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CONTRACTIVE PROJECTIONS
ON OPERATOR TRIPLE SYSTEMS

YAAKOV FRIEDMAN and BERNARD RUSSO

A J*-algebra is a norm closed complex linear subspace M of #(H, K), the
bounded linear operators from a Hilbert space H to a Hilbert space K, which is
closed under the operation a — aa*a. J*-algebras were defined and studied as
a generalization of C*-algebras by Harris [17], [18], [19] in connection with
function theory on infinite dimensional bounded symmetric homogeneous
domains. The principal examples of J*-algebras, besides (concrete) C*-
algebras are JC*-algebras [33], [34], [36] and ternary rings of operators [21],
[38]. By virtue of various extensions of the Gelfand Naimark theorem we may
regard JB*-algebras [1], [37] (with the usual exclusion of the exceptional
Jordan algebra (M$)%) and C*-ternary rings [38], as well as abstract C*-
algebras [10] as examples of J*-algebras.

A current objective of the author’s is to show that the category of C*-triple
systems (an abstract version of J*-algebras) is stable under the action of norm
one projections (see [14], [15]). The main result of the present paper is the
following.

THEOREM 3. Let M be a J*-algebra and let P: M — M be a linear projection
of norm one: P>=P, | P| = 1. Suppose the range P(M) of P is finite dimensional.
Then P(M) is linearly isometric to a J*-algebra and is therefore a C*-triple
system.

Simple examples show that Theorem 3 is best possible in the sense that, in
the absence of special assumptions on P, P(M) is not in general a ternary ring
of operators or a JC*-algebra even if M is a C*-algebra.

In the other direction, every finite dimensional J*-algebra (and many infinite
dimensional ones — the Cartan factors, [17]) can be embedded in a C*-algebra
A as the range of a contractive projection on A. For finite dimensions this
follows from the classification [17], [26], and for spin factors it is proved in [3]
and [12]. Moreover, if the J*-algebra M does not have a Hilbert space direct
summand, then for every isometric embedding T of M into a C*-algebra A,
there is a contractive projection P on A such that T (M)=P(4), (2], [3]
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A consequence of Theorem 3 is that the category of finite dimensional J*-
algebras is stable under contractive projections.

A CH*-triple system is a Jordan triple system [24], [30] of arbitrary
dimension in which the underlying linear space is a Banach space whose norm
satisfies a “C*-condition” (cf. [22]). For example, any linear space which is
isometric to a J*-algebra is a C*-triple system with the induced triple product.
The triple product which defines the Jordan triple system structure of P(M) in
Theorem 3 is given by

0.1) {abc} = $P(ab*c+cb*a), a,b,c € P(M).

The significance of Theorem 3 is that the connections between Jordan triple
systems and complex analysis (via bounded symmetric domains [25]) and
mathematical physics (via the quadratic Jordan formulation of quantum
mechanics [16], Lie superalgebras [4], and quantization of finite [5], [6] or
infinite dimensional [31] symmetric domains) can be further studied by use of
a new tool, namely, contractive projections. The state space of any algebraic
system is important in mathematical physics. Contractive projections are
related to state spaces by virtue of the induced action on the unit ball of the
system and of its dual.

The proof of Theorem 3 is long, requiring over twenty supporting lemmas
and propositions, several of which (e.g., Proposition 3.3, Proposition 3.5,
Proposition 3.7, Proposition 4.3) have independent interest. Two remarks
about the proof of Theorem 3 are in order.

First, despite the strong interaction of Theorem 3 with other fields (operator
theory, Jordan algebras, geometry, mathematical physics) the proof given in
the present paper is reasonably self contained. The only deep results used are
the Hahn Banach extension theorem, the universal representation of a C*-
algebra, and the following two special results which we state here as Lemma
0.1 and Lemma 0.2.

LemmMma 0.1. (Effros, [11, Lemma 3.1], [10, 12.2.3]). Let B be a von Neumann
algebra, f an element of the predual B, of B, e a projection in B. Let e.f € B, be
the functional x — f(ex). Then f=e.f if and only if ||f|=]e.f].

LEMMA 0.2. Let N be an ultraweakly closed Jordan *-subalgebra of ¥ (H) and
let @ be a positive faithful ultraweakly continuous functional on N. Let S be the
face in (N,)* generated by ¢, that is,

S ={te(N)*: IA>0 with 0Zt5e} .

Then S is norm dense in (N ,)*.



CONTRACTIVE PROJECTIONS ON OPERATOR TRIPLE SYSTEMS 281

Lemma 0.2 is a special case of the following recent result of King [23], cf.
[13,§ 2]. Let A be JBW-algebra with predual E (cf. [32]). For a normal state f,
let

V, ={geE: 3dAeR with —Af<g=<if}.

Then fis faithful if and only if ¥V is norm dense in E. This is also proved in [39,
p. 200].

The second remark is that the assumption of finite dimensionality of the
range P(M) is not needed for most of the steps in the proof of Theorem 3. We
believe that the finiteness assumption can be dropped in Theorem 3. Indeed in
Theorem 2 we prove a version of Theorem 3 without this assumption.
Moreover, versions of Theorem 3 without a dimensionality restriction on the
range are known if additional assumptions are made on the space M and/or on
the projection P.

Choi-Effros prove in [8] that if M is a C*-algebra and if P is com-
pletely positive and unital, then P(M) (of arbitrary dimension) is a C*-alge-
bra in a product given by

0.2) axb = P(ab), abe P(M).

Arazy-Friedman in [3] completely classified the range P(M) of an arbitrary
contractive projection in case M is the C*-algebra C_ of compact operators on
a separable complex Hilbert space. Using their classification, Theorem 3 (with
M=C_ and P(M) of arbitrary dimension) can be verified on a case by case
basis. Effros—Stermer in [12] prove that if M is a JC-algebra and P is positive
and unital, then P(M) (of arbitrary dimension) is a JC-algebra in the product

0.3) aob = P(4(ab+ba)), a,be P(M).

Finally, the authors proved Theorem 3 with P(M) of arbitrary dimension in
case M is a commutative C*-algebra and they gave a complete description of
all contractive projections in this case in [14].

Note that Theorem 3 gives new proofs of each of these last three versions in
the case of a finite dimensional range.

An interesting and important related problem is to show that a bicontractive
projection P on a J*-algebra M, ie., P and idy,— P are both contractive
projections, has the property that 2P —id, is an involutive isometry of M onto
M. This problem was solved for M =the C*-algebra of compact operators by
Arazy-Friedman [3] and is known for commutative C*-algebras (Bernau-—
Lacey [7]; see [14] for another proof). The particular case of this problem in
which M is a C*-algebra and P is positive and unital has just recently been
solved by Stermer [35]. In each of these known cases the structure of
bicontractive projections was determined from the result corresponding to
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Theorem 3. For more partial results in the context of JB-algebras see [29].
In connection with this problem we note that one of the nice properties of
J*-algebras (and C*-triple systems) is that the surjective linear isometries
coincide with the J*-isomorphisms, [17], [22].

The following remark is due to L. Harris and was communicated to the
authors by E. Effros: if P is an Hermitian projection on a J*-algebra M, then
P(M) is a J*-subalgebra of M. This follows easily from Example 5 in [20] (see
also [22]) which states that the Hermitian operators  on a J*-algebra M are
characterized by the formula

(0.4) é(ab*a) = (da)b*a—a(éb)*a+ab*(da), abe M.

This paper is organized as follows. In Section 1 we discuss Jordan triple
systems and their concrete analogs, the J*-algebras. The principal result
of Section 2 is a polar decomposition for ultraweakly continuous linear
functionals on a weakly closed J*-algebra (Theorem 1). By using the fact that
the bidual of a J*-algebra is a J*-algebra (Proposition 2.1), an infinite
dimensional version of Theorem 3 is proved (Theorem 2) in which it is assumed
that the partial isometry occuring in the enveloping polar decomposition of
some functional in the dual M’ of the J*-algebra M covers the range of P’ in an
appropriate sense. The proof of Theorem 3 is given in Section 3 and the proof
of the key lemma (Lemma 3.8) of Section 3 is given in section 4.

