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PRELIMINARY ALGEBRAS ARISING
FROM LOCAL HOMEOMORPHISMS

ALEXANDER KUMIJIAN

1. Introduction.

A preliminary algebra is defined to be a C*-algebra isomorphic to a
hereditary subalgebra of ¥ ® A for some abelian C*-algebra A (where X
denotes the algebra of compact operators on a separable Hilbert space).

Given a local homeomorphism y: X € T, it is possible to endow C (X) with
a C.(T)-valued inner-product such that its completion (with respect to a
suitable norm), denoted I*(y), may be viewed as the continuous sections
vanishing at infinity of a Hilbert bundle over T. Then [2(y) is an imprimitivity
bimodule [7] and the imprimitivity algebra, C*(y), is to be the object of our
study. Thus C*(y) is strong Morita equivalent to C,(T) and hence preliminary -
(since C*(y) and C,(T) are stably isomorphic [1]). This algebra is shown to be
the enveloping C*-algebra of the convolution algebra of the equivalence
relation on X induced by ¢, R(y). Consequently there is a diagonal projection,
P: C*(Y) — Cy(X), where C,(X) is the natural diagonal masa (cf. [3], [4],
[6]). There is a countable family of abelian elements in C.(X), so that finite
sums constitute an approximate identity for C*(y).

Finally, the collection of generating *-derivations annihilating the diagonal
(ie. {6: 6oP=0}) is identified with Z!'(R(¥),R), the abelian group of
continuous real-valued 1-cocycles on R(y) ([3], [6]). Further, if Y admits a
section, then each 1-parameter automorphism group fixing the diagonal
pointwise is implemented by a strictly continuous group of unitaries in the
multiplier algebra of the diagonal (or more simply H'(R(y),R)=0).

All topological spaces are implicitly locally compact, Hausdorff, and second
countable (consequently paracompact). This work was partially supported by
a grant from Danmark Amerika Fondet. The author wishes to thank George
Elliott for his help in disambiguating certain delicate passages.

2. The algebra C*(y).

Let y: X — T be a continuous open surjection and let % (y) denote the
collection of open subsets of X to which restrictions of § are injective. Then ¢
is said to be a local homeomorphism if # () covers.
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Given a local homeomorphism y: X — T, we define a linear map
Yt C(X) = C(T) by:

v (N® = Y flx) teT
A0}

REMARKS. i) Regarding C.(X) as a right C (T)-module according to
(fa)x) = f(x)g(W(x) fe C(X), ge CAT),
it is easily seen that y respects this action:

V(S8 = ¥,.(g-

ii) Borrowing notation from [8] we write f<U, for fe C.(X) and U open,
when supp fe U. If f<U € %(y), then

f®) =y, (NWYX) (for x e U)

whence ¥, is injective on C (V).
2.1. PROPOSITION. ¥/, is surjective.
Proor. Claim: Given a compact set K = T, there is f € C.(X) so that y,(f)(t)

=1 for all t € K. Since K is compact there are a finite number of open sets
U,,...,U,&X so that

C-=

K ¢

y(U) .

1

Choose f;<U; so that ¥, (f) is a partition of unity for K. Set f=3 f; and the
claim follows by linearity.

Let g € C.(T), put K=suppg and let f be as in the claim. Then fg € C.(X)
and

Vulfe) =¥, (g =¢g.

DEFINITION. Let (-|-) be the sesquilinear C,(T)-valued form defined on C, (X)
by the formula:

(f1g) = ¥.(fg) for fige CX).
2.2. PROPOSITION. The inner-product (-|-) has the following properties:

) (fle=(lf) VSgeC(X)

i) (f1f)20and (f|f)=0 iff f=0.
i) (flghy=(f1gh=(fhlg) VfgeC.X), heC/T).
iv) Vhe C(T), 3 f,g € C.(X) so that h=(f]g).
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Proor. These routine verifications are left to the interested reader.

DeFiNITION.  For  fe C(X) put |flZ=[(f|/)lo- Let P(y) denote the
completion of C.(X) with this norm.

REMARKS. i) Since |f|, <|f1,, [*(¥) may be viewed as a dense subspace of
Co(X).
if) The Schwarz inequality obtains in this setting, mutatis mutandis

(f18)glf) = (f1N)glg).

NoraTtioN. Let End (I?()) denote the collection of bounded linear operators
on () commuting with the right action of C,(T).
For a € End (*(¥)), let a* denote the unique operator for which

(a*f1g) = (flag) Vfgel(y).
Let ||a| denote the usual operator norm for a € End (I*()).
2.3. DEUS EX MACHINA. The right C,(T)-module 1 () together with its Cy(T)-
valued inner-product fits Rieffel’s definition of an imprimitivity bimodule [7].

