PRELIMINARY ALGEBRAS ARISING FROM LOCAL HOMEOMORPHISMS

ALEXANDER KUMJIAN

1. Introduction.

A preliminary algebra is defined to be a C*-algebra isomorphic to a hereditary subalgebra of $\mathcal{K} \otimes A$ for some abelian C*-algebra A (where \mathcal{K} denotes the algebra of compact operators on a separable Hilbert space).

Given a local homeomorphism $\psi \colon X \in T$, it is possible to endow $C_c(X)$ with a $C_c(T)$ -valued inner-product such that its completion (with respect to a suitable norm), denoted $l^2(\psi)$, may be viewed as the continuous sections vanishing at infinity of a Hilbert bundle over T. Then $l^2(\psi)$ is an imprimitivity bimodule [7] and the imprimitivity algebra, $C^*(\psi)$, is to be the object of our study. Thus $C^*(\psi)$ is strong Morita equivalent to $C_0(T)$ and hence preliminary (since $C^*(\psi)$ and $C_0(T)$ are stably isomorphic [1]). This algebra is shown to be the enveloping C^* -algebra of the convolution algebra of the equivalence relation on X induced by ψ , $R(\psi)$. Consequently there is a diagonal projection, $P \colon C^*(\psi) \to C_0(X)$, where $C_0(X)$ is the natural diagonal masa (cf. [3], [4], [6]). There is a countable family of abelian elements in $C_c(X)$, so that finite sums constitute an approximate identity for $C^*(\psi)$.

Finally, the collection of generating *-derivations annihilating the diagonal (i.e. $\{\delta\colon \delta\circ P=0\}$) is identified with $Z^1(R(\psi),R)$, the abelian group of continuous real-valued 1-cocycles on $R(\psi)$ ([3], [6]). Further, if ψ admits a section, then each 1-parameter automorphism group fixing the diagonal pointwise is implemented by a strictly continuous group of unitaries in the multiplier algebra of the diagonal (or more simply $H^1(R(\psi),R)=0$).

All topological spaces are implicitly locally compact, Hausdorff, and second countable (consequently paracompact). This work was partially supported by a grant from Danmark Amerika Fondet. The author wishes to thank George Elliott for his help in disambiguating certain delicate passages.

2. The algebra $C^*(\psi)$.

Let $\psi \colon X \to T$ be a continuous open surjection and let $\mathscr{U}(\psi)$ denote the collection of open subsets of X to which restrictions of ψ are injective. Then ψ is said to be a local homeomorphism if $\mathscr{U}(\psi)$ covers.

Given a local homeomorphism $\psi: X \to T$, we define a linear map $\psi_*: C_c(X) \to C_c(T)$ by:

$$\psi_*(f)(t) = \sum_{\psi^{-1}(t)} f(x) \quad t \in T$$

REMARKS. i) Regarding $C_c(X)$ as a right $C_c(T)$ -module according to

$$(fg)(x) = f(x)g(\psi(x))$$
 $f \in C_c(X), g \in C_c(T)$,

it is easily seen that ψ_* respects this action:

$$\psi_*(fg) = \psi_*(f)g.$$

ii) Borrowing notation from [8] we write f < U, for $f \in C_c(X)$ and U open, when supp $f \subseteq U$. If $f < U \in \mathcal{U}(\psi)$, then

$$f(x) = \psi_{\star}(f)(\psi(x))$$
 (for $x \in U$)

whence ψ_* is injective on $C_c(U)$.

2.1. Proposition. ψ_{\star} is surjective.

PROOF. Claim: Given a compact set $K \subseteq T$, there is $f \in C_c(X)$ so that $\psi_*(f)(t) = 1$ for all $t \in K$. Since K is compact there are a finite number of open sets $U_1, \ldots, U_n \subseteq X$ so that

$$K\subseteq \bigcup_{i=1}^n \psi(U_i).$$

Choose $f_i < U_i$ so that $\psi_*(f_i)$ is a partition of unity for K. Set $f = \sum f_i$ and the claim follows by linearity.

