mathcal{H}(\mathbb{C}^n) ,$$

for certain polynomial maps $q: \mathbb{C}^n \to \mathfrak{f}$ and $r: \mathbb{C}^n \to \mathbb{C}^n$, where also r^{-1} is polynomial. In particular T defines an algebra automorphism $D \mapsto T \circ D \circ T^{-1}$ of $DP(\mathbb{C}^n)$.

Notation analogous the one introduced for complex G will be used for real G.

DP (Rⁿ) will denote the complex algebra of all differential operators on Rⁿ with polynomial coefficients.

3. Representations of $\mathcal{U}(g)$. Irreducibility.

The following theorem is the analogue for complex groups of Theorem 4.1 in [2].

3.1. THEOREM. Let G be a connected and simply connected, complex nilpotent Lie group with Lie algebra g. Let $\alpha \in g^*$, $\mathfrak{k} \in M(\alpha,g)$, and let Ξ be a coexponential basis for g modulo \mathfrak{k} , then

(3.1)
$$d\zeta_{\alpha,\mathfrak{t},\Xi}(\mathscr{U}(\mathfrak{g})) = \mathrm{DP}(\mathsf{C}^n),$$

where $n = \dim g/f$.

PROOF. If dim $g \le 2$, then g is abelian and so f = g, that is n = 0. In this case DP (\mathbb{C}^n) consists of the scalars only in which case (3.1) clearly holds. We proceed by induction on dim g.

By the last paragraph of Section 2 it suffices to prove (3.1) for one choice of Ξ .

Let 3 denote the center of g and observe that $3 \subseteq f$ since $f \in M(\alpha, g)$.

If $i := \mathfrak{z} \cap \ker \alpha \neq \{0\}$, we consider the quotient group $\tilde{G} = G/\exp(\mathfrak{z})$ with Lie algebra $\tilde{\mathfrak{g}} = \mathfrak{g}/\mathfrak{z}$. Since $i \subset \ker \alpha$, there exists $\tilde{\alpha} \in \tilde{\mathfrak{g}}^*$ such that $\tilde{\alpha}(\tilde{X}) = \alpha(X)$ for all $X \in \mathfrak{g}$, where $X \mapsto \tilde{X}$ denotes the quotient map $\mathfrak{g} \to \tilde{\mathfrak{g}}$. Clearly $\tilde{\alpha} \neq 0$, $\tilde{\mathfrak{t}} \in M(\tilde{\alpha}, \tilde{\mathfrak{g}})$, $\tilde{\Xi}$ is a coexponential basis for $\tilde{\mathfrak{g}}$ modulo $\tilde{\mathfrak{t}}$ and

$$d\zeta_{\alpha,\mathfrak{t},\Xi}(X) = d\zeta_{\tilde{\alpha},\mathfrak{t},\tilde{\Xi}}(\tilde{X})$$
 for all $X \in \mathfrak{g}$.

Hence

$$d\zeta_{\alpha,\dagger,\Xi}(\hat{\mathscr{U}}(g)) = DP(C^n)$$

by the induction hypothesis applied to \tilde{G} .

From now on assume $\mathfrak{z} \cap \ker \alpha = \{0\}$. Then dim $\mathfrak{z} = 1$, since $\mathfrak{z} \subseteq \mathfrak{t}$. Let $Z \in \mathfrak{z}$ with $\alpha(Z) = 1$. Let $Y \in \mathfrak{g}$ represent a non-zero element of the center of $\mathfrak{g}/\mathfrak{z}$, then

$$\mathfrak{g}_0 := \{ V \in \mathfrak{g} \mid [V, Y] = 0 \}$$

is an ideal of codimension 1 in g. We may choose Y so that $\alpha(Y) = 0$.

The rest of the proof is divided according to whether

(I)
$$\mathfrak{f} \subseteq \mathfrak{g}_0$$
 or (II) $\mathfrak{f} \not\subseteq \mathfrak{g}_0$.

(I) Assume $\mathfrak{k} \subseteq \mathfrak{g}_0$ and put $\alpha_0 = \alpha \mid \mathfrak{g}_0$. Then $\alpha_0 \neq 0$ and $\mathfrak{k} \in M(\alpha_0, \mathfrak{g}_0)$. Choose $X_1 \in \mathfrak{g} \setminus \mathfrak{g}_0$ such that $[X_1, Y] = Z$ and let $\Xi_0 = \{X_2, \ldots, X_n\}$ be a coexponential basis for \mathfrak{g}_0 modulo \mathfrak{k} , thus making $\Xi = \{X_1, X_2, \ldots, X_n\}$ a coexponential basis for \mathfrak{g} modulo \mathfrak{k} . Set $\zeta = \zeta_{\alpha, \mathfrak{k}, \Xi}$ and $\zeta_0 = \zeta_{\alpha_0, \mathfrak{k}, \Xi_0}$, the latter being a representation of the subgroup $G_0 = \exp(\mathfrak{g}_0)$ of G. Then $d\zeta(X_1) = -\partial/\partial x_1$, while for every $V_0 \in \mathfrak{g}_0$, $\varphi \in \mathscr{H}(\mathbb{C}^n)$ and $(x_1, x_0) \in \mathbb{C} \times \mathbb{C}^{n-1} = \mathbb{C}^n$

$$[d\zeta(V_0)\varphi](x_1,x_0) = [d\zeta_0(e^{-x_1\operatorname{ad} X_1}V_0)\varphi(x_1,\cdot)](x_0).$$

Since $f \in M(\alpha_0, g_0)$, f contains the central elements Z and Y of g_0 , whence $d\zeta_0(Z) = -\alpha_0(Z)I = -I$ and $d\zeta_0(Y) = -\alpha_0(Y)I = 0$. Hence by (3.2), $d\zeta(Y) = x_1$.