The following is some notation which will be used without further
explanation. £ (H) is £ (H,H), and is a Jordan *-algebra with the usual
involution and Jordan product acb=1(ab+ ba). S* is the positive part of set S,
B’ the dual of a normed space B, I(a) and r(a) denote the range projection and
support projection of an operator a. If &, n are Hilbert space vectors, w(&,n)
denotes the restriction of the linear functional x — (x¢,n) to an appropriate
subspace of Z(H) which will be clear from the context.

The authors wish to express thanks to E. Effros for his advice and
encouragement in this project.

1. Jordan triple systems — generalities.

Let V be a complex vector space and let Q: V— End (V) be a quadratic map.
Define maps {--*}: VxVxV— Vand D: VxV— End (V) by the formula

(1.1) {xyz} = D(x,y)z = Q(x+2)y—Q(x)y—-Q(2)y .

By a Jordan triple system (over the complex field) is meant a pair (V,Q) in
which the function {xyz} is complex linear and symmetric in x and z, complex
antilinear in y, and satisfies

(1.2) {xy{uvz}} — {uv{xyz}} = {{xyu}vz} —{u{yxv}z} .
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This identity can be expressed as
(1.3) [D(u,v), D(x,y)] = D({xyu},v)—D(u, {yxv})

which shows that the linear span of {D(x,y): x,y € V} is a Lie subalgebra of
gl(V). For each fixed y, V becomes a Jordan algebra under (x,z) — {xyz}. In
the other direction, any Jordan algebra becomes a Jordan triple system under
the Jordan triple product {xyz}=x(yz)—y(zx)+z(xy). Jordan triple systems
were extensively studied by Loos [24], [25], under the name Jordan pair. A
principal fact is that (in finite dimensions) there is a one-to-one correspondence
between circled bounded symmetric domains and Jordan pairs with involution
in which irreducible domains correspond to simple Jordan pairs. The
classification of simple finite dimensional Jordan triple systems over the
complex field (and hence of the corresponding domains [25]) given in [24] is
the following (for the real case see [28]). There are two exceptional ones of
dimensions 16 and 27. The non-exceptional ones fall into four classes:

LL,1=p=gq V=M, (C) (pby q matrices)
I, nz=S5, V= A4,C) (skew symmetric)
I, n =22, V=S,C (symmetric)

IV,, n =z 4, V=c¢C" (spin factors) .

In the first three cases one has Q(x)y = xj'x so that {xyz} = xplz+ szx. In case
IV,, one has

2{xyz} = {x, 7>z +Lz,7)x—{2, XDy,
where

Gy = ¥ s

An important example of an infinite dimensional Jordan triple system is a
J*-algebra which is defined as a norm closed linear subspace A of £ (H,K)
(=the bounded operators from Hilbert space H to Hilbert space K) which
together with each element a contains aa*a. By use of a polarization identity,
the map (a, b,c) — ab*c+cb*a can be shown to define a Jordan triple system
structure on A. J*-algebras were defined and studied by L. Harris [17], [18] in
connection with function theory on infinite dimensional bounded symmetric
homogeneous domains. Algebraic properties of J*-algebras are developed in
[19]. In particular an analogue of the spectral theorem is proved in which
spectral projections are replaced by partial isometries.

A bounded linear map L between two J*-algebras is called a J*-
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homomorphism, if L(aa*a)=L(a)L(a)*L(a) holds for all a. A J*-algebra M is
said to be embedded in a C*-algebra A, if there is a J*-isomorphism of M into
A (A considered as a J*-algebra).

We shall need three properties of J*-algebras, namely, (1) the weak closure
of a J*-algebra is a J*-algebra [19]; (2) a Kaplansky density theorem [19]; (3)
the characterization of the extreme points of the unit ball of a J*-algebra, [17].

Let V be a Jordan triple system. An element e € Vis called a tripotent if {eee}
=e. Each tripotent e gives rise to operators E(e), F(e), G(e) on V as follows:

(1.4) E(e) = Q(e)>, F(e) = idy—D(e,e)+E(e)
(1.5) G(e) = idy—E(e)—F(e) .

It follows from [25; page Al formula JP3, JP23, JP25] that E(e), G(e), F(e) are
idempotent and satisfy E(e)+ G(e)+ F(e)=idy. For x € V, x=E(e)x+ G(e)x
+ F(e)x is the Peirce decomposition of x with respect to e, where E(e)x =x,,
G(e)x=x,, F(e)x=x, (cf. Loos [24], McCrimmon [27]).

Formulas (1.4), (1.5) simplify considerably in the case of a J*-algebra M,
which is the only Jordan triple system considered in this paper. In this case, the
tripotents correspond to partial isometries in M. If v is a partial isometry in a
J*-algebra M, then setting | =vv* and r =v*v the projections E(v), F(v), G(v) on
M are given by

E(@)x = Ixr = v(vx*v)*v
F(v)x
G(v)x

(I=Dx(1—r) = x— (vv*x + xv*v) + v(vx*v)*v

Ix(1=r)+ (1 =Dxr = (vv*x+xv*v)— 2v(vx*v)*V ,

and yield the familiar matrix representation of an element x in M:

E(v)x Ix(1-r)
YTl d=bxr Fx

Throughout this paper, for convenience E(v), F (v), and G(v) will also denote
the projections induced on the dual or pre-dual of M, e.g, if g is a linear
functional on M, E(v)g denotes goE(v). The precise meaning of the symbols
E(v), etc. will be clear from the context.

The following Lemma is an easy consequence of the matrix representation.

LEMMA 1.1. Let v be a partial isometry in a J*-algebra M. Then

@ NE@®+FE)x| = max{|E@x], |F)x|} = lIxl, xeM;
(b) E@gl+IF@®gl = I(E)+F@)el = lgl, geM.
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2. Polar decomposition for functionals on a J*-algebra.

In this section we show that the second dual of a J*-algebra is itself a J*-
algebra, we establish a polar decomposition for an ultraweakly continuous
linear functional on a J*-algebra and we prove an infinite dimensional version
of Theorem 3.

Five topologies of interest on ¥ (H), namely the norm, strong, weak,
ultrastrong, and ultraweak can be defined in the same way for #(H, K). The
properties of these topologies (cf. Dixmier [9]) for #(H) are also valid for
Z(H,K). This follows easily, for example, from the fact that the map
o: £(H,K) > £(H®K) defined by

o(a) = (2 g) for a € ¥(H,K)

is a homeomorphism (in all five topologies) of £ (H, K) onto a closed subset of
Z(H®K). Since o is a linear isometry of #(H,K) into ¥ (H@®K) satisfying

o(ab*c) = o(a)a(b)*o(c),

every J*-algebra may be considered as a J*-subalgebra of some C*-algebra.
We shall use this fact in the proofs of many of our results.

ProPOSITION 2.1. Let M be a J*-algebra. Then there is a Y*-isomorphism r of
M onto a J*-algebra n(M) with the property that (identifying n(M) with its
canonical image in ©(M)') the identity map on n(M) extends to an isometry of
n(M)" onto the weak closure N of n(M). This isometry is a homeomorphism in
the weak*-topology of n(M)"’ and the weak topology of N.

Proor. Let A be any C*-algebra which contains M as a J*-algebra and let
n, be the universal representation of A. Then n=m,|M satisfies the
requirements of the proposition. The verification of this is a standard argument
which we include for completeness. For f e n(M), let f; € n,;(4) be a Hahn
Banach extension of f. Then f; and hence fis ultraweakly continuous so there is
an ultraweakly continuous extension f of f to N with || f| = 7. By Harris’
version of the Kaplansky density theorem [19], the map f — fis a linear
bijection of n(M) onto N, where N is the space of ultraweakly continuous
linear functionals on N. The adjoint of f — f is then a linear isometry of
N=x=(N,) onto n(M)"’ which carries 7(M) onto the canonical image of n(M)
in m(M)".

As pointed out by Harris [19], N is a J*-algebra. Therefore we may regard
M”(=n(M)") as a J*-algebra which contains M as a J*-subalgebra.
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Let us define a von Neumann J*-algebra to be an ultraweakly closed J*-
algebra M. Its pre-dual, consisting of the normal functionals on M, will be
denoted as usual by M. By Proposition 2.1, the bidual M” of a J*-algebra is a
von Neumann J*-algebra with pre-dual M.