Let $g \in C_c(T)$, put K = supp g and let f be as in the claim. Then $fg \in C_c(X)$ and

$$\psi_*(fg) = \psi_*(f)g = g.$$

DEFINITION. Let $(\cdot|\cdot)$ be the sesquilinear $C_c(T)$ -valued form defined on $C_c(X)$ by the formula:

$$(f | g) = \psi_{\star}(\overline{f}g)$$
 for $f, g \in C_c(X)$.

- 2.2. Proposition. The inner-product $(\cdot|\cdot)$ has the following properties:
- i) $(f \mid g) = \overline{(g \mid f)} \quad \forall f, g \in C_c(X).$
- ii) $(f|f) \ge 0$ and (f|f) = 0 iff f = 0.
- iii) $(f \mid gh) = (f \mid g)h = (f\overline{h} \mid g) \quad \forall f, g \in C_c(X), h \in C_c(T).$
- iv) $\forall h \in C_c(T), \exists f, g \in C_c(X) \text{ so that } h = (f \mid g).$

PROOF. These routine verifications are left to the interested reader.

DEFINITION. For $f \in C_c(X)$ put $|f|_{\psi}^2 = |(f|f)|_{\infty}$. Let $l^2(\psi)$ denote the completion of $C_c(X)$ with this norm.

REMARKS. i) Since $|f|_{\infty} \le |f|_{\psi}$, $l^2(\psi)$ may be viewed as a dense subspace of $C_0(X)$.

ii) The Schwarz inequality obtains in this setting, mutatis mutandis

$$(f|g)(g|f) \leq (f|f)(g|g).$$

NOTATION. Let End $(l^2(\psi))$ denote the collection of bounded linear operators on $l^2(\psi)$ commuting with the right action of $C_0(T)$.

For $a \in \text{End}(l^2(\psi))$, let a^* denote the unique operator for which

$$(a * f | g) = (f | ag) \quad \forall f, g \in l^2(\psi) .$$

Let ||a|| denote the usual operator norm for $a \in \text{End } (l^2(\psi))$.

2.3. Deus ex Machina. The right $C_0(T)$ -module $l^2(\psi)$ together with its $C_0(T)$ -valued inner-product fits Rieffel's definition of an imprimitivity bimodule [7]. Let $C^*(\psi)$ denote the imprimitivity algebra viz. the closed *-subalgebra of End $(l^2(\psi))$ generated by operators of the form $\langle f, g \rangle$ for $f, g \in l^2(\psi)$, where

$$\langle f, g \rangle h = f(g | h)$$
 for each $h \in l^2(\psi)$.

Note that $\langle f, g \rangle^* = \langle g, f \rangle$ and

$$\|\langle f, g \rangle\| \leq \|f\|_{\psi} \|g\|_{\psi}$$

(since
$$\|\langle f, g \rangle h\|_{\psi} = \|f(g \mid h)\|_{\psi} \le \|f\|_{\psi} \|(g \mid h)\|_{\infty} \le \|f\|_{\psi} \|g\|_{\psi} \|h\|_{\psi}$$
).

Finite linear combinations of operators of the form $\langle f, g \rangle$ for $f, g \in C_c(X)$ constitute a dense *-subalgebra of $C^*(\psi)$.

REMARK. The linking algebra characterization of strong Morita Equivalence [1] provides a useful point of view in this situation. Let $Y = X \vee T$ (disjoint union) and put

$$\varphi: Y \to T \text{ by } \varphi(y) = \begin{cases} \psi(x) & \text{if } y = x \in X \\ t & \text{if } y = t \in T. \end{cases}$$

Then $C_0(T)$ and $C^*(\psi)$ are embedded in $C^*(\varphi)$ as complementary full corners while:

$$l^{2}(\psi) \cong \{a \in C^{*}(\varphi) : a^{*}a \in C_{0}(T) \text{ and } aa^{*} \in C^{*}(\psi)\}$$
.

