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EIGENSPACE REPRESENTATIONS OF
NILPOTENT LIE GROUPS 1II

JACOB JACOBSEN*

1. Introduction.

The present paper generalizes and completes the results of [2] on eigenspace
representations and invariant differential operators on homogeneous spaces
for nilpotent Lie groups.

Let G be a connected and simply connected, complex or real, nilpotent Lie
group with Lie algebra g. Let a: g --» C be a linear functional on g and let f be
a subalgebra of g subordinate to a, i.e. with a([f,t])={0}.

For G complex we consider the left regular representation {, ¢ of G on the
joint eigenspace

H,1(G) = {fe #(G)| Xf=a(X)fVX et}

of holomorphic functions on G, and for G real we consider the left regular
representation A, of G on the joint eigenspace

8,1(6) 1= {fe6G) | Xf=a(X)f VX et}

of C*-functions on G.

We show that these representations may be realized on 5 (C") (respectively
£€(R"), n=dim g/f, in such a way that if f satisfies a certain maximality condition
relative to o, then the derived representation d{, ; (respectively d4, ) maps the
universal enveloping algebra % (g) onto the algebra of all differential operators
on C" (respectively R") with polynomial coefficients (Theorems 3.1 and 3.2).
From this, irreducibility of the group representations is derived (Corollary 3.3).

These results contain and extend Theorems 4.1 and 5.1 of [2], where only
real groups were considered and where it was assumed that a is of the special
form a=cp for some c € C and f € g*.

We prove that the maximality condition on f relative to o, imposed as a
sufficient condition in the above irreducibility statement, is also a necessary
one (Corollary 4.4). No result of this kind was obtained in [2].

We also obtain a necessary and sufficient condition on the Lie algebra of a
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connected subgroup H of G ensuring that the algebra D(G/H) of G-invariant
differential operators on the homogeneous space G/H is generated by a single
vector field (Theorem 4.5). Sufficiency of this condition was proved (for real G)
in [2].

The results on the eigenspace representations {, ; and 4,y described above
are analogous to classical results on the unitary representations of nilpotent
Lie groups, Theorems 7.1 and 5.2(1) of Kirillov [3].

2. Definitions and preliminaries.

Throughout this paper G denotes a connected and simply connected, real or
complex nilpotent Lie group with Lie algebra g of left invariant vector fields on
G. The universal enveloping algebra of g is denoted % (g).

The dual space of g is denoted g*, and for g real we denote by (g*)€ the set of
all complex-valued, real linear functionals on g. For g real and a € (6% we
denote by «f the extension of a to an element of (g)*, where g© denotes the
complexification of g.

For « € g*, or a € (g*)° if g is real, S(a, g) denotes the set of subalgebras f of g
which are subordinate to a, i.e. for which a([f, £])={0}, and M(a, g) the subset
of S(a,g) consisting of the subalgebras in S(a,g) of maximal dimension.

Since g is nilpotent we have for « € g* (g real or complex) that a subalgebra f
of g belongs to M (a, g) if and only if it, as a subspace of g, is maximally totally
isotropic with respect to the bilinear form a([ -, -]), i.e. iff

VXeg: Xet < afX,f]) = {0} .

For G complex, o € g* and f € S(a, g), the joint eigenspace #, ;(G) is defined
in the introduction. There #(G) denotes the space of holomorphic functions
on G, equipped with the topology of uniform convergence on compact subsets
of G. If K denotes the analytic subgroup of G corresponding to {, there exists a
character y: K — € such that y(exp X)=¢*® for all X €, and then

H.(G) = {fe #(G)| fgk)=f(@x(k) Vg€ G, keK}.

The space H#,(G) is a closed subspace of #°(G), invariant under the left
regular representation of G on #(G) which then restricts to a holomorphlc
representation {,; of G on ', 4(G).

Similarly, for G real, a € (g*)€ and f € S(, g), the left regular representation
of G on &(G) (=C>(G) equipped with its usual topology) restricts to a
differentiable representation 4, ; of G on the joint eigenspace &, (G) defined in
the introduction. Also &,(G) is alternatively described in terms of the
character on K determined by a.