The next lemma plays a key role in the existence of a polar decomposition
for a linear functional on a J*-algebra.

LEMMA 2.2. Let M be a von Neumann J*-algebra, let f € M, and let v be a
partial isometry in M which satisfies f (v)=| f|. Then foE(v)=f, that is, f(x)
=f(E(v)x) for x € M.

Proor. Let 4 be any C*-algebra which contains M as a J*-sub-algebra and

let fe A’ be a Hahn Banach extension of f to A. Then
171y 2 IJE@Ie 2 IFE@Y) = 1T = 1f@) = 111 = 1714

By Lemma 0.1, fo E(v) =1 and by restriction foE(v)=f. Note that since M = A4, |
oE(v) is defined on A.

The next lemma essentially gives the form of the polar decomposition.

LemMA 2.3. Let M be a von Neumann J*-algebra in ¥ (H,K) and let v be a
partial isometry in M. Then

(@) N,=v*Mr (with r=v*v) is an ultraweakly closed Jordan *-subalgebra of
L (H), with unit r.
(b) If fe M, and f(v)=||f1|, then ¢,, defined by

¢,(a) = f(va), aeN,
is a positive normal functional on N, which satisfies
f(x) = @,(v*xr), xeM.

Proor. (a) If a € N, say a=v*xr with x e M, then

a* = v*xrv*xr = v*(xv*x)re N, ,

a* = rx*v = v*(vx*v)re N, and

aor = Y(ar+ra) = L(v*xrr+rv*xr) = a.
Thus N, is a Jordan *-subalgebra of £ (H), with unit r. Note that if a e N,
then

va = v(v*xr) = v(vx*v)*ve M.
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Let (a,) be a netin N, with a, — b (ultraweakly). Then va, — vb (ultraweakly),
and since M is ultraweakly closed, vb € M. Also a,=ra,;r so b=rbr. Thus
b=rbr=v*(vb)r belongs to N, and N, is ultraweakly closed.

(b) Since va € M for a € N,, ¢,, defined by ¢,(a)=f(va) is a bounded linear
functional on N, with |l¢ | <| f]l. By Lemma 2.2, for x € M,

fx) = fE@)x) = f(o@*xr)) = @,(v*xr),

so that in particular || f|| = | ¢,|l. Let &, be a Hahn Banach extension of ¢, to
r&(H)r. Then

¢,() = @,(r) = f(r) = f(0) = IS = lo,ll = &l -

Therefore @, is a positive functional on the C*-algebra r# (H)r, and so ¢, is
positive on N,. Let (a,) be a net in N, with a, —» 0 (ultraweakly). We must
show that ¢,(a,) — 0. Now a,— O ultraweakly in N, implies va, — 0
ultraweakly in £ (H, K). Therefore ¢,(a,)=f(va,) — O.

The next lemma will be used in the uniqueness of the polar decomposition.

LeEMMA 2.4. Let N be an ultraweakly closed Jordan *-subalgebra of & (H), and
let @ be a positive ultraweakly continuous linear functional on N with support
projection e € N. If x € N satisfies @(x)=| | |lx], then exe=|x|e.

Proor. The restriction of ¢ to the Jordan algebra eNe is faithful and
assumes its norm on y=exe. We may assume that |y|| =1 and |¢| =1. Then
we must show y=e.

Case 1. If ye N*, then e—y € (eNe)*, p(e—y)=1—1=0, so e—y=0.

Cask 2. If y=y*, then y=y* —y~ implies

" 1=90) = e0")-e07) S 0() = 1.
By case 1, y* =e. Therefore y~ =0 and y=y* —y~ =e.

Cask 3. For arbitrary y, o(3(y +y*)=320(0)+30(0) =1, so 3(y +y*)=e by
case 2. Since e is an extreme point of the unit ball of eNe, e=y.

THEOREM 1. Let M be a von Neumann J*-algebra in £ (H,K) and let fe M .
Then there is a unique partial isometry v in M with these properties:

(i) N,=v*Mr is an ultraweakly closed Jordan *-subalgebra of ¥ (H), with unit
r=v*;



288 YAAKOV FRIEDMAN AND BERNARD RUSSO

(ii) @,, defined by ¢ (a)=f(va), a € N, is a faithful normal positive functional
on N;
(iii) f(x)=g,(*xr), x € M and f(@)=o,l=I1].

Proor. For simplicity assume | f|=1. Let v be an extreme point of the
ultraweakly compact and convex non-empty set {x € M: f(x)=1=|x]|}. Then
it follows that v is an extreme point of the unit ball of the J*-algebra M, so by
Harris [17], v is a partial isometry with f(v)=1=|f|. By Lemma 2.3, v
satisfies (i), (i), (iii), except possibly for faithfulness. Let e=supp ¢, € N,, so
e<r. Set u=ve so that

u*u = ev*ve = ere = e,v*u = e
and

fW) = ¢,(v*ur) = ¢,(er) = @,(e) = 1.

By Lemma 2.3 again u also satisfies (i), (ii), (iii) except possibly for faithfulness.
However, since N,=eN,ecN, and ¢,=¢,|N,, ¢, is faithful.

To prove uniqueness suppose we have two partial isometries v, and v, with
v¥v, =r, and v§v,=r,, say, in M, each satisfying conditions (i), (ii), (iii). For
aeN

v2>

@,,(a) = f(vaa) = (Pvl(vazarl) .
Thus

@, (0051 = @, (0Fvar,ry) = @,,(r)) = 1.

By Lemma 2.4, v}¥v,r; =r; =vfv,, so that v¥v,vf =vf or v,v¥v, =v,. If we now
interchange the roles of v, and v,, we get v,vfv,=v, The two conditions
v,v¥v, =v, and v,0fv, =0, force v, =v, as follows. Let £ € H. Then

1¥2%1 1 2¥1¥2 2 1 2

o ll = lvwivdll < vl = llvgdll .
Thus |[v¥v,&| = ||v,&], and by definition of r(v}),
0,8 = rHv, ¢ = lv)v € .

Hence I(v,)<1(v,) and by symmetry I(v,)=[(v,). Therefore r(v,)=1(v¥)=1(v§)
=r(v,). Finally

Uy = 0050, = 0,(0FV, 0, = H(v)vyr(v) = (v)oir(vy) = vy .

We shall say (¢,, N,) is the polar decomposition of f, if (i), (ii), (iii) hold, and
we shall write v=0v(f). In case M is a von Neumann algebra, and f=u.|f| is the
usual polar decomposition of f, then N, M, u=v*, and ¢, =the restriction of
|f] to N,. This follows easily from uniqueness.
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Thus the partial isometry occurring in the polar decomposition for
a functional on a von Neumann algebra (considered as a J*-algebra), is the
adjoint of the natural one. Since von Neumann algebras are self-adjoint, this
phenomenon cannot be observed in the category of von Neumann algebras.

Let M be a J*-algebra and let fe M'. The polar decomposition of f
considered as a normal functional on the von Neumann J*-algebra M” will be
called the enveloping polar decomposition of f.

We shall now use the polar decomposition to define the support projections
(left and right) of any subset of the pre-dual M, of a von Neumann J*-algebra
M. For each g € M, with polar decomposition (¢,, N,), write I(g)=vv*, r(g)

=v*p. Then I(g) and r(g) are projections in the von Neumann algebra A",
where A is any C*-algebra containing M as a J*-subalgebra. For any subset
ScM, let

I(5) = I(5,4) = sup{l(g) : geS}, r(S)=r(54) =sup{r(g): geS},

so that I(S) and r(S) are projections in A”. These projections define contractive
projections £ =£(S,A4) and I =7 (S, A) on A” by &z=I[(S)zr(S) and T z=
1=US)z(1—r(S), z € A".

REMARK 2.5. Let M be a J*-algebra and let A be any C*-algebra
containing M as a J*-subalgebra. For g € M, let § € A’ denote any Hahn
Banach extension of g. Then

@) g(2) = g(l(g)zr(g)) for ze A”;
(b) for Sc M = (M"), and heS

h(x) = h(I(S)xr(S)) for x e M" .
PrOOF. (a)

18lle 2 Il(g).8.r@lla = <I(g).£.r(g),v(g)>
= (g (@) = {&v(8) = lgln = gl -
By Lemma 0.1, g=1I(g).g.r(g).
(b) follows from (a) using z=1(S)xr(S).