Furthermore, since by (3.2)

$$[d\zeta_0(V_0)\varphi(x_1,\cdot)](\underline{x}_0) = \sum_{k=0}^{\infty} \frac{x_1^k}{k!} [d\zeta((\operatorname{ad} X_1)^k V_0)\varphi](x_1,\underline{x}_0) ,$$

the series being finite because g is nilpotent, we have

$$1_{\mathsf{C}} \otimes d\zeta_{\mathsf{0}}(\mathscr{U}(\mathfrak{g}_{\mathsf{0}})) \subseteq d\zeta(\mathscr{U}(\mathfrak{g}_{\mathsf{0}})).$$

So applying the induction hypothesis to G_0 we conclude $d\zeta(\mathcal{U}(\mathfrak{g})) = \mathrm{DP}(C^n)$.

(II) Assume $\mathfrak{k} \subseteq \mathfrak{g}_0$. Then there exists $X \in \mathfrak{k}$ with [X, Y] = Z, and this implies that $Y \notin \mathfrak{k}$ since $\mathfrak{k} \in S(\alpha, \mathfrak{g})$ and $\alpha(Z) \neq 0$. We may choose X such that $\alpha(X) = 0$.

Let $\mathfrak{k}_0 = \mathfrak{k} \cap \mathfrak{g}_0$ and set $\mathfrak{k}' = \mathbb{C} Y + \mathfrak{k}_0$. Then $\mathfrak{k}' \in S(\alpha, \mathfrak{g})$ and dim $\mathfrak{k}' = \dim \mathfrak{k}$, so in fact $\mathfrak{k}' \in M(\alpha, \mathfrak{g})$. Also $\mathfrak{k}' \subseteq \mathfrak{g}_0$. Note that $\mathfrak{k} = \mathbb{C} X + \mathfrak{k}_0$.

The direct sum of vector spaces $\tilde{\mathfrak{g}} = CX + CY + \mathfrak{k}_0$ is a subalgebra of \mathfrak{g} of codimension n-1, so if $\{X_1,\ldots,X_{n-1}\}$ is a coexponential basis for \mathfrak{g} modulo $\tilde{\mathfrak{g}}$, then $\Xi := \{X_1,\ldots,X_{n-1},Y\}$ is a coexponential basis for \mathfrak{g} modulo \mathfrak{k} , while $\Xi' := \{X_1,\ldots,X_{n-1},X\}$ is a coexponential basis for \mathfrak{g} modulo \mathfrak{k}' . Let $\zeta = \zeta_{\alpha,\mathfrak{k},\Xi}$ and $\zeta' = \zeta_{\alpha,\mathfrak{k}',\Xi'}$, then

(3.3)
$$\Phi(d\zeta'(D)) = d\zeta(D) \quad \text{for all } D \in \mathcal{U}(\mathfrak{g}),$$

where Φ denotes the algebra automorphism of DP (C") given by

(3.4)
$$\Phi(x_i) = x_i, \qquad \Phi\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial x_i} \qquad i = 1, \dots, n-1$$

$$\Phi(x_n) = -\frac{\partial}{\partial x_n}, \qquad \Phi\left(\frac{\partial}{\partial x_n}\right) = x_n.$$

The relation (3.3) is proved by induction on dim $g/\tilde{g} = n - 1$: If dim $g/\tilde{g} = 0$ then n = 1 and by direct calculations $d\zeta'(X) = -\partial/\partial x_n$, $d\zeta(X) = -\alpha(Z)x_n = -x_n$, $d\zeta'(Y) = \alpha(Z)x_n = x_n$, and $d\zeta(Y) = -\partial/\partial x_n$, while $d\zeta'(V) = d\zeta(V) = -\alpha(V)I$ for all $V \in \mathfrak{f}_0$. This proves (3.3) when dim $g/\tilde{g} = 0$.

Let dim $g/\tilde{g} > 0$ and suppose that (3.3) holds when g there is replaced by any subalgebra g_0 of g for which $g_0 \supseteq \tilde{g}$ and dim $g_0/\tilde{g} < \dim g/\tilde{g}$ and ζ, ζ' are replaced by corresponding representations of $G_0 = \exp(g_0)$. Then (3.3) follows from the recursion formulas, cfr. (3.2),

$$d\zeta(X_1) = -\frac{\partial}{\partial x_1}; \qquad d\zeta(V) = \sum_{k=0}^{\infty} \frac{(-x_1)^k}{k!} 1_{\mathsf{C}} \otimes d\zeta_2((\operatorname{ad} X_1)^k V)$$