Let C*(y) denote the imprimitivity algebra viz. the closed *-subalgebra of
End (I?(y)) generated by operators of the form (f,g) for f,g € I>(y), where

{f,gdh = f(g|h) for each he *(y) .
Note that (f,g)*=(g, f> and
IKfel = Iflylely
(since [I<f,g>hly =1 @IMI NSl @Il £ 1S 1ulgluliblly)-

Finite linear combinations of operators of the form {(f,g> for f,g € C.(X)
constitute a dense *-subalgebra of C*(y).

REMARK. The linking algebra characterization of strong Morita Equivalence
[1] provides a useful point of view in this situation. Let Y=X v T (disjoint
union) and put

Y(x) ify=xeX

¢ Y*Tby"’(y)z{t if y=teT.

Then C,(T) and C*(y) are embedded in C*(¢) as complementary full corners
while:

P) = {ae C*(p) : a*ae Cy(T) and aa* € C*(y)} .
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Suppose T is compact; then there is f e I2(y) so that (f|f)=1. A routine
calculation shows that p={f|f) is a projection in C*(y). In fact every
projection equivalent to p must be of this form. Moreover the corner
determined by this projection is isomorphic to C(T).

RemMark. For f,g,h € C.(X) with f,g<U € %(y), we have:
(K 8>h(x) = f(x)g(x)h(x) .

Evidently all such operators commute and the closure of the subalgebra
generated is isomorphic to Cy(X). This subalgebra is called the diagonal and
henceforth is tacitly identified with Cy(X). Note that if f<U e #(y) then
fe C*(Y) is an abelian element (cf. [5]).

Choose a partition of unity subordinate to a locally finite refinement of
xW), {(f, U) | fi<U;}. Put g,=Y" f; and note that if K < X is compact, there
is m21 such that:

g.(x) =1 forall xeK,n=2m.

2.4. PrOPOSITION. The sequence {g,} constitutes an approximate identity for

C*).

Proor. It suffices to check that lim, ., g,{f,h>={f,h) for f, h e C.(X).
Choose m=1 so that g,(x)=1 for all x € supp (f) and n=m. Then

glfih)> = g foh> = {f;hy forallnzm.

3. Some examples.

i) If X is a countable set with the discrete topology and T={t,} then we
define y: X — T by y(x)=t,. Then 2(y) is a Hilbert space of dimension equal
the cardinality of X. Then C*(y)= X (I*(¢)).

ii) Suppose T is totally disconnected and T=U,2U,2U;2... is a
decreasing sequence of open subsets. Put

X ={(tneTxN: teU,}

and define Y: X - T by ¢(t,n)=t. Then ¢ is evidently a local
homeomorphism. C*(y) is then an AF algebra with dimension group

Ko(C*Y) = {f: T— Z: fcontinuous, lim f(t)=0}
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and dimension range={f: t € U,}. Every continuous trace AF algebra is of
this form (this example arose in a discussion with G. Elliott).

iii) Let X = T=T, the group of complex numbers of unit modulus. Let  be
the n-fold covering i.e. Y(z)=2z". Consider g, g;,...,8,—1 € 1*(¥) defined by
gj(z)=zf/]/ﬁ. Then (g;|g)=1, while (g;|g)=0 if i#j. It follows that C*(y)
=M, (C(T)) because

n—1
‘Zo <gj|gj> =1.

iv) Suppose ¥: X — T is a general covering map and let G denote the
associated group of covering transformations. It is not difficult to see that
C*(y) is precisely the associated transformation group C*-algebra, Cy(X) x G.
(Provided that X is connected).

4. The equivalence relation R(y).

Much of the structure of C*(y) becomes transparent when a dense *-
subalgebra is identified with C.(R(y)), where R(y) is the topological
equivalence relation on X induced by y.

DEFINITION. Put R({)={(x,y) € X x X: Y (x)=¢(y)} and endow R(y) with
the relative topology from X x X.

REMARKS. i) Let r: R() — X and s: R(¥) — X be the projections onto the
first and second coordinates respectively (both are local homeomorphisms).
Evidently, R(y) is a principal discrete groupoid in the terminology of [6].

ii) Put QW) =%«@)NU(r), ie. QW)={w=RW) : rl,sl, inj.}. Note that
Q) covers R(y).
We view f € C.(R(})) as an element of End (I*(y)) according to the formula

(fe)(x) = 3 f(x,))g(y)  where g e P(y).