The following Lemma with Q= P’ yields the isometries which are in the
statements of Theorems 2 and 3.

LEMMA 2.6. Let 1) be a contractive projection on the dual M’ of a J*-algebra
M. Let A be any C*-algebra containing M as a J*-subalgebra. Then the map

& = E(Q(M),A): A" — A"

Math. Scand. 52 — 19
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is isometric on Q'(M")= A", ie.,

Qaly = |EQaly, aeM'.

Proor. It suffices to prove |Q'all < €Qal 4. For any g e M, let h e A’
denote any Hahn Banach extension of h=Qg. Then {(Q'a,g)>=<{Q'a,Qg>
={Q'a,h) ={&Q'a,h> (by Remark 2.5.(b)). Thus

KQa,g)l < |16Qall 4kl ¢ = |16Qall 4#10gln < 16Qal 4lIgllur -
Since g is arbitrary, [|Q'aly < |EQ'all 4.

The following is a version of Theorem 3 which does not assume that the
range of P is finite dimensional. Its proof involves a reduction to the case of a
positive projection on a JC-algebra and uses ideas from Effros—Stegrmer [12].

THEOREM 2. Let M be a J*-algebra and let P: M — M be a contractive
projection. Suppose there is an element f= P'f such that E(f)P' = P', where E(f)
=E(v(f)). Then E(f)P"(M") is a J*-subalgebra of M" which is linearly
isometric to P"(M").

The assumption in Theorem 2 is satisfied in the following cases: Px=
1(x+xT), P(M)=symmetric matrices; Px =4(x —xT), P(M)=anti symmetric n
by n matrices, n even or n=00; P(M)=spin factors, cf. Effros-Stermer [12;
Lemma 2.3]; Pf(x)=%(f(x)—f(—x)), P(M)=continuous odd functions on R
[14, Example 2].

The Corollary of the following Lemma is needed for the proof of Theorem 2.

LemMMA 2.7. Let M be a von Neumann J*-algebra and let f € M, have polar
decomposition (¢, N,). If x € M satisfies f(x)=1=|x|=|f|l, then E(v)x=v,
G(v)x=0, and therefore x=v+ F (v)x.

ProoOF. 1 =f(x)=¢, (v*xr). By Lemma 2.4, v*xr=r and E(v)x=vv*xr=vr
=v. We show next that G(v)x=0. As noted above r=v*xr. Therefore

12 flo*x|?

lo*xr+v*x(1=r)|1? = |r+v*x(1 -7
[(r+o*x(1=n)(r+o*x(1 —r)*|
ffr+v*x(1—r)(v*x(1—r)*| .

Since v*x(1—r)(v*x(1—r)* belongs to (r&Z(H))*, v*x(1—r)=0. Thus
Ix(1—-r)=vv*x(1-r)=0. By a similar argument (1—[)xr=0.

]
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COROLLARY 2.8. Let Q be a contractive projection on the dual M’ of a J*-
algebra M and let (@, N,) be the enveloping polar decomposition of f. Then
E(w)Q'v=v and Qv=v+F(@v)Q'v.

PRrROOF. {Q'v, f>={v,Qf >={v, f>=|f| by Theorem 1. Now apply Lemma
2.7.

Proor oF THEOREM 2. Let (¢, N,) be the enveloping polar decomposition
of £ By Lemma 2.3 (a), N,=v*M"r is an ultraweakly closed Jordan
*.subalgebra of & (H). Define P: N, » N, by

Pa = v*E(f)P’'(va) = v*P"(va)r, (aeN,).

Then P is contractive, idempotent (since P”E(f)=P”), unital (Pr=r by
Corollary 2.8 with Q=P’) and ultraweakly continuous. In particular P is
positive.

We show that P is faithful. Let a € N} and suppose Pa=0. Since vPae M",
we have

0 = (vPa, f) = IP"(vay, ) = <va, ) = ¢,(a) .

Since ¢, is faithful, a=0 so P is faithful.
By [12, Corollary 1.5], P(N,) is a Jordan *-subalgebra of N,. We show next

that E(f)P"(M") is closed under the operation b — bb*b. If b € E(f)P’'(M"),
then v*bh € N, and

P(v*b) = v*E(f)P"(vv*b) = v*E(f)P'b = v*b .
Since P(N,) is in particular a J*-subalgebra of N,, we have
v*bb*b = (v*b)(v*b)*(v*b) € P(N,) .
Therefore v*bb*b=P(v*bb*b)=v*P" (bb*b)r. This implies
bb*b = vv*bb*b = vv*P"(bb*b)r = E(f)P"(bb*b) .

Thus E(f)P"(M")is a J*-subalgebra of M". Since E(f)P’' = P’ implies that E(f)
=&(P'(M'), A)| M for any C*-algebra A containing M as a J*-subalgebra, it
follows from Lemma 2.6 that E(f)P"’(M") is isometric to P”"(M").

The following gives some important commutativity relations.

LEMMA 29. Let M be a J*-algebra and let f,g € M'. Then

() f=E(@@f < I(f)sl(® and r(f)=r(g);
(i) f=F@f < I(NHlg)=0=r(@r(f) (f and g are then said to be
orthogonal);

(iii) f=G(g)f = UNIQ)=URI(f) and r(f)r(g)=r(gr(f).
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In particular if f and g satisfy one of the three (mutually exclusive) relations
f=E@f, f=F(@)f, =G (g)f, then I(H(g)=1()I(f) and r(f)r(g)=r(g)r(f), and

therefore {E(f),F(f),G(f),E(g),F(2),G(g)} is a commutative family of
operators.

Proor. (i) Assume f=E(g)f and let v=v(f). Then
1A= f) = f(gwr(g),
so by Lemma 2.7, I(g)vr(g)=v+ F(f)(I(g)vr(g)). Hence
v¥(glr(g) = vt = r(f), l@ur(gh* = v* = I(f)
and therefore I(f)<I(g) and r(f)=r(g). The converse is trivial.
(ii) By similar argument f=F(g)f implies [(f)<1—1I(g) and r(f)S1—r(g).
(iii) Assume f=G(g)f and let v=v(f), u=v(g). Then
Ifll = f@) = f(G(g),
so by Lemma 2.7, G(glv=v+ F(f)G(g)v. Hence
v*(G(gv) = v*v and (G(g)v* = vv*.
Thus
2.1 v*v = v*((1 ~uu*ou*u+uu*v(l —u*u))
and
v*ou*u = v¥vu*u—ov*uu*ou*u ,
so that v*uu*vu*u = 0. Therefore (2.1) becomes v*v=v*vu*u+v*uu*v and
rigr(f) = u*uv*v = uru(v*vu*u+v*uu*v)
r@r(fir(g)+ (v*uu*vu*u)* = r(gr(NIr@g),

which by taking adjoints implies r(g)r(f)=r(f)r(g). A similar proof using the
equation (G(g)v)v* =vv* shows that I(g)i(f)=1(l(g).

REMARK 2.10. In case M is a C*-algebra, for any projections I,r € M” we
have

(iv) f=1.f.r & I(f)S! and r(f)<r.

The proof is the same as in Lemma 2.9 (i).
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3. The main theorem.

Throughout this section M will be a J*-algebra and Q will denote a
contractive projection on the dual M’ of M. In the proof of Theorem 3 we shall
put Q=P’, where P is a contractive projection on M, so that P"=Q’ will be an
ultraweakly continuous contractive projection on the von Neumann J*-
algebra M”. It will be easily seen that the entire section can be phrased in terms
of ultraweakly continuous projections on von Neumann J*-algebras.

For a partial isometry v in M” the projections E(v), G(v), F(v) will be
considered as defined either on M’ or on M”, and if f € M’ has enveloping polar
decomposition (¢,, N,), we shall write E(f) for E(v), etc. If M is embedded in a
C*-algebra 4, then since M" < A" each of the projections E(v), G(v), F(v) with
ve M" also acts on A” and A’

The first lemma in this section is a simple reformulation of Lemma 0.1 in a
more general setting.