Suppose T is compact; then there is $f \in l^2(\psi)$ so that $(f \mid f) = 1$. A routine calculation shows that $p = \langle f \mid f \rangle$ is a projection in $C^*(\psi)$. In fact every projection equivalent to p must be of this form. Moreover the corner determined by this projection is isomorphic to C(T).

REMARK. For $f, g, h \in C_c(X)$ with $f, g \prec U \in \mathcal{U}(\psi)$, we have:

$$(\langle f, g \rangle h)(x) = f(x)\bar{g}(x)h(x)$$
.

Evidently all such operators commute and the closure of the subalgebra generated is isomorphic to $C_0(X)$. This subalgebra is called the diagonal and henceforth is tacitly identified with $C_0(X)$. Note that if $f \prec U \in \mathcal{U}(\psi)$ then $f \in C^*(\psi)$ is an abelian element (cf. [5]).

Choose a partition of unity subordinate to a locally finite refinement of $\mathscr{U}(\psi)$, $\{(f_i, U_i) \mid f_i \prec U_i\}$. Put $g_n = \sum_{i=1}^n f_i$ and note that if $K \subseteq X$ is compact, there is $m \ge 1$ such that:

$$g_n(x) = 1$$
 for all $x \in K$, $n \ge m$.

2.4. Proposition. The sequence $\{g_n\}$ constitutes an approximate identity for $C^*(\psi)$.

PROOF. It suffices to check that $\lim_{n\to\infty} g_n \langle f, h \rangle = \langle f, h \rangle$ for $f, h \in C_c(X)$. Choose $m \ge 1$ so that $g_n(x) = 1$ for all $x \in \text{supp}(f)$ and $n \ge m$. Then

$$g_n\langle f,h\rangle = \langle g_nf,h\rangle = \langle f,h\rangle$$
 for all $n \ge m$.

3. Some examples.

- i) If X is a countable set with the discrete topology and $T = \{t_0\}$ then we define $\psi \colon X \to T$ by $\psi(x) = t_0$. Then $l^2(\psi)$ is a Hilbert space of dimension equal the cardinality of X. Then $C^*(\psi) \cong \mathcal{K}(l^2(\psi))$.
- ii) Suppose T is totally disconnected and $T = U_1 \supseteq U_2 \supseteq U_3 \supseteq \ldots$ is a decreasing sequence of open subsets. Put

$$X = \{(t, n) \in T \times \mathbb{N} : t \in U_n\}$$

and define $\psi: X \to T$ by $\psi(t, n) = t$. Then ψ is evidently a local homeomorphism. $C^*(\psi)$ is then an AF algebra with dimension group

$$K_0(C^*(\psi)) \cong \{f: T \to Z: f \text{ continuous, } \lim_{t \to \infty} f(t) = 0\}$$

and dimension range = $\{f: t \in U_{f(t)}\}$. Every continuous trace AF algebra is of this form (this example arose in a discussion with G. Elliott).

iii) Let $X \cong T \cong T$, the group of complex numbers of unit modulus. Let ψ be the *n*-fold covering i.e. $\psi(z) = z^n$. Consider $g_0, g_1, \ldots, g_{n-1} \in l^2(\psi)$ defined by $g_j(z) = z^j / \sqrt{n}$. Then $(g_i | g_i) = 1$, while $(g_i | g_j) = 0$ if $i \neq j$. It follows that $C^*(\psi) \cong M_n(C(T))$ because

$$\sum_{j=0}^{n-1} \langle g_j | g_j \rangle = 1.$$

iv) Suppose $\psi \colon X \to T$ is a general covering map and let G denote the associated group of covering transformations. It is not difficult to see that $C^*(\psi)$ is precisely the associated transformation group C^* -algebra, $C_0(X) \times G$. (Provided that X is connected).