The reader is left to verify that this formula respects the usual groupoid
convolution and involution. Henceforth, the distinction between X and the
diagonal in R(¥), {(x,x): x € X}, is blurred; Thus, C.(X) is tacitly identified
with the corresponding subalgebra of C.(R(¥)).

4.1. PROPOSITION. Let h<w € Q(); there is f,g € C.(X) and k<w so that

i) h=fkg
i) h(x,y)=f(x)gy).

Bl 7 banse dints
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Proor. Choose k< so that h(x,y)+0 = k(x,y)=1. Set
S(x) = h(x,)h(e )Y, g(y) = |h(x,p)l*.

We note that C*(y) is the norm closure of C.(R(¥)); given n=1 and
8ih; € C.(X) for 1<i<n, there is f e C.(R(¥)) such that:

f=2<&hd (put [y =% gi(x)m)-

The above proposition combined with the fact that Q(y) covers implies that
every element of C (R(¥)) can be so expressed.

DEerINITION. Let P: C (R(¥)) — C.(X) denote the restriction to the diagonal.

4.2. ProposiTION. Let {(f, U)} be a partition of unity for X as in 2.4. Let
f € C(R(Y)); then

P(f) = Y fifft  (the sum is finite) .

PRrooF. There is a compact subset K < X such that supp f= K x K. There is
no21 so that Vnn,. supp f,N K =¥; whence

IEDWIESW 2
Since [} ff} € C.(X), one checks directly that
(FHIHG) = £ (x,%)

and the result follows by linearity.

4.3. PrROPOSITION. The map P: C(R(y)) — C.(X) extends to a faithful
conditional expectation P: C*(y) — Co(X) (cf. [4], [6]).

Proor. It is a direct consequence of 4.2 that |P(f)||Z( f] for fe C.(R(Y))
and thus P extends to a projection of unit norm onto C,(X). Suppose
a € C*(y) so that P(a*a)=0. Then f}a*af} =0 for each i. Whence af; = (af })f}
=0 for each i. Since a=lim,_, 37, af,, we conclude that a=0, and that P is
faithful.

REMARK. Since C*(y) is preliminary and, hence, of continuous trace, there is
a dense ideal on which the unique center-valued trace, 7, is defined. Clearly,
C.(R(y)) is contained in this ideal

t(f) = ¥ (P(f)) V[feCARW).
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4.4. LEMMA. Let a € C*(); then a € C (R(Y)) iff there is h € C,(X) such that
a=habh.

Proor. “Only if” is clear.

“if”—it will suffice to prove that the map extending the identity on C.(R(¥))
is an embedding of C*(y) in Cy(R(Y)). We may then conclude from
supp (a) = supp (h) x supp (h) that a € C.(R(y)). Let f-g denote the pointwise
product of f,g € C.(R(¥)). Recall that s: R(}) — X (s(x,y)=y) is a local
homeomorphism and note that P(f* g)=s,(f"g). Since ||P| =1 it follows that:

Az 0l 2 1flle -
That P is faithful implies that C*(y) embeds in 1*(s) which embeds in C,(R (¥)).

5. Automorphisms and *-derivations.

In [3] Feldman and Moore characterize the automorphisms preserving the
diagonal in the von Neumann algebra of a Borel equivalence relation in terms
of circle-valued 1-cocycles on the relation (II, Theorem 2).

DEFINITION. Let Z'(R(¥), T) denote the collection of continuous functions
v: R(y) » T  for which
v(x,z) = v(x,y)(y,2) all x~y~z.

NB: This implies v(x,x)=1 and v(x,y)=v(y, x) each x~y.

Renault shows that pointwise multiplication by v € Z'(R(y), T) defines an
automorphism of C*(y) which fixes the diagonal that is ae P=P ([6], IL. 5.1).
We offer the following converse:

5.1. THEOREM. The group of automorphisms of C*(Y) fixing the diagonal (viz.
ao P = P) is isomorphic to Z* (R (), T) according as, given a € Aut (C*(y)) with
aoP=P there is v e Z'(R(Y),T) so that

a(f) = v f
for all fe C.(R(Y)) (where (v-f)(x,y)=0v(x,y)f(x,y))
Proor. By 44 we know that C(R(y)) is left invariant by a. Given
h<w e Q(y), we may select f,g € C.(X) and k<w as in 4.1, so h=fkg. Then,
a(h) = a(f)a(k)a(g) = fa(k)g

and so:
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hix,y) = 0 = f(x)g(y) = 0 = (a(h)(x,y) = 0.

