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ON THE ZEROS OF THE DIRICHLET
L-FUNCTIONS NEAR THE CRITICAL LINE
TOM MEURMAN

1. Introduction.

Let y be a Dirichlet character mod q and y, the principal character mod g.
Denote by N, (a; T;, T,) the number of zeros of the Dirichlet L-function L(s, x)
in the rectangle a<o <1, T\ <t<T,. Write briefly N,(a; T)=N,(a; =T, T)
and N(a; T)=N, (x; T). We shall give for the number

(L.1) N(@ = Y} N, T,T)
xmod q

an upper bound which is interesting when « is near 1. Results of this type were
first obtained by Selberg. In [7] he proved namely that

(1.2) N(@; T) < Ti~@ déjogT

for{<a<1and T22. In [8] he proved that if ITII,ITzlgq%"‘, T,—T,=1/logq
and 1 +1/logg<a<1, then

(1.3) N'(g) < ' %~ HT,—T)logq,

where ' means that y, is omitted in the summation. Recently Jutila [3] proved
that for {<a<1, T=2 and any fixed £>0,

(1.4) N T) <, T'"0-9eDlog T,

which is a sharpened version of (1.2). We combine methods of Selberg [8],
Jutila [3] and Ramachandra [6] to prove the following theorem.

THEOREM. Let q be a positive integer, a2, T,— T, > 1/log (g +1), 0<2e<c
<1 and
(1.5) max (|Ty},|T,)) < q' (T, T;+1).
Then, in the notation (1.1), we have
(1.6) N(q) <, q' 79" (T, - T,)x
x(T,— T, +1)" 19" Diog g(T,~ T, +2) .
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214 TOM MEURMAN

COROLLARY 1. If T=2, then

Y NuT) <, (@T) 179" D]ogqT.

xmodg

This is a generalization of (1.4) and for $<a<}+ (24—¢)(loglogqT)/logqT
it is sharper than the estimate of Montgomery ([4, Theorem 12.1]), which
is a generalization of Ingham’s [2] well-known theorem.

CoROLLARY 2. If T, — T, > 1/log (q+1) and
max (T, |T,)) < ¢' 7%,
then

N(@ <, (T,=T)g' " Plog(g+1).

This is both sharper and more general than (1.3). In particular it enables one
to estimate nontrivially the number of zeros in a rectangle of height 1/logq at a
distance ¢! ~¢ (instead of q*") from the real axis.

Both of the corollaries are immediate consequences of the theorem.

Now we shall outline the proof and introduce some notation. Let

1 <z, <2z,

1 <o <v,,

1, lénévl ’
%, = %,(v1,0;) = < log (vy/n)/log (vy/vy), v, <n=Zv,,
0, n>v,,

Ay = A (24,2) = p(mx,(zy,2,) ,

where u(n) is the Mobius function. Then the “mollifier”

(1.7) M(s,y) = Y x(mAn~s
n<z;
makes the quantity |M (s, x)L(s, ) — 1|> small on the average, but at the zeros of
L(s,x) this expression equals 1: this argument gives the density estimate. It
turns out, as was observed by Jutila [3] in the case y = x,, that the mean value
of the same expression with L(s,y) replaced by the smoothened partial sum
F(s,) = Y x(npe,n™*
n<v;
can be estimated satisfactorily. In order to make use of this fact in estimating
the mean value of |M(s, x)L(s, x) — 1|2, we appeal to an idea of Ramachandra
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[6] (see Lemma 2 below). The problem then reduces to estimating sums of the
type Y. a2n~2° and Y b?(x)n"', where

(18) an = an(zl’zz) = Z A‘d
din
and
(1.9) b,(x) = b,(x; vy,05,21,2)) = Z Z’dxn/ddx;
djn

in particular the numbers b,(0) are the coefficients of the Dirichlet polynomial
M(s, Y)F (s, x). The estimates of these sums, given in Lemmas 4 and 5, are based
on Lemma 3, which is in some respects more general than the corresponding
lemma of Motohashi [5].