An ordered basis E={X,,...,X,} for g modulo a subalgebra f is called
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coexponential, if for every i=1,...,n, g;;=span{X,, ,..., X, t} is an ideal of
g;-1. Such a basis exists for every f since g is nilpotent.

In the rest of this section we let G be complex, the real case is quite
analogous, just exchange C with R, s with & and { with 4; cfr. [2].

Let f be a subalgebra of g, K the corresponding analytic subgroup of G and
E={X,,...,X,} a coexponential basis for g modulo f. Then the map

51 (Xgye..5X,) > eXp (X, X,) ... exp (x, X, )K

is a bianalytic difftfomorphism of C" onto the coset space G/K, and if E' is
another coexponential basis for ¢ modulo ¥ with corresponding map s': C"
— G/K, then the composite map s 'os’: C" — C" is polynomial. Thus the
identification of G/K with C" via s gives rise to an unambiguous notion of the
algebra Pol (G/K) of polynomial functions on G/K and the algebra DP (G/K)
of differential operators on G/K with polynomial coefficients.

Also, if f € S(a, g), the map S: #(G) — #(C") given by

(X1 -0 x) = fexp (x, Xy) . .. exp (x,X,)

restricts to a topological isomorphism S, ; = of #, ;(G) onto # (C") making {,
equivalent to a representation {, ; - of the form

[Ca, E,E(g)f] (x) = e«(p(x,x))f(g_ 1 X,

where g € G, fe #(C"), and x € C". Here p is a polynomial map G xC" — {
and g- x denotes the action of g on x induced by the identification of G/K with
C" by means of s. The formula implies that d{, ; z(%(g)) is contained in DP (C"),
the algebra of all differential operators on C" with polynomial coefficients.

If £ is another coexponential basis for ¢ modulo f then the equivalence
T=S,1z98.1= between {, = and {, = is of the form

[Tf1(x) = e“f (r(x), fe #(C7),
for certain polynomial maps ¢q: C" — f and r: C" — C", where also r™! is
polynomial. In particular T defines an algebra automorphism D +— ToDoT ~*
of DP (C").

Notation analogous the one introduced for complex G will be used for
real G.

DP (R") will denote the complex algebra of all differential operators on R”
with polynomial coefficients.

3. Representations of % (g). Irreducibility.
The following theorem is the analogue for complex groups of Theorem 4.1 in

[2].
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3.1. THEOREM. Let G be a connected and simply connected, complex nilpotent

Lie group with Lie algebra g. Let a € g* te M(a,g), and let £ be a
coexponential basis for g modulo ¥, then

3.1 dly1z(%(9) = DP(C"),

where n=dim g/f.

Proor. If dimg =2, then g is abelian and so f=g, that is n=0. In this case
DP (C") consists of the scalars only in which case (3.1) clearly holds. We
proceed by induction on dimg.

By the last paragraph of Section 2 it suffices to prove (3.1) for one choice
of E.

Let 3 denote the center of g and observe that 3<t since t € M(a,g).

If i:=3Nker a# {0}, we consider the quotient group G = G/exp (i) with Lie
algebra §=g/i. Since i cker a, there exists & € §* such that &(X)=a(X) for all
X €g, where X — X denotes the quotient map g — § Clearly a#0,
T € M(4,§), £ is a coexponential basis for § modulo T and

A0,y =(X) = dlz32(X) forall Xeg.
Hence
d{,1=(%(g) = DP(C"

by the induction hypothesis applied to G.
From now on assume 3Nkera={0}. Then dim3=1, since 3&i. Let Z€ 3}
with a(Z)=1. Let Y € g represent a non-zero element of the center of g/3, then

g8 = {Veg| [V Y]=0}

is an ideal of codimension 1 in g. We may choose Y so that a(Y)=0.
The rest of the proof is divided according to whether