$$d\zeta'(X_1) = -\frac{\partial}{\partial x_1}; \qquad d\zeta'(V) = \sum_{k=0}^{\infty} \frac{(-x_1)^k}{k!} 1_{\mathsf{C}} \otimes d\zeta'_2((\operatorname{ad} X_1)^k V),$$

where $V \in \mathfrak{g}_2 = \operatorname{span} \{X_2, \dots, X_{n-1}, \tilde{\mathfrak{g}}\}, \zeta_2 = \zeta_{\alpha_2, \mathfrak{t}, \Xi_2}, \text{ and } \zeta_2' = \zeta_{\alpha_2, \mathfrak{t}, \Xi_2'}, \text{ with } \alpha_2 = \alpha \mid \mathfrak{g}_2, \Xi_2 = \{X_2, \dots, X_{n-1}, Y\}, \text{ and } \Xi_2' = \{X_2, \dots, X_{n-1}, X\}.$

Now, since $\mathfrak{k}' \subseteq \mathfrak{g}_0$, we have by (I) $d\zeta'(\mathscr{U}(\mathfrak{g})) = DP(C^n)$, hence by (3.3) $d\zeta(\mathscr{U}(\mathfrak{g})) = DP(C^n)$.

This finishes the proof of the theorem.

As a corollary we obtain the following extension of Theorem 4.1 of [2], cf. Remark 1 below, the extension being that the functional α may be general complex-valued, not just of the special form $\alpha = c\beta$ with $c \in C$ and $\beta \in g^*$.

3.2. THEOREM. Let G be a connected and simply connected, real nilpotent Lie group with Lie algebra g.

Let $\alpha \in (g^*)^C$, $\mathfrak{t} \in S(\alpha, g)$ and let Ξ be a coexponential basis for \mathfrak{g} modulo \mathfrak{t} . If $\mathfrak{t}^C \in M(\alpha^c, \mathfrak{g}^C)$ then

$$d\lambda_{\alpha,\,\dagger,\,\Xi}(\mathscr{U}(\mathfrak{g})^{\mathsf{C}}) = \mathrm{DP}(\mathsf{R}^n),$$

where $n = \dim g/f$.

PROOF. Let G^c denote the complexification of G, i.e. the connected and simply connected complex Lie group with Lie algebra g^C , and consider the representation $\zeta := \zeta_{\alpha^c, \dagger C, \Xi}$ of G^c on $\mathscr{H}(\mathbb{C}^n)$. It is easily seen that the restriction map $f \mapsto f \mid_{\mathbb{R}^n}$ of $\mathscr{H}(\mathbb{C}^n)$ into $\mathscr{E}(\mathbb{R}^n)$ intertwines the representations $\zeta \mid G$ and $\lambda_{\alpha, \dagger, \Xi}$ of G. The theorem is now consequence of Theorem 3.1.

REMARK 1. If g is real and $\alpha \in (g^*)^C$ is of the form $\alpha = c\beta$ for some $c \in C$ and $\beta \in g^*$, then for $\mathfrak{t} \in S(\alpha, \mathfrak{g})$ we have $\mathfrak{t} \in M(\alpha, \mathfrak{g})$ if and only if $\mathfrak{t}^C \in M(\alpha^c, \mathfrak{g}^C)$. Hence Theorem 3.1 above contains Theorem 4.1 of [2].

REMARK 2. For g real and $\alpha \in (g^*)^C$ there may in general not exist a $\mathfrak{k} \in S(\alpha, g)$ for which $\mathfrak{k}^C \in M(\alpha^c, g^C)$, as shown by the following Example 1 (see also Remark 5.3 of [2]).

EXAMPLE 1. Let g be a real nilpotent Lie algebra and let $\alpha \in \mathfrak{g}^*$. Let \mathfrak{g}_0 denote the underlying real Lie algebra of $\mathfrak{g}^{\mathsf{C}}$ and let α_0 denote α^{C} considered as an element of $(\mathfrak{g}_0^*)^{\mathsf{C}}$. Note that the elements $1 \otimes_{\mathsf{R}} 1 \otimes_{\mathsf{R}} X + i \otimes_{\mathsf{R}} i \otimes_{\mathsf{R}} X$, $X \in \mathfrak{g}$, span an ideal i of $\mathfrak{g}_0^{\mathsf{C}}$ and that $i \subseteq \ker \alpha_0^c$ and $i + \overline{i} = \mathfrak{g}_0^{\mathsf{C}}$.

Now, let $f \in S(\alpha_0, g_0)$ and suppose $f^C \in M(\alpha_0^c, g_0^C)$. Then $\alpha_0^c([f^C, i]) = \{0\}$, so $i \subseteq f^C$ and thus $\overline{i} \subseteq f^C$, whence $f^C = g_0^C$, that is $\overline{i} = g_0$.

Hence if $\alpha([g,g]) \neq \{0\}$, there does not exist $\mathfrak{k} \in S(\alpha_0,g_0)$ for which $\mathfrak{k}^C \in M(\alpha_0^c,g_0^C)$.

EXAMPLE 2. If g is the 2n+1 dimensional Heisenberg algebra, or more generally if g is nilpotent and dim $[g,g] \le 1$, then for every $\alpha \in (g^*)^C$ there exists $\mathfrak{t} \in S(\alpha,g)$ such that $\mathfrak{t}^C \in M(\alpha^c,g^C)$, in fact then $\mathfrak{t} \in M(\alpha,g)$ implies that $\mathfrak{t}^C \in M(\alpha^c,g^C)$.