2. A formula for M (s, y)L(s, ).
LEMMA 1. Let

@21 L(s,x) = ¥(s, )L(1—s,%) .
Then ¥ (s, x) is holomorphic in the region o <1. If ASc <31, then
P(s,x) <4 (qUl+1))F77,

whether y is primitive or not.
The proof of lemma 1 is well-known.
LEMMA 2. If X>1, 0<y<%, 023—y, h>206 and y+y,, then

M(S’X)L(S’X) = €Xp ("’X_h)+S(s9X’X)_IO(S’X9X)—II(S’X’X) )

where
(2.2) SGX,0 = Y x(ma,exp(—(n/X)Hn~*,
(2.3) Ii(s, X, ) = 2%” jc Y(s+w,)M(s+w,x) x

X (jL(l——s—w,i)-F(l-—Zj)F(l—s—w,i))l"(l-i—»‘;—)X"w"dw; j=0,1,

and the paths C; are defined as follows:
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Co = {w: |Imw|<y, Rew=min (—y,5—0)}
U{w: |Imw|=y, min(—y,4—0)<Rew<i—o)}
U{w: |Imw|>y, Rew=%—0},

C, = {w: Rew=—h/2}.
Proor. By Mellin’s transformation, we have

T xtosanexp (= (/X))

1

= M(s+w, )L(s+w, x)I" 1+ ) x"w 1 dw .
2mi Rew=2 h

We shift the line of integration to the line C,. The pole at w=0 gives then the
term M(s, x)L(s,x). By (2.1)
1
Ls+wy) = Pis+w,x) 2 (GLA=s—w, )+ (1-2)F(1-s—w,}) .
i=0

Thus the integral over C, equals Iy(s, X, x)+I,(s, X, x), since the integrand of
I(s, X, x) has no singularities between C, and C,.

3. A lemma related to Selberg’s sieve.

Let 0,(n) denote the sum of the ath powers of the divisors of n. It is easy to
see that if z>1,a=1, b>1, and ¢, then

3.1 Y. m % ,(m) < logz.

m<z

The following lemma is a modification of a lemma of Motohashi [5].

LEmMMA 3. For z>1, let

l<(w—1)logzx 1,
.2 {1 < (' —1)logzx1
and define
=] 2
= (Z p(d (n/d)* ~")d = log* (Z/d)> n~®
n=1 ddan
Then

D, <, (logz)%*,

Jor any positive integer k and for r=0 or r=1.
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Proor. We have

D, = Z ldy,d,]°° n dw @ d(dl,dz)' 1)108 (Z/d))

dy,d,<z

x Z ”Z(nl—-r)n—-m

n=1
(n! “,dydy(dy,dy) ") =1

Here the series over n equals

r-1

C(w)(C(2w)H 0o ,/(dpdz))) ,

since we may assume that d;/(d,, d,) is square-free. Writing (d,,d,)=d, d, =de,,
d,=de, and summing first with respect to ¢, and e,, we have further

= {(@)((Qw)'E,,

where
2
E =Y @@ Y ] Fo./d
d<z e, e,<z/d j=1
(ey,e))=1
(e, d)=(ey,d")=1
and

F,,(x) = u™*p(u)log" (x/u)e"", (u) .

The inner double sum in the expression for E, is rewritten as

Z/d u(a)( Z F,, ,(z/d)>

(a,d)=1 (u, d') l

Hence, writing ad =m, we have
E, = Y m® 2 3 (m) Y plaa™ 0% % (@)(Rg -, (2/m)?
m<z ajm

where

R, ()= % F, (.

u<x
(u,v)=1

Let x§) be the principal character modv. The generating function of the
arithmetic function u~™* u(u)e""} (u)x§'(u) is P, (s +w'), where
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P,.(s) = (L) HGE) TH,,(5),
G = [ 1 +(e°*—DE*+1)7Y),

4

H,,(s) =[] (Q—p=(1+p oy 1) *'.