Since R(y) is paracompact and Q(y) covers we may choose a partition of unity
subordinate to a countable locally finite refinement of Q(y):

{(hy ) : h<oy} .
Put v=3 a(h;); then v is a continuous function as, in a neighbourhood of a

given point, there are only finitely many non-zero summands.
Choose h as above with h(x,y)=f(x)g(y), then

h=%fhg and a(h) =Y fah)g =} f(v-h)g = v-h;
this obtains generally as
C.(R(W) = sp{h: h<we QW)}.

Assume h(x,y)#0; since a(h*)=v-h*=(v-h)*=a(h)*, then clearly v(x,y)

=v(y, X).
Since h*h € C.(X) we have h*h=a(h*h) and

lh(x,y)I> = h*h(y) = (a(h*W)() = [h(x, y)Plolx, ) .

Thus v(x,y) € T; it is a routine matter to check the cocycle property.

As in [6] we may establish a correspondence between Z'(R(y),R) and
*.derivations on C.(R(y)). These derivations annihilate the diagonal and are
pregenerators for C*(y), moreover C.(R(y)) consists of analytic elements (cf.
I1. 5.2). Suppose d € Z'(R(Y),R) (so d(x,z)=d(x,y)+d(y,z)), then put

of =id-f for fe CARW)).
We have doP =0, since d(x,x)=0 Vx € X.

5.2. THEOREM. Let & be a *-derivation on C.(R(})) so that §oP=0. There is
d € Z'(R(Y),R) such that:

(*) of =id-f.

Further, if ¢ has a section, then d € B*(R(y),R) (viz. 3p: X — R continuous so

that d(x,y)=p(x)—p(y)) and the 1-parameter automorphism group is inner
(cf. [6], II. 5.3).

Proor. Choose h<w € Q(y) as in 4.1, then h=fkg with f,g € C_(X). By the
certain derivation property we have

o(h) = o(f)kg+fo(klg+fkd(g)
= fo(k)g (since 6o P=0).
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Whence h(x,y)=0 = f(x)g(y)=0 = o(h)(x,y)=0. Choose a partition of
unity {(h;,w): hj<w;} as in 5.1. Define d: R(y) — C by

d(x,y) = =i Y (Gh)(x,)) .

Again reasoning as in 5.1, we see that d is continuous. While, if & is as above
h=% fh;g, then

6(h) = Y. fo(h)g = id-h;

then (*) follows by linearity.

Since h*h € C.(X) we have 0=3(h*h)=03(h)*h+h*d(h). Whence h*5(h) is
skew-adjoint. A simple calculation reveals that h*(h) € C.(X); suppose h(x,y)
*0

(B*3 (M) = [h(x,YI*(id (x,y))

whence d(x,y) € R.
The derivation property implies d(x, z) =d(x, y) +d(y, z). Suppose now that
has a continuous section ¢: T— X. Put p(x)=d(x,a(y(x))). Note that

(x,y) € R@Y) = a(¥(x)) = a(¥ ) -
Thus

d(x,y) = d(x,0(y () +d(c(¥).y)
= d(x,0(y(0))—d(y.0 (¥ )

p(x)—p(y) .

5.3. LemMA. Let S be a topological space. Let C(S,T) denote the group of
circle-valued continuous functions (under pointwise multiplication) equipped with
the topology of uniform convergence on compact subsets of S. Let ¢:R
— C(S,T) be a continuous homomorphism. There is a continuous function

6:S— R
such that

0,(s) = e VieR and se§.

PrROOF. We may assume that S is compact. Observe that @, (s)=1 for all
s € 8. There is ¢>0 so that Re (¢,(s))>0 for all s € S and t € (—¢,¢). Put

06) = —"Log (9,(9) -
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5.4. PROPOSITION. Let a: R — Aut (C*(y)), so that a,0 P= P and «,(a) is norm-
continuous for each a € C*(y). Then there is d € Z'(R(Y),R) so that

o0(f) = e"-f each fe C.(R()).

ProoF. By 5.1 there is v, € Z*(R(y), T) so that
o(f) = v,-f foreachteR.
Clearly vy(x,y)=1 and

Us+t(x’y) = Us(x,)’)"-(x,}’) V (x’y) € R('Il)’ S,t € R .

The norm continuity of v,-h implies that v: R — Z!(R(y), T) is continuous in

the topology of uniform convergence on compact subsets of R (). Application
of the above lemma yields the desired result.
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