Mtesag or t &g

(I) Assume f<g, and put ag=a|gy. Then a,+0 and f € M(ay, go). Choose
X, e g\ gosuchthat [X,,Y]=Z and let E,={X,,..., X,} be a coexponential
basis for g, modulo f, thus making £={X,, X,,...,X,} a coexponential basis
forgmodulo . Set {={,; = and (o= {4yt 5, the latter being a representation of
the subgroup G, =exp (g,) of G. Then d{(X,)= —3/dx,, while for every ¥, € g,
@ € H#(C" and (x;,x5) e CxC""!=C"

(3.2 (L (V)] (x1, %) = [dlo(e™ 24X+ Vo) (xy,)] (Xo) -

Since T € M(xg,g,), T contains the central elements Z and Y of g,, whence
d{o(Z)= —ax(Z) = —1I and d{y(Y)= —oy(Y)I=0. Hence by (3.2), d{(Y)=x,.
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Furthermore, since by (3.2)

oc

k
[dlo (Vo) (x4, )] (x0) = kz %[dC((ad X ) Vo)p](x1, Xo) »

the series being finite because g is nilpotent, we have

1c®dLo(%(g0) & dl(%(go)) -

So applying the induction hypothesis to G, we conclude d{(#(g))=DP (C".
(IT) Assume t & g,. Then there exists X € T with [ X, Y]=Z, and this implies
that Y ¢ I since f € S(x, g) and «(Z)+0. We may choose X such that a(X)=
Let f,=fNg, and set ¥ =CY+1{, Then ' € S(a,g) and dim ¥ =dim¢¥, so in
fact ' € M(a,g). Also ' =g, Note that I=CX +1,,.
The direct sum of vector spaces §=CX +CY+{; is a subalgebra of g of
codimension n—1,soif {X,,..., X,_,} is a coexponential basis for g modulo g,
then Z:= {X - --»X,_1, Y} is a coexponential basis for g modulo f, while =

={X,,...,X,_1, X} is a coexponential basis for g modulo f'. Let {={, ; = and
(=l 2 then
(3.3) &(d{' (D)) = d{(D) for all De%(g),
where @ denotes the algebra automorphism of DP (C") given by
0 d

1 ) o= N ———— = — | = 1 RN (e l

PD(x;) X d’(ax,.) ax, i=1, n
(3.4

D )__(3 (D<a =
) = ox,’ ox, = Xn

The relation (3.3) is proved by induction on dimg/§=n—1: If dimg/g=0
then n=1 and by direct calculations d{'(X)= —3d/0x,, d{(X)= —a(Z)x,= — X,
¢’ (Y)=o(Z)x,=x,, and d{(Y)= —0/dx,, while d{'(V)=d{(V)= —a(V)I for all
Ve t, This proves (3.3) when dimg/§=0.

Let dim g/§ >0 and suppose that (3.3) holds when g there is replaced by any
subalgebra g, of g for which g, 2§ and dim g,/§ <dim g/ and {, {’ are replaced
by corresponding representations of G, =exp (go). Then (3.3) follows from the
recursion formulas, cfr. (3.2),

dC(xl)=—5‘i—; L) = f( N c@dt((ad XV

1 k=0

o (v 3k
&y = - aww = 3 5

k' 1C®dcl2((adxl)kV) ’
k=0 .
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where Ve g,=span {Xz, v X 1,8}, C2~C,2;_z, and {5={,, vz, with a,
=a|gy Ey={Xp,.. ., Xp-1, Y} and By ={X,,..., X, , X}.

Now, since f’ggo, we have by (I) d' (% (g)) = DP (C"), hence by (3.3) d{(#%(g))
=DP (C").

This finishes the proof of the theorem.

As a corollary we obtain the following extension of Theorem 4.1 of [2], cf.
Remark 1 below, the extension being that the functiomal « may be general
complex-valued, not just of the special form a=cf with ¢ € C and § € g*.