plv

Indeed,

Y utuwe ) Wy W) = K,()H, (),

u=1
where

K,(s) =[[(=p~*(+p~y7),
whence

Ko(s) - 1_[ (1_p—s)(1+p—s(1_(1+—lz—w)—l)>

P I-p
= ({(s)7'G(s)

and

Ki(s) = ()7
Hence we have the representation of R, ,(x) as an integral
k! 2+io00
R,,(x) = — J P, (s+w)xss™* 1ds .
’ 2mi 2-ioo '

We move the integration to the path C defined by

C = {s=g+it: a=1—-w' —4/log(t|+2)},

where 4 is a small positivé constant. This shows that
R, ,(x) = k!Res (P, ,(s+w)x’s™ 1) _o+04(0_,(v)),
since, for s € C, we have
{(s+w) ! < log(lt|+2),
Gis+o) x 1,

H,,(s+0) < o_4(v).

The first of these three estimates and the fact that the origin is the only
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singularity of the integrand on the right hand side of C are well-known
classical results.

To calculate the residue, we note that near s=0

Us+a) ! = 0@ —1)+ Y 0,1),

i=1

G(s+0o) = i 0;(1)s,

j=0
(3.3) H,,(s+®) = 0(c_,(v) §0(1

o0

= Z 0;(log/ x)s’ .

We prove (3.3). Since H,,(s+w’) is holomorphic at the origin, it has a
Maclaurin expansion, the coefficient of the jth term of which is

1

— H, (s+w)s ™ 'ds
i Jim=t

<1 (1—pt=e)~1
plv
< [T+p™) < o_,0).
plv
This yields (3.3).
Multiplying the above power series, we obtain

P, s+o)x* = a_*(v)(O(a)’— D+ Y, 0;(log’ ' x)(1+ (o' —1)log x)sj) )
j=1
Thus, we have
R, ,(x) <, o_,(v)(log" ' x)(1+ (0’ —1)logx) .

Substituting this in the expression for E, and using (3.1) and (3.2) we see that

E, <, Yy m> % % a~“(o_,(m)log" ' z)?

m<z alm

<, log¥* 2z Yy m*72%¢3  (m)

m<z

<« log?*~'z.
To complete the proof, we note finally that

{(w) < (0—1)""! < logz.
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The next two lemmas are corollaries of lemma 3.

LEMMA 4. If a, is defined by (1.8), 62%—y and y < (logz,)™", then

a2 < MOUESZ1 20 (log (z,/2)) "> (log 2,)* -
z,<nsM

Graham [1] has given an asymptotic formula for 3y <,<pmaZ, for M>z,.

Proor ofF LEmMA 4. Writing

_ {u(@log (z/d), for d<z,
Li@) = {0, for d>z,

we have

a, = (log(z/zy)7! Z (La(z2) = La(zy)) -

din
We note also that, for z;, <n<M,
n-—Za < n——l—- l/logz‘MO(l/log z‘)zi -20 .

Hence it remains to prove that, for i=1,2,

2
> (Z Ld(zi)) n~1-18z « (logz,)? .

z,<nEM \di|n

This follows from lemma 3 with k=r=1, w=0w'".

LeEMMA 5. If b,(x) is defined by (1.9), x < (logz,)~! and

(3.4) logz, <« logv,,
’ logv, < logz,,
then
<Z bi(xn™' < (log (z5/2,)10g (v/v,)) "% (log z,)* .
ngv,z,
ProoOF. Let
log (z/d), for d=z,
K, (z) =
a2) {0, for d>z,

Ly(2) = p(d)Ky(2) .
Then
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b,(x) = (log (z/21)log (vy/vy) ™! x

X ; (La(zp)— Ld(zl))(Kn/d(vl) - Kn/d(vl)) ax.