4. The equivalence relation $R(\psi)$.

Much of the structure of $C^*(\psi)$ becomes transparent when a dense *-subalgebra is identified with $C_c(R(\psi))$, where $R(\psi)$ is the topological equivalence relation on X induced by ψ .

DEFINITION. Put $R(\psi) = \{(x, y) \in X \times X : \psi(x) = \psi(y)\}$ and endow $R(\psi)$ with the relative topology from $X \times X$.

REMARKS. i) Let $r: R(\psi) \to X$ and $s: R(\psi) \to X$ be the projections onto the first and second coordinates respectively (both are local homeomorphisms). Evidently, $R(\psi)$ is a principal discrete groupoid in the terminology of [6].

ii) Put $\Omega(\psi) = \mathcal{U}(s) \cap \mathcal{U}(r)$, i.e. $\Omega(\psi) = \{ \omega \subseteq R(\psi) : r|_{\omega}, s|_{\omega} \text{ inj.} \}$. Note that $\Omega(\psi)$ covers $R(\psi)$.

We view $f \in C_c(R(\psi))$ as an element of End $(l^2(\psi))$ according to the formula

$$(fg)(x) = \sum_{y} f(x, y)g(y)$$
 where $g \in l^{2}(\psi)$.

The reader is left to verify that this formula respects the usual groupoid convolution and involution. Henceforth, the distinction between X and the diagonal in $R(\psi)$, $\{(x,x): x \in X\}$, is blurred; Thus, $C_c(X)$ is tacitly identified with the corresponding subalgebra of $C_c(R(\psi))$.

- 4.1. Proposition. Let $h \prec \omega \in \Omega(\psi)$; there is $f, g \in C_c(X)$ and $k \prec \omega$ so that
- i) h = fkg
- ii) h(x, y) = f(x)g(y).

PROOF. Choose $k < \omega$ so that $h(x, y) \neq 0 \implies k(x, y) = 1$. Set

$$f(x) = h(x,y)|h(x,y)|^{-\frac{1}{2}}, \quad g(y) = |h(x,y)|^{\frac{1}{2}}.$$

We note that $C^*(\psi)$ is the norm closure of $C_c(R(\psi))$; given $n \ge 1$ and $g_i, h_i \in C_c(X)$ for $1 \le i \le n$, there is $f \in C_c(R(\psi))$ such that:

$$f = \sum_{i} \langle g_i, h_i \rangle$$
 $\left(\text{put } f(x, y) = \sum_{i} g_i(x) \overline{h_i(y)} \right)$.

The above proposition combined with the fact that $\Omega(\psi)$ covers implies that every element of $C_c(R(\psi))$ can be so expressed.

Definition. Let $P: C_c(R(\psi)) \to C_c(X)$ denote the restriction to the diagonal.

4.2. PROPOSITION. Let $\{(f_i, U_i)\}$ be a partition of unity for X as in 2.4. Let $f \in C_c(R(\psi))$; then

$$P(f) = \sum f_i^{\frac{1}{2}} f f_i^{\frac{1}{2}}$$
 (the sum is finite).

PROOF. There is a compact subset $K \subseteq X$ such that supp $f \subseteq K \times K$. There is $n_0 \ge 1$ so that $\forall n \ge n_0$. supp $f_n \cap K = \emptyset$; whence

$$f = \sum_{i=1}^{n} f_i f = \sum_{i=1}^{n} f f_i$$
.

Since $f_i^{\frac{1}{2}}ff_i^{\frac{1}{2}} \in C_c(X)$, one checks directly that

$$(f_i^{\frac{1}{2}}ff_i^{\frac{1}{2}})(x) = f_i(x)f(x,x)$$

and the result follows by linearity.