3.2. THEOREM. Let G be a connected and simply connected, real nilpotent Lie
group with Lie algebra g.

Let o € (g%, T € S(a, g) and let E be a coexponential basis for g modulo t.
If 1€ € M(«5,g) then

dAy 1 =(%(9)°) = DP (R"),

where n=dim g/f.

Proor. Let G° denote the complexification of G, ie. the connected and
simply connected complex Lie group with Lie algebra g%, and consider the
representation {:={, c,z of G° on H#(C"). It is easily seen that the restriction
map f+— f|g of #(C") into &(R") intertwines the representations {|G and
Ay 1.z of G. The theorem is now consequence of Theorem 3.1.

ReMARK 1. If g is real and a € (g"‘)C is of the form a=¢p for some ¢ € C and
B € g*, then for f e S(a,g) we have f € M(a,g) if and only if £ e M (o, gc).
Hence Theorem 3.1 above contains Theorem 4.1 of [2].

REMARK 2. For g real and o € (g*)¢ there may in general not exist a
t € S(a, g) for which £€ € M(a¢, g%), as shown by the following Example 1 (see
also Remark 5.3 of [2]).

ExamMpLE 1. Let g be a real nilpotent Lie algebra and let « € g*. Let g, denote
the underlying real Lie algebra of ¢ and let o, denote «© considered as an
element of (g¥)¢. Note that the elements 1®r 1Qr X +i@ri®r X, X € g,
span an ideal i of g5 and that ickeraf and i+i=g§.

Now, let f € S(xg, o) and suppose I€ e M (a5, goc). Then of ([€, i])={0}, so
i< 1€ and thus TS, whence I€=gS, that is t=g,,.

Hence if «([g,g])+{0}, there does not exist e S(x,g,) for which
1€ e M(o,65).
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ExampLE 2. If g is the 2n+ 1 dimensional Heisenberg algebra, or more
generally if g is nilpotent and dim [g, g] <1, then for every o € (g*) there exists
fe S(a,g) such that e M(e, g%), in fact then fe M(a g) implies that
€ e M(o, g).

3.3. CoroLLARY. Let G be a connected and simply connected, complex
(respectively real) nilpotent Lie group with Lie algebra g. Let a € g* (respectively
(6% and te S(a,g). Then, if te M(a,g) (respectively “eM (at‘,gc)), the
representation (, (respectively A, ;) of G is both topologically and operator
irreducible.

Proor. For real G this follows from Theorem 3.2 as in [2] and for complex G
it follows from Theorem 3.1 via the Lemma below.

3.4. LEMMA. (a) If V+{0} is a closed subspace of # (C") invariant under the
action of every D € DP (C"), then V= (C").

(b) If A is a densely defined, closed linear operator in # (C") commuting with
every D € DP (C"), then A € Cl.

Proor. (a) Let fe V, f+0. Since not all the derivatives of f vanish at 0 we
may assume f(0)=1. Let y € V* < #'(C". Then the function

F(a) := {u, f(e2))

is holomorphic in a € C and

k
[<i> F] =< D> =0 for all k=0,1,2,. ..
da a=0

where D=2z,(0/0z,)+ ... +2,(0/0z,) € DP(C"). So F=0, and since f(ez)
— f(0)=1 uniformly in z on compact sets as a —» — oo along R, it follows that
1 € V. Thus V contains all the polynomials on C" and is therefore dense in
H(C").

(b) Let /40 be in the domain D(A) of A. Then 40 on some open, connected
set Qin C" and (1/f)Af € # (). Since 4 commutes with multiplication by the
polynomials on C" and these are dense in J#(C"), A commutes with
multiplication by every g € #(C"). So in Q

(v, N_ V(9 o N_o .
éz_i(]Af)‘]‘z‘<f‘a’z:Af—52—iAf>—-0, i=1,...,n,

because A commutes with d/0z;. Thus for some constant ¢(f) € C, Af=c(f)fin
Q and therefore in C" by uniqueness of analytic continuation. If f,g € D(4)
\ {0}, then c(f)=c(g) since c(g)fg=fAg=A(fg)=c(f)fg. This proves (b).
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4. Invariant differential operators. Reducibility.
In this section we shall work with the following non-standard definition.