Thus, we have to show that

2
(3.5) z (Z Ld(zj)Ku/d(vi)dx> n~! < (logz,)*,
nsvz, \din
for i,j=1,2.
For n<vz, we have

;La(Z)Knu(v)d" = Y u(d)log(z/d)log (vd/n)d*

din
njv<d<z

; p(d)log (z/d) log (vd/n)d*
d<nz

“; u(d)log (z/d) log (vd/n)d* +

it

+ gﬁ u(n/d)log (zd/n)log (v/d)(n/d)*
d<v

7

= z C,(n),

r=1

% u(d)log (z/d)log (vz/m)d* ,

d<z

¢y (n) = —‘; pu(dlog? (z/d)d*

d<z

cs(m) = ~ ) u(d)log (vz/d)log (vz/m)d*

din

i

¢y (n)

Csln) = ‘ILu(d) log? (vz/d)d*,
din

es(n) = Y u(d)logvlog (vz/md* ,
din
cs(n) = n* Y, p(n/d)log (v/d)log (vz/m)d ™%,
din
d<v
() = —n* 3 p(n/d)log? (v/d)d ™.

din
d<v
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Hence

Z (Z L.i(z)Kn/d(l’)dx)zn—1 <« i S, ,

n<vz \d|n =1

where

S, = Y cmn'.

nsvz

Consider the sum S;. For simplicity, suppose that x>0. Denote
falx) =n"} $ u(d)(d/vz)* .
din

By Schwarz’s inequality, we have
X 2 X
fix) = (f f',.()')dy> = XJ (f20)dy,
0 0
for n>1. Hence, there exists a number ¢ such that 0< &< x and

Y Offx =Xt Y (7.

1<ngvz nsvz
Therefore,
Ss < (logvlog (v?2))*(1+ (v2)**x2S%) ,

where

wn
Il

2
S y (Z u(d)log (d/vz)df) n~t.

n<vz \djn

Estimating the sums S,, r+5, and S5 by Lemma 3, we obtain (3.5). Note that
the trivial restriction d <vz may be imposed on those sums, where d runs
through all the divisors of n.

4. Mean value estimates.

In order to be able to treat simultaneously two cases we define the symbol
me=my, ., for t, <t,, as follows:

f(s) = mo(f(s)), for any t e [t,,t,],
Lﬁmm=mvw.

The following general lemma is proved in chapter 6 of [4].
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LEMMA 6. Let

M+N
K@,y = ) lcnx(n)n"’,
+

n=

where y is a character mod q. Then, for k=0, 1, we have

M+N
Z m (K (it, YIP) < (q(t;—t)*+N) Z leal? .
xmod g n=M+1

LemMa 7. If S(s, X, x) is defined by (2.2), y<<1/logz,, 24—y, X>1, h>1,
and z, £2X, then

(4.1) Y m(IS(s, X, 0P

ymod q
< 2172 (q(t,— )+ X)Xo(l/logz')(log (22/2,))*(log ),
for k=0,1.
ProOOF. Denote by S, the part of the sum S(s, X, x) corresponding to the

indices 27X <n<2"*!'X, for r=1, and by S, the part corresponding to the
indices z; <n<2X. Thus,

SsX,0 =Y 8.
r=0

By Schwarz’s inequality the left hand side of (4.1) is

< Z (r+1)? Z m.(|S,1%) .
r=0 4
Here the inner sum is, by Lemma 6,

< (@t —t)+2X) Y aln Fexp(-27).
z,<ng2X

Hence, using Lemma 4 and the fact that h> 1, we obtain the desired result.

LemMma 8. If I (s, X, x) is defined by (2.3), y < 1/logz,,6>5—y, h>20,1<X,
<X, and (3.4) is valid, then
)

4.2) Y, m,‘<
< X17%(qt2— 1)) +0,2,)(ylog (X /X 1) log (z5/z,) log (v/v1) ™% X

xmodg
x 10g z,)* (q(max (|t,], lt.) + )" X3,

X,
(log (X5/X,)™" J X o(s, X, x)dX

X,

for k=0,1.
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ProOF. We have
X, .
4.3) '[ X Uy(s, X, 0)dX = 1¥(5, X5, 0)—13(5, X1, %) >
Xl
where the asterisque means that w is replaced by w? in the denominator of the
integrand. For w € C,, we have
4.4 Yis+w,x) < (gt +1)*,
4.5) rl+wh) < 1.
The estimate (4.4) follows from Lemma 1. By (4.3-(4.5) and Schwarz’s
inequality the square of the left hand side of (4.3) is

< (g + D)Xy 2 x2y~! j IM(s+w, DF(1—s—w, DIPlw™ | ldw| .