3.3. COROLLARY. Let G be a connected and simply connected, complex (respectively real) nilpotent Lie group with Lie algebra g. Let $\alpha \in \mathfrak{g}^*$ (respectively $(\mathfrak{g}^*)^C$) and $\mathfrak{k} \in S(\alpha,\mathfrak{g})$. Then, if $\mathfrak{k} \in M(\alpha,\mathfrak{g})$ (respectively $\mathfrak{k}^C \in M(\alpha^c,\mathfrak{g}^C)$), the representation $\zeta_{\alpha,\mathfrak{k}}$ (respectively $\lambda_{\alpha,\mathfrak{k}}$) of G is both topologically and operator irreducible.

PROOF. For real G this follows from Theorem 3.2 as in [2] and for complex G it follows from Theorem 3.1 via the Lemma below.

- 3.4. LEMMA. (a) If $V \neq \{0\}$ is a closed subspace of $\mathcal{H}(C^n)$ invariant under the action of every $D \in DP(C^n)$, then $V = \mathcal{H}(C^n)$.
- (b) If A is a densely defined, closed linear operator in $\mathcal{H}(C^n)$ commuting with every $D \in DP(C^n)$, then $A \in CI$.

PROOF. (a) Let $f \in V$, $f \neq 0$. Since not all the derivatives of f vanish at 0 we may assume f(0) = 1. Let $\mu \in V^{\perp} \subseteq \mathcal{H}'(\mathbb{C}^n)$. Then the function

$$F(a) := \langle \mu_z, f(e^a z) \rangle$$

is holomorphic in $a \in C$ and

$$\left[\left(\frac{d}{da} \right)^k F \right]_{a=0} = \langle \mu, D^k f \rangle = 0 \quad \text{for all } k = 0, 1, 2, \dots$$

where $D = z_1(\partial/\partial z_1) + \ldots + z_n(\partial/\partial z_n) \in DP(\mathbb{C}^n)$. So $F \equiv 0$, and since $f(e^a z) \to f(0) = 1$ uniformly in z on compact sets as $a \to -\infty$ along \mathbb{R} , it follows that $1 \in V$. Thus V contains all the polynomials on \mathbb{C}^n and is therefore dense in $\mathscr{H}(\mathbb{C}^n)$.

(b) Let $f \neq 0$ be in the domain D(A) of A. Then $f \neq 0$ on some open, connected set Ω in \mathbb{C}^n and $(1/f)Af \in \mathcal{H}(\Omega)$. Since A commutes with multiplication by the polynomials on \mathbb{C}^n and these are dense in $\mathcal{H}(\mathbb{C}^n)$, A commutes with multiplication by every $g \in \mathcal{H}(\mathbb{C}^n)$. So in Ω

$$\frac{\partial}{\partial z_i}\left(\frac{1}{f}Af\right) = \frac{1}{f^2}\left(f\cdot\frac{\partial}{\partial z_i}Af - \frac{\partial f}{\partial z_i}\cdot Af\right) = 0, \quad i=1,\ldots,n,$$

because A commutes with $\partial/\partial z_i$. Thus for some constant $c(f) \in C$, Af = c(f)f in Ω and therefore in C^n by uniqueness of analytic continuation. If $f, g \in D(A) \setminus \{0\}$, then c(f) = c(g) since c(g)fg = fAg = A(fg) = c(f)fg. This proves (b).

4. Invariant differential operators. Reducibility.

In this section we shall work with the following non-standard definition.

- 4.1. Definition. A subalgebra \mathfrak{h} of a (nilpotent) Lie algebra \mathfrak{g} is called maximal if there exist $\alpha \in \mathfrak{g}^* \setminus \{0\}$ and $\mathfrak{k} \in M(\alpha, \mathfrak{g})$ such that $\mathfrak{h} = \mathfrak{k} \cap \ker \alpha$.
- 4.2. LEMMA. Let g be a nilpotent Lie algebra and let $\alpha \in \mathfrak{g}^*$, $\mathfrak{t} \in S(\alpha, \mathfrak{g})$. Assume $\alpha|_{\mathfrak{t}} \neq 0$ and set $\mathfrak{h}:=\mathfrak{t} \cap \ker \alpha$. Then \mathfrak{h} is maximal (if and) only if $\mathfrak{t} \in M(\alpha, \mathfrak{g})$.