4.3. PROPOSITION. The map $P: C_c(R(\psi)) \to C_c(X)$ extends to a faithful conditional expectation $P: C^*(\psi) \to C_0(X)$ (cf. [4], [6]).

PROOF. It is a direct consequence of 4.2 that $||P(f)|| \le ||f||$ for $f \in C_c(R(\psi))$ and thus P extends to a projection of unit norm onto $C_0(X)$. Suppose $a \in C^*(\psi)$ so that $P(a^*a) = 0$. Then $f_i^{\frac{1}{2}}a^*af_i^{\frac{1}{2}} = 0$ for each i. Whence $af_i = (af_i^{\frac{1}{2}})f_i^{\frac{1}{2}} = 0$ for each i. Since $a = \lim_{n \to \infty} \sum_{i=1}^n af_i$, we conclude that a = 0, and that P is faithful.

REMARK. Since $C^*(\psi)$ is preliminary and, hence, of continuous trace, there is a dense ideal on which the unique center-valued trace, τ , is defined. Clearly, $C_c(R(\psi))$ is contained in this ideal

$$\tau(f) = \psi_*(P(f)) \quad \forall f \in C_c(R(\psi)).$$

4.4. LEMMA. Let $a \in C^*(\psi)$; then $a \in C_c(R(\psi))$ iff there is $h \in C_c(X)$ such that a = hah.

PROOF. "Only if" is clear.

"if"—it will suffice to prove that the map extending the identity on $C_c(R(\psi))$ is an embedding of $C^*(\psi)$ in $C_0(R(\psi))$. We may then conclude from supp $(a) \subseteq \text{supp } (h) \times \text{supp } (h)$ that $a \in C_c(R(\psi))$. Let $f \cdot g$ denote the pointwise product of $f, g \in C_c(R(\psi))$. Recall that $s: R(\psi) \to X$ (s(x,y)=y) is a local homeomorphism and note that $P(f^*g) = s_*(\overline{f} \cdot g)$. Since ||P|| = 1 it follows that:

$$||f|| \ge ||f||_s \ge ||f||_{\infty}$$
.

That P is faithful implies that $C^*(\psi)$ embeds in $l^2(s)$ which embeds in $C_0(R(\psi))$.

5. Automorphisms and *-derivations.

In [3] Feldman and Moore characterize the automorphisms preserving the diagonal in the von Neumann algebra of a Borel equivalence relation in terms of circle-valued 1-cocycles on the relation (II, Theorem 2).

DEFINITION. Let $Z^1(R(\psi), T)$ denote the collection of continuous functions

$$v: R(\psi) \to T$$
 for which $v(x, z) = v(x, y)v(y, z)$ all $x \sim y \sim z$.

NB: This implies v(x, x) = 1 and $v(x, y) = \overline{v(y, x)}$ each $x \sim y$.

Renault shows that pointwise multiplication by $v \in Z^1(R(\psi), T)$ defines an automorphism of $C^*(\psi)$ which fixes the diagonal that is $\alpha \circ P = P$ ([6], II. 5.1). We offer the following converse:

5.1. THEOREM. The group of automorphisms of $C^*(\psi)$ fixing the diagonal (viz. $\alpha \circ P = P$) is isomorphic to $Z^1(R(\psi), T)$ according as, given $a \in Aut(C^*(\psi))$ with $\alpha \circ P = P$ there is $v \in Z^1(R(\psi), T)$ so that

$$\alpha(f) = v \cdot f$$

for all $f \in C_c(R(\psi))$ (where $(v \cdot f)(x, y) = v(x, y)f(x, y)$).

PROOF. By 4.4 we know that $C_c(R(\psi))$ is left invariant by α . Given $h \prec \omega \in \Omega(\psi)$, we may select $f, g \in C_c(X)$ and $k \prec \omega$ as in 4.1, so h = fkg. Then,

$$\alpha(h) = \alpha(f)\alpha(k)\alpha(g) = f\alpha(k)g$$

and so:

$$h(x, y) = 0 \Rightarrow f(x)g(y) = 0 \Rightarrow (\alpha(h))(x, y) = 0$$
.