Co

Hence, in order to obtain (4.2), it remains to prove that, for w € C,,

(4.6) Y m(IM (s +w, OF (1 — (s+w), 7))

X
< (q(t3— 1) +0,2,)(log (25/2,) log (v2/v,) "2 (log z,)* .
For any complex z, we have

M@z F(1=2y) = Y x(mn*~'b,(1-2Re2),

n<uv,z,

where b,(+) is defined by (1.9). Hence, by Lemma 6, the left hand side of (4.6) is

< (q(ty—t) +vyzy) Y nPtIRew=2p2(1 26 _2Rew).

n<v,z,

Since w € Cy, 260+2Rew—25 —1 and 1 -20-2Rew <y < 1/logz,, so that
an application of Lemma 5 yields (4.6).

LEmMMA 9. If I,(s, X, ) is defined by (2.3), 0<y<%}, 1—y<0<2 4<h<A4
and X > 1, then )

(s, X, %) << 4 (q(tl+ Dzy/ X0y )24 (0, 2,)2 X277

Proor. If w € C,, then Re (s+wf=a-—h/2. Hence, for w e C,,
M(s+w,y) < 2+1-7

Ld-s—w,)—F(1—s—w,}) < v~ ",

We have, by Stirling’s formula and Lemma 1,
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j [ (s+w, )L (14+w/h)X"w™1||dw|
C,
< XM f |¥ (0~ h/2+i(t + hw), x)le” ™" dw

<4 XM g+ DTN

Combining the previous estimates completes the proof.

5. Proof of the theorem.

We state without proof the following slightly modified version of a lemma of
Selberg ([8, Lemma 14]).

LemMa 10. Let f(s) be holomorphic in the rectangle 6,<06=<0,, t,St<t,,
where a,> Re g whenever g is a zero of f(s) such that t, <Im g <t,. Writing f(s)
=1—g(s), suppose that |g(a,+it)| <3, for t,<t<t,. Then we have

. Imo—t,\ . Rego—0o
(.—t;) Y sin (n ——h) sinh (n #>
o f(@=0 I~ L—t

Reg>o,
,<Imp<t,

& . 0,0, & .
< lg(o, +it)| dt +exp n—t~t— lg(o, +it)| dt
274

t L

+ jaz exp (n f_a‘>(|g(a+it,)| +lglo+ity))do .

o 2—h

We may suppose that a<1 and T, — T, >10%¢/log2q. Let

(5.1) ty, = BT, -T)2, t, = (3T,-T))/2,
whence
(5.2) tZ—tl = Z(TZ_TI) .

In particular,
(5.3) t,—t; > 2n/elog2q .

Let T=t,—t, +1, whence

(5.4) qT > 10% .
Let
(5.5) oy = a—1/logqT,

Zl — qcll—e/ZTl/l—-c/Z’ 22 = zl(qT)s/G X

Math. Scand. 52 15
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In particular, by (5.4),

(5.6) z; > 10.
Recalling (1.7), let |
(5.7 gls,0) = (M(s, )L (s, 0)—1)* .
Then, for k=0,1 and o, <06 <2, we have
(5.8) Y m(g(s, )

xmodgq

<, ql —-(c-ﬂ(a—%)(’]"_k)’r—(l —eNe— %)

To see this, we first fix the parameters that occur in lemmas 2, 7, 8, and 9 as
follows:

- 1/2 6
v, = 4q' 2T, Uy = Ul(qT)sl s

Xl = (qT)“5/6, XZ = qTa
y = 1/logqT,
= 446/c.