PROOF. Suppose that \mathfrak{h} is maximal: $\mathfrak{h} = \mathfrak{k}' \cap \ker \alpha'$ where $\alpha' \in \mathfrak{g}^* \setminus \{0\}$ and $\mathfrak{k}' \in M(\alpha', \mathfrak{g})$. Then, since \mathfrak{g} is nilpotent, \mathfrak{k}' equals the normalizer $\mathfrak{n}(\mathfrak{h})$ of \mathfrak{h} in \mathfrak{g} . (Namely, let \mathfrak{i} be a maximal element in the set of ideals of \mathfrak{g} contained in \mathfrak{h} and let Z represent a non-zero element in the center of $\mathfrak{g}/\mathfrak{i}$. Then $\mathfrak{k}' = \operatorname{span} \{Z\} + \mathfrak{h}$ and thus $[\mathfrak{n}(\mathfrak{h}), \mathfrak{k}'] \subseteq \mathfrak{h} \subseteq \ker \alpha$, from which it follows that $\mathfrak{n}(\mathfrak{h}) \subseteq \mathfrak{k}'$, whence $\mathfrak{n}(\mathfrak{h}) = \mathfrak{k}'$.) Also $\mathfrak{h} + \mathfrak{k} \subseteq \mathfrak{n}(\mathfrak{h})$ so in fact $\mathfrak{k} = \mathfrak{n}(\mathfrak{h}) = \mathfrak{k}'$. In particular $\mathfrak{k} \in M(\alpha', \mathfrak{g})$. Now, $\alpha(Z) \neq 0$ and $\alpha'(Z) \neq 0$, so we may replace α' by $\alpha(Z)\alpha'(Z)^{-1}\alpha'$ and thus assume that $\alpha' = \alpha$ on \mathfrak{k} . It follows that $\mathfrak{k} \in M(\alpha, \mathfrak{g})$, because, since \mathfrak{g} is nilpotent and $\mathfrak{k} \in M(\alpha', \mathfrak{g})$, \mathfrak{k} satisfies the Pukanszky condition relative to α' : $\mathfrak{k} \in M(\alpha' + \varphi, \mathfrak{g})$ for all $\varphi \in \mathfrak{k}^\perp$, cf. [1, Chap. IV, sec. 3, pp. 69–70]. (The argument in [1] is for real \mathfrak{g} , but it works as well for complex \mathfrak{g} . Or use that if \mathfrak{g} is complex, $\alpha \in \mathfrak{g}^*$ and \mathfrak{k} a subalgebra of \mathfrak{g} , then $\mathfrak{k} \in M(\alpha, \mathfrak{g})$ if and only if $\mathfrak{k}_r \in M(\operatorname{Re} \alpha, \mathfrak{g}_r)$, where \mathfrak{k}_r and \mathfrak{g}_r denote \mathfrak{k} and \mathfrak{g} considered as real Lie algebras).

For a closed subgroup H of G we denote by D(G/H) the algebra of all G-invariant differential operators on the homogeneous space G/H. Assume that H is connected and proper and let $\mathfrak{h} \subseteq \mathfrak{g}$ be its Lie algebra. Then \mathfrak{h} is properly contained in its normalizer $\mathfrak{n}(\mathfrak{h})$ in \mathfrak{g} , and any $Z \in \mathfrak{n}(\mathfrak{h}) \setminus \mathfrak{h}$ defines a nonzero G-invariant vector field on $\gamma(Z)$ on G/H by

$$[\gamma(Z)f](gH) = \frac{d}{dt}\Big|_{t=0} f(g \exp(tZ)H).$$

4.3. THEOREM. Let G be a connected and simply connected, real or complex nilpotent Lie group with Lie algebra g. Let H be a proper, connected subgroup of G with Lie algebra \mathfrak{h} and let $Z \in \mathfrak{n}(\mathfrak{h}) \setminus \mathfrak{h}$.

Then, if \mathfrak{h} is not maximal (in the sense of Definition 4.1), there exists $D \in \mathbf{D}(G/H)$ such that D commutes with $\gamma(Z)$ and such that for every $a \in C$ and $b \in C \setminus \{0\}$ there exists a polynomial $p_{a,b}$ on G/H for which

- $(1) \quad De^{p_{a,b}} = ae^{p_{a,b}}$
- (2) $\gamma(Z)e^{p_{a,b}} = be^{p_{a,b}}.$

PROOF. We prove the theorem for complex G, the real case is analogous. Set $\mathfrak{k} := \mathbb{C}Z + \mathfrak{h}$ and choose $\alpha \in \mathfrak{g}^*$ such that $\alpha(\mathfrak{h}) = \{0\}$ and $\alpha(Z) = 1$. Then $\mathfrak{k} \in S(\alpha, \mathfrak{g})$ and $\mathfrak{h} = \mathfrak{k} \cap \ker \alpha$. Since \mathfrak{h} is not maximal we have by Lemma 4.2 that $\mathfrak{k} \notin M(\alpha, \mathfrak{g})$. Set $n = \dim \mathfrak{g}/\mathfrak{k}$.

First consider the case in which \mathfrak{k} does not contain the center 3 of g, and let $\{X_1,\ldots,X_n,Z\}$ be a coexponential basis for g modulo \mathfrak{h} with $X_n\in\mathfrak{z}\setminus\mathfrak{k}$. Then, denoting the corresponding coordinates on G/H by x_1,\ldots,x_n,z , we have $\gamma(X_n)=\partial/\partial x_n$ and $\gamma(Z)=\partial/\partial z$. Hence the conclusions of the theorem are satisfied with $D=\gamma(X_n)$ and $p_{a,b}=ax_n+bz$.

This takes care of the cases in which dim $g \le 2$. We continue by induction on dim g and may in the proof of the induction step assume that $3 \subseteq f$.