Since $R(\psi)$ is paracompact and $\Omega(\psi)$ covers we may choose a partition of unity subordinate to a countable locally finite refinement of $\Omega(\psi)$:

$$\{(h_i,\omega_i): h_i \prec \omega_i\}$$
.

Put $v = \sum \alpha(h_i)$; then v is a continuous function as, in a neighbourhood of a given point, there are only finitely many non-zero summands.

Choose h as above with h(x, y) = f(x)g(y), then

$$h = \sum f h_i g$$
 and $\alpha(h) = \sum f \alpha(h_i) g = \sum f(v \cdot h_i) g = v \cdot h;$

this obtains generally as

$$C_c(R(\psi)) = \operatorname{sp}\{h : h < \omega \in \Omega(\psi)\}\$$
.

Assume $h(x, y) \neq 0$; since $\alpha(h^*) = v \cdot h^* = (v \cdot h)^* = \alpha(h)^*$, then clearly $v(x, y) = \overline{v(y, x)}$.

Since $h*h \in C_c(X)$ we have $h*h = \alpha(h*h)$ and

$$|h(x,y)|^2 = h^*h(y) = (\alpha(h^*h))(y) = |h(x,y)|^2|v(x,y)|^2$$
.

Thus $v(x, y) \in T$; it is a routine matter to check the cocycle property.

As in [6] we may establish a correspondence between $Z^1(R(\psi), R)$ and *-derivations on $C_c(R(\psi))$. These derivations annihilate the diagonal and are pregenerators for $C^*(\psi)$, moreover $C_c(R(\psi))$ consists of analytic elements (cf. II. 5.2). Suppose $d \in Z^1(R(\psi), R)$ (so d(x, z) = d(x, y) + d(y, z)), then put

$$\delta f = \operatorname{id} \cdot f \quad \text{for } f \in C_c(R(\psi)) .$$

We have $\delta \circ P = 0$, since $d(x, x) = 0 \ \forall x \in X$.

5.2. THEOREM. Let δ be a *-derivation on $C_c(R(\psi))$ so that $\delta \circ P = 0$. There is $d \in Z^1(R(\psi), \mathbb{R})$ such that:

$$\delta f = \mathrm{id} \cdot f.$$

Further, if ψ has a section, then $d \in B^1(R(\psi), \mathbb{R})$ (viz. $\exists p: X \to \mathbb{R}$ continuous so that d(x, y) = p(x) - p(y)) and the 1-parameter automorphism group is inner (cf. [6], II. 5.3).

PROOF. Choose $h \prec \omega \in \Omega(\psi)$ as in 4.1, then h = fkg with $f, g \in C_c(X)$. By the certain derivation property we have

$$\delta(h) = \delta(f)kg + f\delta(k)g + fk\delta(g)$$

= $f\delta(k)g$ (since $\delta \circ P = 0$).

Whence $h(x, y) = 0 \Rightarrow f(x)g(y) = 0 \Rightarrow \delta(h)(x, y) = 0$. Choose a partition of unity $\{(h_i, \omega_i): h_i < \omega_i\}$ as in 5.1. Define $d: R(\psi) \to C$ by

$$d(x,y) = -i \sum_{j} (\delta h_{j})(x,y) .$$

Again reasoning as in 5.1, we see that d is continuous. While, if h is as above $h = \sum f h_i g$, then

$$\delta(h) = \sum_{i} f \delta(h_{i}) g = id \cdot h;$$

then (*) follows by linearity.

Since $h^*h \in C_c(X)$ we have $0 = \delta(h^*h) = \delta(h)^*h + h^*\delta(h)$. Whence $h^*\delta(h)$ is skew-adjoint. A simple calculation reveals that $h^*\delta(h) \in C_c(X)$; suppose $h(x, y) \neq 0$

$$(h*\delta(h))(y) = |h(x,y)|^2 (id(x,y)),$$

whence $d(x, y) \in \mathbb{R}$.