4.1. DerINITION. A subalgebra b of a (nilpotent) Lie algebra g is called
maximal if there exist « € g¢*\ {0} and f € M(a,g) such that h=fNkera.

4.2. LEMMA. Let g be a nilpotent Lie algebra and let « € g*,t € S(a, g). Assume
al¢#0 and set h:=tNkera. Then § is maximal (if and) only if t € M(a, g).

ProoF. Suppose that b is maximal: h=F Nkera’ where o' € g*\ {0} and
¥ e M(«',g). Then, since g is nilpotent, ¥ equals the normalizer n(h) of b in g.
(Namely, let i be a maximal element in the set of ideals of g contained in § and
let Z represent a non-zero element in the center of g/i. Then ¥ =span{Z}+}
and thus [n(bh),¥]cbh<kera, from which it follows that n(h)<¥, whence n(h)
=¥.) Also h*+fcn(h) so in fact T=n(h)=F. In particular f € M(«,g). Now,
a(Z)#+0 and o' (Z)+0, so we may replace o by a(Z)x'(Z) '« and thus assume
that o'=a on [. It follows that f € M(a,g), because, since g is nilpotent and
t e M(a,g), T satisfies the Pukanszky condition relative to o': f € M(«' + ¢, 9)
for all ¢ € t*, cf. [1, Chap. 1V, sec. 3, pp. 69-70]. (The argument in [1] is for
real g, but it works as well for complex g. Or use that if g is complex, a« € g*
and f a subalgebra of g, then f € M(a, g) if and only if f, € M(Rea,g,), where ,
and g, denote f and g considered as real Lie algebras).

For a closed subgroup H of G we denote by D(G/H) the algebra of all G-
invariant differential operators on the homogeneous space G/H. Assume that
H is connected and proper and let h< g be its Lie algebra. Then b is properly
contained in its normalizer n(h) in g, and any Z € n(h)\ b defines a nonzero
G-invariant vector field on y(Z) on G/H by

4

y(2)f1(gH) = i
t=0

f(gexp (tZ)H) .

4.3. THEOREM. Let G be a connected and simply connected, real or complex
nilpotent Lie group with Lie algebra g. Let H be a proper, connected subgroup of
G with Lie algebra by and let Z € n(h)\'}.

Then, if b is not maximal (in the sense of Definition 4.1), there exists
D € D(G/H) such that D commutes with y(Z) and such that for every a € C and
b € C\ {0} there exists a polynomial p, , on G/H for which

(1) DeP+>=qeP=+
(2) y(Z)eP=>=beP.
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Proor. We prove the theorem for complex G, the real case is analogous.

Set £:=CZ +} and choose a € g* such that a(h)={0} and «(Z)=1. Then
f € S(a,g) and h=*tNker a. Since [ is not maximal we have by Lemma 4.2 that
f ¢ M(a,g). Set n=dim g/t

First consider the case in which  does not contain the center 3 of g, and let
{X1,...,X,Z} be a coexponential basis for g modulo b with X, € 3\ f. Then,
denoting the corresponding coordinates on G/H by x,,. . ., x,, z, we have y(X,)
=0/0x, and y(Z)=0/dz. Hence the conclusions of the theorem are satisfied
with D=y(X,) and p, ,=ax, +bz.

This takes care of the cases in which dim g<2. We continue by induction on
dimg and may in the proof of the induction step assume that 3<t.

If i:=3Nh+{0} we consider the quotient group G=G/exp (i) with Lie
algebra §=g/i. Denote the quotient maps G — G and g — § by ~. Let Zbe a
coexponential basis for g modulo b and identify G/H and G/H with C"*! by
means of Z and Z respectively. Then g-x=g-x for all g € G and x € C"*1, s0
D(G/H)=D(G/H). Also §(Z)=y(Z). Let & € §* be given by 4(X)=o(X) for all
X € g. Thent e S(& ), &ly+0, and h=TNker &. It is easily seen that T & M(a, g)
implies T ¢ M(4,§), so by Lemma 4.2 § is not maximal in §. This case is thus
concluded by an application of the induction hypothesis to G.