If $i:=\mathfrak{z}\cap\mathfrak{h}+\{0\}$ we consider the quotient group $\widetilde{G}=G/\exp(i)$ with Lie algebra $\widetilde{\mathfrak{g}}=\mathfrak{g}/i$. Denote the quotient maps $G\to\widetilde{G}$ and $\mathfrak{g}\to\widetilde{\mathfrak{g}}$ by \sim . Let Ξ be a coexponential basis for \mathfrak{g} modulo \mathfrak{h} and identify G/H and $\widetilde{G}/\widetilde{H}$ with C^{n+1} by means of Ξ and $\widetilde{\Xi}$ respectively. Then $\mathfrak{g}\cdot x=\widetilde{\mathfrak{g}}\cdot x$ for all $\mathfrak{g}\in G$ and $x\in C^{n+1}$, so $D(G/H)=D(\widetilde{G}/\widetilde{H})$. Also $\widetilde{\gamma}(\widetilde{Z})=\gamma(Z)$. Let $\widetilde{\alpha}\in\widetilde{\mathfrak{g}}^*$ be given by $\widetilde{\alpha}(\widetilde{X})=\alpha(X)$ for all $X\in\mathfrak{g}$. Then $\widetilde{\mathfrak{t}}\in S(\widetilde{\alpha},\widetilde{\mathfrak{g}}),\,\widetilde{\alpha}|_{\widetilde{\mathfrak{t}}}=0$, and $\widetilde{\mathfrak{h}}=\widetilde{\mathfrak{t}}\cap\ker\widetilde{\alpha}$. It is easily seen that $\widetilde{\mathfrak{t}}\notin M(\alpha,\mathfrak{g})$ implies $\widetilde{\mathfrak{t}}\notin M(\widetilde{\alpha},\widetilde{\mathfrak{g}})$, so by Lemma 4.2 $\widetilde{\mathfrak{h}}$ is not maximal in $\widetilde{\mathfrak{g}}$. This case is thus concluded by an application of the induction hypothesis to \widetilde{G} .

From now on we assume that $\mathfrak{z} \cap \mathfrak{h} = \{0\}$. Then $\mathfrak{t} = \mathfrak{z} + \mathfrak{h}$ (direct sum), so dim $\mathfrak{z} = 1$. If $Z_1 \in \mathfrak{z}$ and $\alpha(Z_1) = 1$ then $\gamma(Z) = \gamma(Z_1)$, so we may and will assume that $Z \in \mathfrak{z}$. We now choose Y and define \mathfrak{g}_0 as in the proof of Theorem 3.1 and divide the proof into the two cases

(I) $\mathfrak{f} \subseteq \mathfrak{g}$ and (II) $\mathfrak{f} \not\subseteq \mathfrak{g}_0$.

(I) Assume $f \subseteq g_0$ and set $\alpha_0 = \alpha | g_0$. As easily seen $f \notin M(\alpha_0, g_0)$, so by Lemma 4.2, \mathfrak{h} is not maximal in g_0 . Let \mathcal{Z}_0 be a coexponential basis for g_0 modulo \mathfrak{h} and extend it with some $X \in g \setminus g_0$ to a coexponential basis \mathcal{Z} for g modulo \mathfrak{h} . Identifying G_0/H with C^n by means of \mathcal{Z}_0 , G/H with C^{n+1} by means of \mathcal{Z} and then G/H with $C \times G_0/H$ in the natural way: $C^{n+1} \cong C \times C^n$, we may consider the elements of $D(G_0/H)$ as differential operators on G/H. Moreover, since $G = \exp(CX)G_0$ and

$$\exp(tX)g_0\cdot(x,\underline{y})=(x+t,g_0(x)\cdot\underline{y})$$
 for all $t\in C$, $g_0\in G_0$ and $(x,\underline{y})\in C\times C^n$, where $g_0(x)=\exp(-xX)g_0\exp(xX)\in G_0$, we have $D(G_0/H)\subseteq D(G/H)$. Also $\gamma_0(Z)=\gamma(Z)$. Hence we conclude this case by an application of the induction hypothesis to G_0 .

(II) Assume $\mathfrak{t} \subseteq \mathfrak{g}_0$. Then there exists $X \in \mathfrak{h}$ with [X, Y] = Z. It follows that $Y \notin \mathfrak{t}$, because $\mathfrak{t} \subseteq \mathfrak{n}(\mathfrak{h})$ and $Z \notin \mathfrak{h}$.

Define $\mathfrak{h}' = CY + \mathfrak{h} \cap \mathfrak{g}_0$ and $\mathfrak{t}' = CY + \mathfrak{t} \cap \mathfrak{g}_0$. Then $\mathfrak{t}' = CZ + \mathfrak{h}'$, $\mathfrak{t}' \in S(\alpha, \mathfrak{g})$, $\alpha|_{\mathfrak{t}'}$

 $\neq 0$, and $\mathfrak{h}' = \mathfrak{k}' \cap \ker \alpha$. Since dim $\mathfrak{k}' = \dim \mathfrak{k}$ and $\mathfrak{k} \notin M(\alpha, \mathfrak{g})$ we have $\mathfrak{k}' \notin M(\alpha, \mathfrak{g})$, so by Lemma 4.2, \mathfrak{h}' is not maximal in \mathfrak{g} .