LeMMA 3.1. Let M be a J*-algebra, let g € M’ and let v be a partial isometry in
M". Then

(i) IE(gll=llgl implies E(v)g=g
(i) [F(v)gll=Igll implies F(v)g=g.

ProoF. (i) Let § € A’ be a Hahn Banach extension of g. Then

I1ghe = lghm = IE@gIm = IEQEI, = l8la -

By Lemma 0.1, E(v)g=g and by restriction E(v)g=g. The proof of (ii) is
similar.

The following remark is an easy consequence of the construction of the
polar decomposition.

REMARK 3.2. Let v be a partial isometry in the second dual M” of a J*-
algebra M. Then

(a) E@)(M") 3 x — v*x € N, is an isometric isomorphism onto with inverse
a— va.

(b) The map &: E(v)(M') —» N, defined by <(®(g),a)={gva) for
g € E(v)(M’), a € N,, is an isometric linear isomorphism onto a subspace B
of N,

(c) The dual B’ of B is isometrically isomorphic with E(v)(M") and therefore
by (a), Bx=N,.

The following is the first of several commutativity formulas.
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ProvrosiTiON 3.3. Let Q be a contractive projection on the dual M’ of a J*-
algebra M and let f=Qf. Then with E=E(f) we have

(1) QE is a contractive projection on M’;
(i) QE=EQE;
(iii) EQ'=EQ'E.

Proor. (i) and (iii) follow from (ii). To prove (ii) we shall first use Remark 3.2
(b) with v=0v(f). Let T: B — E(v)(M’) be the inverse of @ and let § =QT. Then
0(B)=QE(v)(M’), so to prove (ii) it suffices to show that §(B)< E(v)(M’). By
Remark 3.2 (c), B is the space of ultraweakly continuous linear functionals on
N,. By Theorem 1, ¢, € B is faithful. Since B is linearly spanned by B™, it
suffices, by Lemma 0.2, to prove that §(S) = E(v)(M’), where S is the face in B*
generated by ¢, ie.,

= {te B" : 1<const.@,} .

For t € S we can write ¢, =at+0, with 1,6 € B* and «>0. Then

f=00¢,=a01+Q0c and f= E@f = aEWw)Qt+E®)Qo.

Now

lo ll = altl+loll 2 a|Qt| + Q0]
2 o|E)Qt| + |E@Qa] = |f]l -
Thus ||Q1] = ||E(v)Qz(, and by Lemma 3.1, 0t =E(v)Qr.

(Al

LeEMMA 3.4. Let Q be a contractive projection on the dual M' of a J*-algebra
M, and let f=Qf. Then F(f)QG(f)=0.

Proor. Denote E(f), G(f), F(f) by E, G, F respectively. Let A be a C*-
algebra which contains M as a J*-subalgebra and identify 4 with its universal
representatlon Let h € M’ and set g=Gh. We shall show F Qg 0. To this end
let 1 € A’ be a Hahn Banach extension of h, and let

g =LA (1-NIM, g =(A=D.h.rlM

(where I=I(f), r=r(f)). Then g=g, +g, and we shall prove FQg, =0=FQg,.
We can find vectors &,n such that g,=w(&n), In=n, r£=0, and |n||=1.
Therefore

*n, &) = *In,&) = (rv*n,¢) =
For scalar t, let w,=g;+tg,, where g;=w(v*n,n)=Eg,.
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By Proposition 3.3, FQg;=FQEg,=FEQEg,=0. Thus to prove FQg, =0, it
suffices to prove FQw, =0 for all t. To this end we first estimate the norm of w,:

lonll < lo*n+edll = (lv*nl>+ 112 < A+ (et
We next show that |EQw,|| = 1. By Corollary 2.8, EQ'v=v. Thus
(083> = (g3, EQv) = <g3,v> = [In|* =1,
s0 {Quw,, v)=1+1t{Qg,,v), and therefore
[1+t€Qg1, )| < Q| < llooll < L+t .

Since ¢ is arbitrary, {Qg,,v) =0 so that (EQw,,v) ={Qw,v) =1, and | EQu,||
=1

Finally by Lemma 1.1,
1+ellFQg,ll = 1+ FQau,|| £ |EQw,|l +FQu,|
= [(E+FQol £ lol £ (1+[t?1E)1%)*
and this forces |FQg,| =0. This proves FQg, =0, and a similar proof shows
FQg,=0.

We now have the following additional commutativity formulas.

ProOPOSITION 3.5. Let Q be a contractive projection on the dual M’ of a J*-
algebra M and let f=Qf. Then, with F=F(f) and G=G(),

(i) FQ and GQ are contractive projections;
(i) FQ=FQF=QFQ;
(i) QF=FQ'F=Q'FQ'"

Proor. FQ=FQ(E+F+G)=FQE+ FQF + FQG=FQF by Proposition 3.3
and Lemma 3.4. Hence FQ is a contractive projection. To complete the proof
of (ii) let g € M'. Then

|FQgll = IFQFQg| < IQFQgll < |FQzll .

By Lemma 3.1, QFQg=FQFQg=FQg. Thus (ii) is proved and (iii) follows
immediately from (ii). Finally

GQ = GQ(E+F+G)Q = G(QE)Q+G(QFQ)+GQGQ
= GEQEQ+GFQ+GQGQ = GQGQ,
since GE=GF =0.



296 YAAKOV FRIEDMAN AND BERNARD RUSSO

DerFINITION 3.6. Let Q be a contractive projection on the dual M’ of a J*-
algebra M. By an atom of Q, we mean any extreme point of the unit sphere

Q(M'), of Q(M’).
The main property of atoms is contained in Proposition 3.7.

ProrosiTION 3.7. Let Q be a contractive projection on the dual M’ of a J*-
algebra M and let f be an atom of Q with enveloping polar decomposition (¢,, N ).
Then with E=E(f),

(i) QE is one dimensional;
(i) QE=(-, 00 f
(iii) EQ' =<, ‘Dv.

Proor. Let B be the space defined in Remark 3.2 (b) with v=v(f), let T:
B — E(M’) be the inverse of @, and let S be the face in B* generated by ¢,.
For t € S, we can write

@, = alt] '+ (1-a)lo] "o
with 1,06 € S and « € [0,1]. Then
f=0f = QTp, = aQT (| "'D+ (1 -x)QT (ol " 'o)
and since fis an atom, f=QT(||t|| ') that is,
(3.1 QT () = |tlf =<r)f, t€S.

By Theorem 1, ¢, is faithful on N,; by Lemma 0.2, S is norm dense in B*.
Therefore (3.1) holds for all T € B*. Since B is linearly spanned by B*, (3.1)
holds for each 7 € B. Finally if ge M’

QEg = QT®(Eg) = (P(Eg),r>f = {Eg,vr)f
= {gv)f.

The next lemma is the key step in moving from a local result to a global
result. Its proof is rather lengthy and is deferred to section 4.

LemMma 3.8. Let Q be a contractive projection on the dual M’ of a J*-algebra M
with Q(M’) finite dimensional, and let f be an atom of Q with enveloping polar
decomposition (¢, N,). Then for every g € Q(M’), F(g)F(f)Qv=F(f)Q'v.

Let P be a contractive projection on a J*-algebra M, and let S=P'(M’). For
any C*-algebra 4 which contains M as a J*-subalgebra recall that &



CONTRACTIVE PROJECTIONS ON OPERATOR TRIPLE SYSTEMS 297

=&(P' (M), A) and F =T (P'(M’), A) are contractive projections on A" defined
by

6z = 1(8)zr(S), Tz = (1-11S)z(1-r(S)), zeA",
where
I(S) = sup{l(g): ge PP(M")} e 4"
and
r(S) = sup{r(g): ge P(M)} e A".
COROLLARY 3.9. Let P be a contractive projection on a J*-algebra M and let f

be an atom of P’ with enveloping polar decomposition (¢, N,). For any C*-
algebra A containing M as a J*-algebra,

(3.2 F(f)P'v = P,
where 7 =9 (P'(M"), A; and
(3.3) EP'v = v,

where & =& (P'(M’), A).