From now on we assume that 3N = {0}. Then f=3+} (direct sum), so dim3
=1.If Z, € 3 and a(Z,)=1 then y(Z)=y(Z,), so we may and will assume that
Z € 3. We now choose Y and define g, as in the proof of Theorem 3.1 and
divide the proof into the two cases

(I) tcg and (II) &g,

(I) Assume f< g, and set oy =alg,. As easily seen f ¢ M(a, go), s0 by Lemma
4.2, his not maximal in g,. Let =, be a coexponential basis for g, modulo § and
extend it with some X € g\ g, to a coexponential basis £ for g modulo §.
Identifying Go/H with C" by means of Z,, G/H with C"*! by means of Z and
then G/H with C x Gy/H in the natural way: C"*!~C x C", we may consider
the elements of D(G,/H) as differential operators on G/H. Moreover, since G
=exp (CX)G, and

exp (tX)go- (x,y) = (x+1t,80(x) y) for all t € C, g, € G, and (x,y) e CxC",

where go(x)=exp (—xX)g,exp (xX) € G,, we have D(G,/H)s D(G/H). Also
Yo(Z) =v(Z). Hence we conclude this case by an application of the induction
hypothesis to G,,. ’

(II) Assume f& g, Then there exists X € b with [ X, Y]=Z. It follows that
Y¢ I, because fcn(h) and Z ¢ b
Define h =CY+hNg, and ¥ =CY+INg, Then ' =CZ+h, ¥ € S(a,g), oy
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+0, and ' =t Nkera. Since dim ¥ =dimf and f ¢ M(x,g) we have ¥' ¢ M (a, g),
so by Lemma 4.2, y is not maximal in g.

Choose coexponential bases, £ for g modulo f and ' for ¢ modulo ¥, as in
the proof of Theorem 3.1 and set {,={, 1z and {,={p, r = for b € C\{0}.
Then as in the proof of Theorem 3.1 we have

4.1) ®,(dl(D)) = d{,(D) VDeu(g),
where @, denotes the automorphism of DP (C") given by
0 0 .
Dy(x) = x;, ¢b(5x_i> = ax i=1,...,n—1
4.2)
o) - 10 (D) e
bW = Thax “hox, ) T T

Identify G/H and G/H’ with C"*! via the coexponential bases {&,Z} and
{Z', Z} respectively and denote the corresponding actions of G on # (C"*!) by
¢ and (. Denote the coordinates on C"*! by x,,...,x,,z. Then y(Z)=y'(Z)
=0/0z, where 0/0z is central in both D(G/H) and D(G/H’), since Z € 3.

Now ¥ =g, so by (I) there exist D' € D(G/H’), commuting with y'(Z), and
polynomials pj, , on G/H'=C"*! such that (1) and (2) are satisfied with D’ and
P, in place of D and p, ,. Note that D(G/H’) and D(G/H) are contained in
DP (C**1).

Construction of D: Since the operator D' commutes with y'(Z)=4/0z, it is of
the form

K k
D = Z D;@(—(?—> with Dj € DP (C")
k=0 0z

and leaves each of the eigenspaces

Hy(G/H) = {fe X (G/H) | y(@)f=bf} = #(C)®e",
b € C, invariant. The map ¢ € #(C") — @ ®¢e"* € #,(G/H') is an equivalence
between {} and the restriction of {' to #,(G/H’), and it carries the operator

K
D'(b):= Y b*D, e DP(C"
k=0

into the restriction of D' to #,(G/H’). Hence D' (b) commutes with {; and thus
with d{;. By (4.1) the operator

© :
D(b) := @,(D'(b)) = 3 b'®,(D;) e DP(C")

k=0

therefore commutes with d{, and thus with {,.
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It follows from (4.2) that there exist m € N and D, € DP (C"), k=1,...,K,
such that

]

b™D(b) = Z b*D, for all b e C\ {0} .