Choose coexponential bases, Ξ for g modulo f and Ξ' for g modulo f', as in the proof of Theorem 3.1 and set $\zeta_b = \zeta_{b\alpha, f, \Xi}$ and $\zeta'_b = \zeta_{b\alpha, f', \Xi'}$ for $b \in \mathbb{C} \setminus \{0\}$. Then as in the proof of Theorem 3.1 we have

$$(4.1) \Phi_b(d\zeta_b'(D)) = d\zeta_b(D) \forall D \in \mathscr{U}(\mathfrak{g}),$$

where Φ_h denotes the automorphism of DP (Cⁿ) given by

(4.2)
$$\Phi_{b}(x_{i}) = x_{i}, \qquad \Phi_{b}\left(\frac{\partial}{\partial x_{i}}\right) = \frac{\partial}{\partial x_{i}}, \quad i = 1, \dots, n-1$$

$$\Phi_{b}(x_{n}) = -\frac{1}{b}\frac{\partial}{\partial x_{n}}, \qquad \Phi_{b}\left(\frac{\partial}{\partial x_{n}}\right) = bx_{n}.$$

Identify G/H and G/H' with C^{n+1} via the coexponential bases $\{\Xi, Z\}$ and $\{\Xi', Z\}$ respectively and denote the corresponding actions of G on $\mathscr{H}(C^{n+1})$ by ζ and ζ' . Denote the coordinates on C^{n+1} by x_1, \ldots, x_n, z . Then $\gamma(Z) = \gamma'(Z) = \partial/\partial z$, where $\partial/\partial z$ is central in both D(G/H) and D(G/H'), since $Z \in \mathfrak{F}$.

Now $\mathfrak{f}' \subseteq \mathfrak{g}_0$, so by (I) there exist $D' \in D(G/H')$, commuting with $\gamma'(Z)$, and polynomials $p'_{a,b}$ on $G/H' = \mathbb{C}^{n+1}$ such that (1) and (2) are satisfied with D' and $p'_{a,b}$ in place of D and $p_{a,b}$. Note that D(G/H') and D(G/H) are contained in $DP(\mathbb{C}^{n+1})$.

Construction of D: Since the operator D' commutes with $\gamma'(Z) = \partial/\partial z$, it is of the form

$$D' = \sum_{k=0}^{K'} D'_k \otimes \left(\frac{\partial}{\partial z}\right)^k$$
 with $D'_k \in DP(C'')$

and leaves each of the eigenspaces

$$\mathscr{H}_b(G/H') := \{ f \in \mathscr{H}(G/H') \mid \gamma'(Z) f = bf \} = \mathscr{H}(C^n) \otimes e^{bz} ,$$

 $b \in C$, invariant. The map $\varphi \in \mathcal{H}(C^n) \mapsto \varphi \otimes e^{bz} \in \mathcal{H}_b(G/H')$ is an equivalence between ζ_b' and the restriction of ζ' to $\mathcal{H}_b(G/H')$, and it carries the operator

$$D'(b) := \sum_{k=0}^{K'} b^k D'_k \in \mathrm{DP}(\mathsf{C}^n)$$

into the restriction of D' to $\mathcal{H}_b(G/H')$. Hence D'(b) commutes with ζ_b' and thus with $d\zeta_b'$. By (4.1) the operator

$$D(b) := \Phi_b(D'(b)) = \sum_{k=0}^{K'} b^k \Phi_b(D'_k) \in DP(C^n)$$

therefore commutes with $d\zeta_b$ and thus with ζ_b .

It follows from (4.2) that there exist $m \in \mathbb{N}$ and $D_k \in DP(\mathbb{C}^n)$, k = 1, ..., K, such that

$$b^m D(b) = \sum_{k=0}^K b^k D_k$$
 for all $b \in \mathbb{C} \setminus \{0\}$.

Now define

$$(4.3) D := \sum_{k=0}^{K} D_k \otimes \left(\frac{\partial}{\partial z}\right)^k \in \mathrm{DP}\left(\mathsf{C}^{n+1}\right).$$

Then D commutes with ζ on each of the joint invariant subspaces $\mathscr{H}(\mathbb{C}^n) \otimes e^{bz}$, $b \in \mathbb{C} \setminus \{0\}$. Since these span a dense subspace of $\mathscr{H}(\mathbb{C}^{n+1})$, it follows that D commutes with ζ , that is $D \in D(G/H)$. Clearly $[D, \gamma(Z)] = 0$.

Construction of $p_{a,b}$: By (2) for $p'_{a,b}$ we have

$$p'_{a,b}(x_1,...,x_n,z) = q'_{a,b}(x_1,...,x_n) + bz$$

for some polynomial $q'_{a,b}$.

Since the operator $D'(b) \in \mathrm{DP}(C^n)$ commutes with $d\zeta_b'(Y) = bx_n$, it is of the form

$$D'(b) = \sum_{i=0}^{N} D'_i(b) x_n^i$$
, where $D'_i(b) \in \mathrm{DP}(\mathsf{C}^{n-1}) \otimes 1_{\mathsf{C}}$.