ProoF. Set a=F(f)P"v, L=I1(P'(M’)), R=r(P'(M')). By Lemma 3.8 with Q
=P, we have F(g)a=a for every g € P'(M’), that is, (1—1(g))a(l —r(g))=a or
l(gla=0=ar(g) for all g e P'(M’). This entails La=0=aR, that is, Ta=a.
Hence

TPy = (TF(f)P'v = Ta = a

and (3.2) is proved. Corollary 2.8 (with Q=P’) and (3.2) imply (3.3).

THEOREM 3. Let M be a J*-algebra and let P: M — M be a linear projection
of norm one: P>=P, ||P| = 1. Suppose the range P(M) of P is finite dimensional.
Then P(M) is a C*-triple system with the triple product {abc} =4P(ab*c +cb*a),
a,b,c € P(M).

More precisely, with & =& (P'(M’), A) where A is any C*-algebra containing
M as a J*-algebra, §P(M) is a J*-subalgebra of A" and £Px — Px is a C*-
triple system isomorphism of & P(M) onto P(M).

Proor. We shall show that for any a € M we have
(3.4 (&Pa)(€Pa)*(6Pa) = &P(Pa(Pa)*Pa) .
Then (3.4) shows that &P(M) is a J*-subalgebra of A” and Lemma 2.6 says
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that the map T: § P(M) — P(M) defined by T6Pa= Pa is a linear isometry. If
we apply T to (3.4) we obtain

(3.5) T((&Pa)(EPa)*(£Pa)) = P(Pa(Pa)*Pa)

which shows (via polarization) that the triple product {abc} =3P(ab*c+cb*a)
for a,b,c € P(M) is the transport of the Jordan triple system structure on
&P(M) given by its J*-algebra structure. It remains to prove (3.4). To this end
we show first that if a € P(M), then there exist mutually orthogonal partial
isometries v;,0,,...,0, in M"” and scalars ay,. . .,a, € [0,00) such that

(3.6) a =Y oy .

To prove (3.6) first choose an atom f; of P’ such that {(f},a)=a|. The
functional f; can be obtained as an extreme point of the weak*-compact
convex set

{fe P(M): {fiad=llal and |fl=1}.
Then letting (¢, ,N,,) be the enveloping polar decomposition of f; we have
3.7 &P"(vy) = vy (by Corollary 3.9) and
(3.8) a = o0, +F(fj)a (by Lemma 2.7).
We now apply §P" to (3.8) obtaining
3.9 &a = a0 +EP'F(f)a .
Since P(M) is finite dimensional, we have P"(M")=P(M). Let a,
=P"F(fy)a € P(M). Then by Proposition 3.5 (iii), a, = F(f,)a,. This implies
lay) = 1-1(fy) and  r@)=1-r(fy).

If a, +0, then since a, € P(M), we can choose an atom f, of P’ with enveloping
polar decomposition (¢,,, N,,) such that a,=a,v,+ F(f;)a,. This implies that
I(f;)<(a,) and r(f;)=r(a,), so that v; and v, are orthogonal and

gaz = gP"az = a2U2+(gP”F(f2)a2 .
Now

P'F(fy)a, = P'F(f)P'F(f))a = P'"F(f)F(f)a = P"F(fi+f))a.
Therefore
Sa = a0, +EP'F(f))a = ayv,+8a, = o0, +o0,+EP'F(f,+f,)a .

Set ay=P"F(f,+f,)a, so that a; € PIM)NF(f,+f,)(M). If a3+0, we can
choose an atom f; of P’ with enveloping polar decomposition (¢,,, N,,) such
that
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3
a =Y oy, +EP'F(fi+f,+fya,
i=1
with v,, v,, v; mutually orthogonal. Continuing in this way, we arrive at (3.6)
(with vy,v,,. .., v, mutually orthogonal), by the finite dimensionality of P(M).

Note that (3.6) shows that &P"(M")=&P(M)c=M". We show next that
(3.11) a=4&8a+7a for ae P(M).
To see this set

b=PQCov) =X o0, +T P'SCow) = €a+T b (By Corollary 3.9) .

Thus &(b—a)=0, and since b—~a € P(M), Lemma 2.6 implies b—a=0. Thus
a=b=&a+ITb=8a+T a, so (3.11) is proved. We can now prove (3.4). If
a € P(M), then a=&a+ 7 a so that

(3.12) aa*a = a(a)*a+ T a(T a)*T a .

Note that since aa*ae M and &a(fa)*€a=Y olv;e M”, we have
Ta(Ta)*T ae M", so we can apply £P" to (3.12) to get

&P(aa*a) = Sa(a)*Ea+EP' (T a(T a)*T a) .

It remains only to prove P"(J a(J a)*7 a)=0. To see this let x=T a(T a)*T a.
For arbitrary fe M, let fe A’ be a Hahn Banach extension of P'f. Then by
Remark 2.5 (b),

<P”x’f> = <X,P'f> = <X,_7> = <é9x’f> =0,

since £x=&5 x=0.

4. Proof of the main lemma (Lemma 3.8).

This section is organized as follows. We first reduce the proof of Lemma 3.8
to three cases in Remark 4.4 (b). The first two cases are easy and are dealt with
in Remark 4.5 and Lemma 4.6 respectively. The remaining case is more
complicated and necessitates a further reduction to two cases (Lemma 4.7).
These final two cases are proved under the additional assumption that g is an
atom of G(f)Q in Lemma 4.9 and Lemma 4.10. This suffices for the present
paper since in Theorem 3 we assume that P(M) is finite dimensional.

The first lemma in this section is a significant generalization of Lemma 0.1
and it uses Lemma 0.1 in its proof. Lemma 4.1 will be used in the sequel only
when there is-a partial isometry v with v*v=r and vv*=I. However this
assumption is not needed for its proof.
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LEMMA 4.1. Let A be a C*-algebra, let | and r be projections in A” and suppose
@,y € A’ satisfy

Hy.r+l.o.(-r+1-D.o.r] = |lLo.(1-1)+(1=D.op.r| .
Then 1.y .r=0.

If we write EYy=I.¢.r amd Go=Il.¢.(1-r)+(1—-1).¢.r, then since
|EY + Go| = ||Gol, it suffices to prove that [|[EyY + Go|| < |Ge|l implies Ey =0.

Proor. Set g=1.¢.(1—r), h=(1—1).¢.r, so that Gp =g+ h and consider a
decomposition
EYy = kyy+kiy+ky+kiy

given by the block matrix support Diagram 1.

r 1—r
ki ki, 4
l
kai | ka2
h
1-1
Diagram 1.
Explicitly:
ki, = l(g).y.r(h), ki, = 1(g).y(r—r(h),
kyy = (I=1(g).¥.r(h), kyy = (I-1(g).¥.(r—r(h).

We shall prove in steps that k,, =0, k,, =0=k,,, and finally k,, =0. The first
two steps depend on the easily verified facts that the projections P, and P, on
A’ defined by

P f = l(g).f.r(®)+(I-1(g).f - (r—r(h)+I(h).f.r(h)
and

Pof = (IW+ (1-1@)-f-r() +1(g).f. (r(®) + (r—r(h))

are contractive. These projections are represented schematically by Diagram 2:
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r r(_g) _r _r(_g)

P,
Diagram 2.
StEP 1.
lgll+ 1Al = lg+hll = |Gl = IEY+Goll
2 |P(EY+Go)ll = lg+h+k, |l = lgh+Ihl+ ksl .
Therefore k,,=0.

STEP 2.

lgll+1Bl = lg+hl = IGel = |E¥+Gol
IP2(EY +Go)ll = llkyy+kiz+g+hll = llg+kizll +[h+ksl
2 |[(g+ky)-r@N+11I(h). (h+ka)Il = lgll+ Al .

[\

Thus by Lemma 0.1,
h+ky,, = I(h).(h+ky) = h
and
gtk = (g+kyy).r(g) = g,
SO ky; =0=ky,.
Step 3. We now prove that k,,=0. Let (¢, N, and (¢,,N,) be the

enveloping polar decompositions of g and h respectively and set v=u+w. Since
g and h are orthogonal,

{Gop,v) = {g+hv) = {g+hu+w)
= (guy+<{hw) = |gll+ k| = llg+hl = |Go| .