Now define
K a k

4.3) D:= Y Dk®(——> e DP (C"*Y).
k=0 az

Then D commutes with { on each of the joint invariant subspaces # (C"® e,
b € C\ {0}. Since these span a dense subspace of #(C"*"), it follows that D
commutes with {, that is D € D(G/H). Clearly [D,y(Z)]=0.

Construction of p, ,: By (2) for p, , we have

Pop(X1se . s Xp2) = @, p(xy,. .., %)+ bz

for some polynomial g, ;.
Since the operator D'(b) € DP (C") commutes with d{,(Y)=bx,, it is of the
form

N
D'(b) = ¥ Dj(b)xi, where Dj(h) € DP(C" ) ®Ic.
i=0

It follows that
(D'B)f)(xys- -, X—1,0) = (Do (B)f)(xy,. . ., X,—1,0)
for all fe #(C"), so if we set ‘
Qap(X1se o 3 X1, X0) = @ p(Xyse v o, Xp-1,0),
then
Dy (b)eter = ael=

y (1) for D' and p, ,. Since q, , is independent of x, and since

1oy
D(b) = @,(D'(b)) = Z D’(b)< )

bo
this implies that
D(b)e%> = getes .

Hence (1) and (2) are satisfied with D given by (4.3) and p, , given by p, ,=4.
+ bz, where c=b"™a. This finishes the proof of the theorem.
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As a corollary we obtain that the maximality conditions on f relative to o,
imposed as sufficient conditions in Theorems 3.1 and 3.2 and Corollary 3.3, are
also necessary ones:

44. CoROLLARY. Let G be a connected and simply connected, complex
(respectively real) nilpotent Lie group with Lie algebra g. Let o € g* (respectively
(%)), t € S(a,8) and = be a coexponential basis Sfor g modulo t.

Then, if t¢ M(a,g) (respectively € ¢ M(«, gc)), there exist D € DP (C")
(respectively DP (R")), where n=dimg/t, and polynomials p,, a e C, on C"
(respectively R") such that

(1) D commutes with {, y = (respectively A, =)
(2) DeP-=aeP+ for all a e C.

In particular {,y (respectively A,y is neither topologically nor scalarly
irreducible.

Proor. The corollary for real G follows from that for complex G as in the
proof of Theorem 3.2. So let G be complex. Set h=FfNkera.

If p=£, then D=7/0x, and p,=ax, will do.

If h=1, let Z € I\ b with a(Z)=1. Then Z € n(h)\h and t=CZ +}. By
Lemma 4.2, b is not maximal, since f ¢ M (a, g). Identifying G/H with C"*! by
means of {Z,Z} we have that y(Z)=4d/0x,,, and that the map ¢ — p®e™,
@ € H#(C"), is an equivalence between (,;z and the action of G on
{fe #(G) l y(Z)f=f}. The existence of D and p, now follows from Theorem
4.3 since D(G/H)< DP (G/H).

Finally we obtain the following extension and converse of Theorem 6.1 [2],
where it was proved for real G that if H is a connected subgroup of G whose
Lie algebra b is maximal in g in the sense of Definition 4.1 then D(G/H) is
generated by a single vector field.

4.5. THEOREM. Let G be a connected and simply connected, real or complex
nilpotent Lie group with Lie algebra g and let H be a connected subgroup of G
with Lie algebra b.

Then the algebra D(G/H) is generated by a single vector field if and only if b is
of the form h=tNkera for some o € g*\ {0} and T € M(a,g).

Proor. Sufficiency of the condition on §) was proved for real G as Theorem
6.1 of [2]. The proof for complex G is quite analogous to that in [2], now being
based on the irreducibility result Corollary 3.3 (the part for complex G) above.

Necessity of the condition on b follows immediately from Theorem 4.3.
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