It follows that

$$(D'(b)f)(x_1,\ldots,x_{n-1},0) = (D'_0(b)f)(x_1,\ldots,x_{n-1},0)$$

for all $f \in \mathcal{H}(\mathbb{C}^n)$, so if we set

$$q_{a,b}(x_1,\ldots,x_{n-1},x_n) = q'_{a,b}(x_1,\ldots,x_{n-1},0)$$

then

$$D_0'(b)e^{q_{a,b}} = ae^{q_{a,b}}$$

by (1) for D' and $p'_{a,b}$. Since $q_{a,b}$ is independent of x_n and since

$$D(b) = \Phi_b(D'(b)) = \sum_{i=0}^{N} D'_i(b) \left(-\frac{1}{b} \frac{\partial}{\partial x_n}\right)^i,$$

this implies that

$$D(b)e^{q_{a,b}} = ae^{q_{a,b}}.$$

Hence (1) and (2) are satisfied with D given by (4.3) and $p_{a,b}$ given by $p_{a,b} = q_{c,b} + bz$, where $c = b^{-m}a$. This finishes the proof of the theorem.

As a corollary we obtain that the maximality conditions on f relative to α , imposed as sufficient conditions in Theorems 3.1 and 3.2 and Corollary 3.3, are also necessary ones:

4.4. COROLLARY. Let G be a connected and simply connected, complex (respectively real) nilpotent Lie group with Lie algebra g. Let $\alpha \in g^*$ (respectively $(g^*)^C$), $\mathfrak{k} \in S(\alpha, \mathfrak{g})$ and Ξ be a coexponential basis for \mathfrak{g} modulo \mathfrak{k} .

Then, if $\mathfrak{t} \notin M(\alpha, \mathfrak{g})$ (respectively $\mathfrak{t}^{C} \notin M(\alpha^{c}, \mathfrak{g}^{C})$), there exist $D \in DP(C^{n})$ (respectively $DP(R^{n})$), where $n = \dim \mathfrak{g}/\mathfrak{t}$, and polynomials p_{a} , $a \in C$, on C^{n} (respectively R^{n}) such that

- (1) D commutes with $\zeta_{\alpha, \dagger, \Xi}$ (respectively $\lambda_{\alpha, \dagger, \Xi}$)
- (2) $De^{p_a} = ae^{p_a}$ for all $a \in C$.

In particular $\zeta_{\alpha,t}$ (respectively $\lambda_{\alpha,t}$) is neither topologically nor scalarly irreducible.

PROOF. The corollary for real G follows from that for complex G as in the proof of Theorem 3.2. So let G be complex. Set $\mathfrak{h} = \mathfrak{k} \cap \ker \alpha$.

If h = f, then $D = \partial/\partial x_n$ and $p_a = ax_n$ will do.

If $\mathfrak{h} \neq \mathfrak{k}$, let $Z \in \mathfrak{k} \setminus \mathfrak{h}$ with $\alpha(Z) = 1$. Then $Z \in \mathfrak{n}(\mathfrak{h}) \setminus \mathfrak{h}$ and $\mathfrak{k} = \mathbb{C}Z + \mathfrak{h}$. By Lemma 4.2, \mathfrak{h} is not maximal, since $\mathfrak{k} \notin M(\alpha, \mathfrak{g})$. Identifying G/H with \mathbb{C}^{n+1} by means of $\{\Xi, Z\}$ we have that $\gamma(Z) = \partial/\partial x_{n+1}$ and that the map $\varphi \mapsto \varphi \otimes e^{x_{n+1}}$, $\varphi \in \mathscr{H}(\mathbb{C}^n)$, is an equivalence between $\zeta_{\alpha,\mathfrak{k},\Xi}$ and the action of G on $\{f \in \mathscr{H}(G) \mid \gamma(Z)f = f\}$. The existence of D and P_a now follows from Theorem 4.3 since $D(G/H) \subseteq DP(G/H)$.

Finally we obtain the following extension and converse of Theorem 6.1 [2], where it was proved for real G that if H is a connected subgroup of G whose Lie algebra \mathfrak{h} is maximal in \mathfrak{g} in the sense of Definition 4.1 then D(G/H) is generated by a single vector field.

4.5. Theorem. Let G be a connected and simply connected, real or complex nilpotent Lie group with Lie algebra $\mathfrak g$ and let H be a connected subgroup of G with Lie algebra $\mathfrak h$.

Then the algebra $\mathbf{D}(G/H)$ is generated by a single vector field if and only if \mathfrak{h} is of the form $\mathfrak{h} = \mathfrak{k} \cap \ker \alpha$ for some $\alpha \in \mathfrak{g}^* \setminus \{0\}$ and $\mathfrak{k} \in M(\alpha, \mathfrak{g})$.

PROOF. Sufficiency of the condition on \mathfrak{h} was proved for real G as Theorem 6.1 of [2]. The proof for complex G is quite analogous to that in [2], now being based on the irreducibility result Corollary 3.3 (the part for complex G) above.

Necessity of the condition on h follows immediately from Theorem 4.3.

REFERENCES

- 1. P. Bernat et al., Représentations des groupes de Lie résolubles, Dunod, Paris, 1972.
- J. Jacobsen and H. Stetkær, Eigenspace representations of nilpotent Lie groups, Math. Scand. 48 (1981), 41-55.
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53-104.

MATEMATISK INSTITUT AARHUS UNIVERSITET NY MUNKEGADE 8000 AARHUS C DENMARK