By Lemma 2 the left hand side of (5.8) is
<< BI+B2+B3+B4 ’

where
X, 2
B; =) mk( (log(lexl))“f X"'4;dX )

' 4 )(l
and

A =exp(-X"M-1,

A2 = S(S,X,X) s

Aj =1;5(,X,0; j=34.
Obviously,

B, << q(ty—t,)4(qT) " S*43 12

By Schwarz’s inequality,
X,
B, < (log(Xy/X,)™ 'Y mk(J‘ X~ 14,2 dX) .
X

X,
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Hence, by Lemma 7,
B, <, q 9@ HT=0=90 D (q(t, 1, + qT/log qT) .
By (1.5) and (5.1),
(5.9 max (|t,},|t,]) < ¢' T,
whence, by Lemma 8,
By <, (qT) @3 =D(q(t,—t,)*+ (qT)' ~*°) .

By Lemma 9,

t t 1 h+1-2a
B, <, q(tz_ti)k<¢I(maX (It4], le2)) + )Zz) bz, X172

X0,
whence, by (5.9),
B, <, q(t;— tl)k(QT)—(z —e3)e—4)-e/2

Combining these estimates gives (5.8).
Recalling (5.7) we define

D(s,x) = 1—g(s,x) .

Obviously each zero of an L-function is a zero of the corresponding
&-function, too. Thus, since a—ay=1/logqT and ;< (t—t,)/(t,—t;)$3, for
T, £t<T,, we have (see (1.1), (1.3)

. Impo—t,\ . Repo—a,
N'(g) < (logqT)(t,—t,) Y’ )  sin (n —Q——-‘> sinh (n —Q—“) .
1 09 =0 2~ L=t

1
eQ>ay
t,<Ime<t,

Here we estimate the right hand side by Lemma 10 with ¢, =a, and ¢,=2.
Note that by (5.6), |g(s, )| < (Xp»2, T(n)n~2)? <4. Hence, we find

N'(g) < (U+V)logqT,
where

t; ty
u=y f g (o +it, )l dt +¢° Z’f lg(2+it, y)l dt
X t b 4 t

and

™M

V =

i

2
' j ¢ g (o +it, ) do
%o

X

]

1

Here we made use of (5.3).
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Now we shall estimate U and V by (5.8). Writing A(c,0)= (c—¢)(c —13), we
have, since c=2e,

U <, g' 400ty — )T~ 40

and
2
1 %4 <<£J qs(a—ao)/2+l——A(c,a)Tl-A(l,a)do,
oo

<, ql —A(C,do)Tl -A(l’“")/loqu.

Now the theorem has been proved in the case that y, is omitted in the
summation, for by (5.5) and (5.2), #, can be replaced by « and the numbers ¢,
by the T}s.

Finally we note that N, («; T, T) is also absorbed in the right hand side of
(1.6). In case T,— T, >4 this follows from (1.4) and (1.5). In case 42T, T,
>, 1/log 2q it follows from (1.5) and the well-known estimate

N, (4 V,Y+1) < log(|Y]+2).

Thus, the proof is complete.

REFERENCES

1. S. Graham, An asymptotic estimate related to Selberg’s sieve, J. Number Theory 10 (1978), 83-94.

2. A. E. Ingham, On the estimation of N (o, T), Quart. J. Math. Oxford Ser.(1) 11 (1940), 291-292.

3. M. Jutila, Zeros of the zeta-function near the critical line, in Studies in pure mathematics, to the
memory of Paul Turan, eds. P. Erdos, L. Alpar, G. Halasz and A. Sarkézy, Birkhauser, Basel,
1982.

4. H. L. Montgomery, Topics in multiplicative number theory (Lecture Notes in Math. 227),
Springer-Verlag, Berlin - Heidelberg - New York, 1971.

5. Y. Motohashi, Primes in arithmetic progressions, Invent. Math. 44 (1978), 163-178.

6. K. Ramachandra, A simple proof of the mean fourth power estimate for {(3+it) and L +it, ),
Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) 1 (1974), 81-97.

7. A. Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. B 48
(1946), No. 5, 89-155.

8. A. Selberg, Contributions to the theory of Dirichlet’s L-function, Skr. Norske Vid.-Akad. Oslo 1
(1946), No. 3, 3-62.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TURKU

20500 TURKU 50

FINLAND