The derivation property implies d(x, z) = d(x, y) + d(y, z). Suppose now that ψ has a continuous section $\sigma: T \to X$. Put $p(x) = d(x, \sigma(\psi(x)))$. Note that

$$(x, y) \in R(\psi) \Rightarrow \sigma(\psi(x)) = \sigma(\psi(y)).$$

Thus

$$d(x, y) = d(x, \sigma(\psi(x))) + d(\sigma(\psi(y)), y)$$

= $d(x, \sigma(\psi(x))) - d(y, \sigma(\psi(y)))$
= $p(x) - p(y)$.

5.3. LEMMA. Let S be a topological space. Let C(S,T) denote the group of circle-valued continuous functions (under pointwise multiplication) equipped with the topology of uniform convergence on compact subsets of S. Let $\varphi: R \to C(S,T)$ be a continuous homomorphism. There is a continuous function

$$\theta \colon S \to R$$

such that

$$\varphi_t(s) = e^{it\theta(s)} \quad \forall t \in \mathbb{R} \text{ and } s \in S.$$

PROOF. We may assume that S is compact. Observe that $\varphi_0(s) = 1$ for all $s \in S$. There is $\varepsilon > 0$ so that $\text{Re } (\varphi_t(s)) > 0$ for all $s \in S$ and $t \in (-\varepsilon, \varepsilon)$. Put

$$\theta(s) = \frac{-i}{\varepsilon} \operatorname{Log} (\varphi_{\varepsilon}(s)).$$

5.4. PROPOSITION. Let $\alpha: \mathbb{R} \to \operatorname{Aut}(C^*(\psi))$, so that $\alpha_t \circ P = P$ and $\alpha_t(a)$ is norm-continuous for each $a \in C^*(\psi)$. Then there is $d \in Z^1(R(\psi), \mathbb{R})$ so that

$$\alpha_t(f) = e^{itd} \cdot f$$
 each $f \in C_c(R(\psi))$.

PROOF. By 5.1 there is $v_i \in Z^1(R(\psi), T)$ so that

$$\alpha_t(f) = v_t \cdot f$$
 for each $t \in \mathbb{R}$.

Clearly $v_0(x, y) = 1$ and

$$v_{s+t}(x,y) = v_s(x,y)v_t(x,y) \quad \forall (x,y) \in R(\psi), \ s,t \in \mathbb{R}$$
.

The norm continuity of $v_t \cdot h$ implies that $v : \mathbb{R} \to Z^1(R(\psi), \mathbb{T})$ is continuous in the topology of uniform convergence on compact subsets of $R(\psi)$. Application of the above lemma yields the desired result.

REFERENCES

- L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C*-algebras, Pacific J. Math. 71 (1977), 349-363.
- G. A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), 29-44.
- 3. J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras I, II, Trans. Amer. Math. Soc. 234 (1977), 289-359.
- A. Kumjian, On localizations and simple C*-algebras, thesis, University of California, Berkeley, 1980.
- G. K. Pedersen, C*-algebras and their automorphism groups (London Math. Soc. Monographs 14) Academic Press, London, New York, San Francisco, 1979.
- J. Renault, A groupoid approach to C*-algebras (Lecture Notes in Math. 793), Springer-Verlag, Berlin - Heidelberg - New York, 1980.
- 7. M. A. Rieffel, Induced representations of C*-algebras, Adv. in Math. 13 (1974), 176-257.
- 8. W. Rudin, Real and complex analysis, McGraw-Hill Book Company, New York, 1966.

MATHEMATISCHES INSTITUT DER UNIVERSITÄT TÜBINGEN AUF DER MORGENSTELLE 10 7400 TÜBINGEN 1 W. GERMANY