Let the isometry @: E(v)(4") — (N,), be as defined in Remark 3.2 (b), and let
ry=v*v. Then

Ckypyv) = Lk lglor(h)) = <kyy @) u+wr(h)y =0,
since ur(h)=I(g)w=0. Also



302 YAAKOV FRIEDMAN AND BERNARD RUSSO

(D(Gp+kyy)ri) = {Gop+kyp,ory = (Go,v) = |Gy
= ||Go+k;yll (by assumption) .

Thus ¢(Gp+k,,) € (N,); and ®Ge € (N,)}, since ry is the unit of N,.
Therefore ®(k,,) is a self-adjoint functional on N,
Choose a € A” such that |la| =1 and <{k,,,a)=|lk,||. We may assume that
a=I(g)ar(h). Then b=v*ae N, and
(D(kyy,b) = Cky,vb) = <kyy,a) = |lkyyll -

But

(D(ky1), by = (DP(kyy),b*) = {kyy,va*v)
= (l(g).kyy.r(h),vor(ha*l(g)vy = 0,
since l(g)vr(h) = uu*(u+w)w*w=0. Therefore [|k,,||=0.

COROLLARY 4.2. Let M be a J*-algebra, and let f,g,h € M'. Then

O IE(N)g+GUNhI =GRl implies E(f)g=0;
(i) 1F(N)g+G(NhI=IG(NHhIl  implies F(f)=0.

Proor. It suffices to prove (i). Let 4 be any C*-algebra which contains M as
a J*-subalgebra. Let E, F, G denote E(f), F(f), G(f), respectively. The
functional Eg+ Gh € M’ vanishes on F(M"), and therefore there is a Hahn
Banach extension ¢ € A’ of Eg+ Gh which vanishes on F(A"). Note that E¢
+Go=(1-F)p=¢. Thus

lE¢+Gol = llol = |Eg+Gh| = |Ghl| < |Gl

the last inequality being true, since Go is an extension of Gh. By Lemma 4.1,
Ep=0. Thus for x e M,

0 = Ep(x) = ¢(Ex) = (Eg+Gh)(Ex) = Eg(x).
Throughout the rest of this section Q denotes a contractive projection on the
dual M’ of a J*-algebra M and (¢, N,) is the enveloping polar decomposition

of an fe Q(M).
We can now state yet another collection of commutativity formulas.

ProrosiTioN 4.3. (i) G(NQ=0G(f)Q; (i) E(/)Q@=QE(f)Q; in particular

E(f)Q is a contractive projection.

ProoF. Let E=E(f), G=G(f), F=F(f).
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(i) QGQ=EQGQ+FQGQ+GQGQ=EQGQ+GQ by Lemma 34 and
Proposition 3.5. Thus for arbitrary g e M’,
IE(QGQg)+G(Qg)l = 10GQgl = 1G(Qg)ll
so by Corollary 4.2, EQGQg=0. This proves (i).

(i) EQ=(1-G-F)Q=0-6G0-FQ=0-0GQ-QFQ=0(1-G-F)Q
=QEQ.

REMARK 4.4. (a) Let f, g € Q(M’) and suppose that g=g, +g,+ ... +g, with
g; € Q(M’) and that Lemma 3.8 is true for the pairs (f,g;), i=1,2,...,n, that is,
F(g)F(f)Qv=F(f)Q'v. Then Lemma 3.8 is true for the pair (f,g). Indeed, set
a=F(f)Q'v. For any he M,

F(ha = a < l(h)a =0 = ar(h).
Set T=sup {I(g,)}, F=sup {r(g;)}. Then T=I(g), =r(g), and therefore
F(g)a = a, Vi = l(g)a = 0 = ar(g) Vi
>la=0=af = l(gla=0=ar(g) = F(ga=a.

(b) Let f,ge Q(M') and write g=E(f)g+F(f)g+G(f)g where by
Proposition 4.3 and Proposition 3.5 (ii), each summand belongs to Q(M’).
Then by part (a) it suffices to prove Lemma 3.8 in the three cases
ge E(f)Q(M’), ge F(N)Q(M'), and g e G(f)Q(M’). This will be done in
Remark 4.5, Lemma 4.6, and Remark 4.11 (b), respectively.

REMARK 4.5. Let g € E(f)Q(M'). Then F(f)Qv=F(g)F(f)Q'v, i.e. Lemma
3.8 is true in this case.
Indeed since g € E(f)(M'), F(g)F(f)=F(f), by Lemma 2.9 (i).

LEMMA 4.6. Let g € F(f)Q(M’). Then F(f)Q'v=F(g)F(f)Q'v, that is Lemma
3.8 is true in this- case.

Proor. Set a=F(f)Q'v. Then

F(gla = a—l(gla—ar(g)+I(g)ar(g) .

We shall show that I(g)Ja=0=ar(g). To this end let (¢,, N,) be the enveloping
polar decomposition of g. Then

Quty) = QutQv = u+F(@Qut(v+a)
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(by Corollary 2.8) and
Q(utvr(g) = u+0+0+ar(g).
Therefore
lutar(@l = Q' u+vr@l £ lute| =1,

the last inequality being true, since g=F(f)g. Now A"r(g) is a J*-algebra,

where A is any C*-algebra containing M as a J*-subalgebra, and u is a partial

isometry in A"r(g) with (1 —uu*)A"r(g)(1 —u*u)=0. Therefore by Harris [17],

u is an extreme point of the unit ball of A”r(g). Hence ar(g)=0 and similarly
l(@Q utv) = utlgla, [utl(glal =1

and [(g)a=0.

The remainder of this section is devoted to the proof of Lemma 3.8 in the
(remaining) case that g € G(f)Q(M’). The first step is a subdivision of this case
into two other cases.

LemMmA 4.7. Suppose f is an atom of Q and g € G(f)Q(M"), g=%0. Then either
() f=E(g)f (and G(f)F(g)=0) or (ii) f=G(g)f.

Proor. By Lemma 2.9 (iii) the projections F(g), E(f), E(g), G(g) commute in
pairs. Therefore if we write f=E(g) f+ F(g) f+ G(g) f, then each term in the sum
is a multiple of f. Indeed using Proposition 3.5 (ii) and Proposition 3.7 (ii) we

MY S = FeQf = QF@QS = OF(®)f
= QFQQE()f = QE(/)F(9)f = <F(®) /.0 f
and similarly E(g)f=<(E(g)f,v)>f and G(g)f=<{G(g)f,v) f Thus
0 = E(g)G(g)S = KE(@S,v<G@)f,v>f,

so that either E(g)f=0 or G(g)f=0. It remains to prove that F(g)f=0. Since
F(g)fis a multiple of £ if F(g)f+0, we must have F(g)f=f. Thus by Lemma 2.9
(it),
r(f)r@g) = 0 = 1(f)i(g).
Therefore
g =F(f)g = F(/)G(f)g =0,

a contradiction.

LemMa 4.8 Suppose f is an atom of Q, g is an atom of G(f)Q and that
f=G(g)f. Then g is an atom of Q.
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PrOOF. Let g=3%(h+k), with h,k € Q(M’),. We are to prove that g="h. Now
g = E(g)g = 3(E(@h+E(gk),
so that |E(g)h||=1=]h|| and by Lemma 3.1, h=E(g)h. On the other hand
‘ g = G()Qg = 3(G(f)Qh+G(f)Qk),
and since g is an atom of G(f)Q, we have g=G(f)Qh=G(f)h. Since
h = E(f)h+F()h+G())h
= E(/)h+F(fHh+g,

it remains to prove that E(f)h=0=F(f)h. Now by Proposition 4.3 (ii) and
Proposition 3.7,

E(f)h = E(/)Qh = QE(f)Qh = A = AG(g)f
for some scalar A. Since h=E(g)h we have by Lemma 2.9 (iii),
AG(g)f = E(f)h = E(f)E(g)h = E()E(/)h .

By multiplying on the left by G(g), we have AG(g)f=0=E(f)h.
Finally

IF(Nh+G(NHR = Ilh—E(NHAI = I =1 = lgl = IG(/)hl .
So by Corollary 4.2, F(f)h=0.
LemMMA 4.9 Suppose f is an atom of Q, g is an atom of G(f)Q and that
f=G(g)f. Then
F(f)Q'v = F(@F(/)Qv.

Proor. Let a=F(f)Q'v and write a=a,, +a,, +a,, +a,,, where a,, =E(g)a,
a,,+a,;,=G(g)a, and a,,=F(g)a according to Diagram 3. Here

ag; = 1@ -1(f)a(l—r(@-r(f)

r(f)
r(f)—=r(g) r@-r(f)

" f)‘l(f)l(g){ _ e
g 11j9; )
1-1(f)-I(g) 2yfa
Diagram 3.

Math. Scand. 52 — 20



306 YAAKOV FRIEDMAN AND BERNARD RUSSO

and

ay; = (1=1(f)=1@)a(l —r(f)r(g)
lie in A", where A4 is any C*-algebra containing M as a J*-subalgebra. Note

that I(g)I(f)=1(/)I(g), r(@r(f)=r(f)r(g) by Lemma 2.9.
We shall show that a,, =0 and a,, =a,,=0. This will imply a=a,,=F(g)a
completing the proof of the lemma.

In the first place, with u=v(g) we have
ay, = E(gla = E(g)(v+a) = E@)Qv = {(v,g)u

= (E(g)v,gyu = 0

(by Proposition 3.7 (iii), since g is an atom of Q by Lemma 4.8).
We next show that a,, =0. To this end consider the contractive projection
P, on A” defined by

Py(b) = (I, +1)b(ry+15),

where I, =1()l(g), L=1-1(f)—1(g), ry=r(f)—r(g), ry=r(g)—r(f). The
projection P, is represented schematically by the following (cf. Diagram 3):

ALY

P,
Diagram 4.

Let v, =l,vr, and u, =/l,ur,. Then
leoy+uglI? = || (tvy +u) oy +u)*l = NePL+1 ] = T+

Similarly letting v,=(1—-1, —L)w(1—r;—r;) and u,=(1—1, = Lu(l —r, —r,),
we get

lto, +uy |2 = 1412,
and therefore

lto+ull = max ([ltoy +u, ||, 1o, +u,ll) = (L+e?)?* .
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For convenience we shall write

bll blZ]
P.(b) = s
1(b) [bu by

where b,, =1,br,, b, =1,br,), etc.
Let z,=P,Q'(tv+u), where t is a scalar and v=v(f). Since

P, Qv = Py(v+a) = v,+a,,,
and
P,.Qu = P,(u+F(@Qu) = u,+c,,
where ¢; =P, F(g)Q'u, z, has the form

tv u
Cy ta,,

lzl = IIP,Q (tv+u)l
< ltwtully = A+1HE.

We have

Now

« _ [ Q1D et +tugal
zz¥ = " v

and ||z,z*||> = ||z,|* £ 1 +|t|>. Therefore tv,c¥ +tu,a¥, =0 for all scalars t. Using
the values t=1 and t=i yields u,a¥, =0 and thus a,, =a,,ufu, =0. A similar
proof yields a,,=0.

Lemma 4.10. Suppose f is an atom of Q, g is an atom of G(f)Q, and f=E(g)f.
Then F(f)Qv=F()F(f)Q'v.

Proor. Suppose there is a functional h € F(f)Q(M’) such that I(f+h)=I(g)
and r(f+h)=r(g). Then we would have F(g)=F(f+hy=F(hF(f), and by
Lemma 4.6, :

F(@)F(f)Qv = F(WF(/)Qv = F(f)Qv.

To prove the lemma it suffices to construct such a functional h.
The assumptions g=G(f)g and f= E(g)f enable us to employ the following
support Diagram 5:
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r(f) r@g-—r(f)
N f g

l@-1f)|| & h

Diagram 5.

We shall construct functionals w;; € M’, of norm 1, with supports as
indicated in Diagram 6 (the blocks as in Diagram 5):

@11 | Wy,
Wy | W33
Diagram 6.

such that Qw,, =f, Qw,,=Qw,, =g and Qw,,=Af+h for some scalar 2. We
shall prove that the h so defined has the required properties.

We define w,, =w(¢,n), where £=(r(g) —r())¢, IS =1, n=u¢, and u=0v(g).
Note that since n=I1(f)n, w,, € G(f)(M')NE(g)(M’') and by Proposition 3.7,

G(NQw, = G(fIQE(Q)w;, = wypudg = (ué,n)g = Inli*g = g .
Also F(f)Qw,,=F(f)QG(f)w,,=0 by Lemma 3.4. Therefore
Qw,; = E(f)Quw;,+G(f)Qw,,+F(f)Qw,; = E(f)Quw,,+g,
SO

IE(f)Qwy,+G(N)gll = IE(f)Quiz+gll = Qi = 1=lgl = 1G(f)ell -

By Corollary 4.2, E(f)Qw;,=0 and Quw,,=g.
Next we define w,, = (&, n), where &=v*ué =r(f)E, so that w,, € E(f)(M)).
Then

Quyy = QE(fwy; = {0y, 0> f = W& n)f = (w*uin)f = ((Hnn)f = f.

Next we define w,; =w(f7), where #F=uv*n=I(g)j, so that
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w,; € E(@(M)NG(f)(M'). By the same argument that established Qw,,=g,
we find Qw,,=g¢.
Finally we define w,,=w(¢&,7), so that w,, € E(g)(M)NF(f)(M’). Then

Quw,, = E(f)Qu,,+G(f)Qw,, +F(f)Qw,, .
For the middle term,
G(f)Qw,;, = G(fIQE(g)w,, = {wyyudg = ué,Hg = (n,7)g = 0.

For the first term E(f)Qw,,=QE(f)Qw,, (by Proposition 4.3 (ii)
={Qw,,, vy f=Af say. If we now set h=F(f)Qw,,, then Quw,,=Af+h.

For |a|=1, set w,=0w,; +®,,+m,; +&w,, Because (£ &) and (y,7) are
orthonormal pairs, ||w,| is not greater than the trace norm of the matrix

[T 1_], which is 2. Thus we have
o

4.1 Quw, = 2g+af+a(Af+h)

and [|Qu,| £ [lw,l =2.
We show next that h+0. Suppose h=0. Set a=1 in (4.1) to obtain

12g+(1+Afl = 2 = li2g] .

Since g € G(f)(M') and f e E(f)(M’), Corollary 4.2 implies 1 + A=0. Now set
a=iin (4.1) to obtain |2g+i(1—A)f| £2. Again by Corollary 4.2, 1 —A1=0,
contradiction.

We now have our h e F(f)Q(M') and h+0. Note that also h € E(g)(M’),
since

h = Quy—4f = QE(glw,y, — A = E(R)(QE(R)wy,—4f) .

It remains to show that I(h)=I(g)—I(f) and r(h)=r(g)—r(f). This is a
consequence of the fact that g is an atom of G(f)Q as follows. Consider G (h)g.
Clearly

G(hg € E(g)(M) N G(/) (M) N Q(M"),
so G(h)g=G(f)QE(g)G(h)g=pg for some scalar . If =0, then
= E(h)g+G(hg+F(h)g = F(hg,
since G(h)g=0 and E(h)g=0. This equivalent to h=F(g)h. Thus
h = F(gh = F(gE(gh =0,

contradiction. Therefore f+0, and therefore G(h)g=g.

Now I(f)I(h)=0=r(f)r(h) and g=G(f)G(h)g. This implies E(f+h)g g, S0
by Lemma 2.9
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(g
r(g)

A

I(f+h)
r(f+h)

I(NH+1h),
r(f)+r(h).

IIA

If

REMARK 4.11.

(a) By Lemmas 4.7, 4.9, 4.10, the proof of Lemma 3.8 is complete in case g is
an atom of G(f)Q.

(b) By (a) and Remark 4.4 (a), the proof of Lemma 3.8 in the case
g € G()Q is complete, since Q(M’) is assumed finite dimensional.

(c) Lemma 3.8 is valid only for complex J*-algebras. For a counterexample
in the real case, see [3, Example 7.10, p. 163].

ADDED IN PROOF MARCH 21, 1983. By using the tools developed in this
paper, the authors have been able to drop the finite dimensionality assumption
in Theorem 3. They have also been able to show that for a bicontractive
projection P on a J*-algebra M, 2P —1d,, is an isometry.
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