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THE PROJECTIVITY OF THE MODULI SPACE
OF STABLE CURVES, II:
THE STACKS M,,

FINN F. KNUDSEN

Introduction.

This paper is the second in a sequence of three papers by D. Mumford and
myself, containing the results of my thesis and leading to a proof of the
projectivity of the moduli space of stable curves. The story is as follows: after
investigating the stack M, , with Deligne, Mumford got interested in the
question of whether or not it was projective. His original idea was to study the
Torelli map:

Satake’s compactification of the
t: M 2,0 — . . . .
moduli space of abelian varieties.

and use the fact that Satake’s compactification was a projective variety (defined
over Z by use of f-functions in [12]). In my thesis, I then investigated the line
bundles on M, , and showed that the line bundle 8! (defined in section 4) was
ample on all fibres of t. The map t, however, has only been constructed in
characteristic 0. Seshadri then suggested that the problem could be attacked
directly without the use of Jacobians by using instead the stability of Chow
points of curves proven in [9], theorem 4.5. Mumford realized that it was
necessary for this proof to introduce curves with basepoints, i.e. the stacks M, ,
(cf. section 1 for definition). In this paper we study the stacks M, ,, and certain
maps between these stacks, that is:

1) contraction: M, ,,, » M, ,
. M - M
2) clutching: { snt2 g+ln
M81,"1+1 X Mgz,n,-H - Mgl+gzv"1+"2 :

In the first three sections of this paper we investigate these maps and prove
that they are representable. The crucial point is to prove that M, ,., ~Z, ,,
the universal curve over M, , hence contraction is representable. The
clutching maps factor through the contraction map.
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In sections 1 and 2 we prove that we have an isomorphism of functors
M, ..\~ Z,, where Z, , is the universal curve over M, , (i.. the functor of
n-pointed stable curves with one extra section without any smoothness
condition). The main steps of this proof are Lemma 1.6, Theorem 1.8, and the
results in the appendix. We then use this result and an inductive argument to
prove that M, , is an algebraic stack, proper and smooth over Spec (Z), and
that the substack S, , consisting of singular curves is a divisor with normal
crossings relative to Spec (Z) (cf. Theorem 2.7.).

In section 3 we study the clutching morphisms ° and Bg, g, H k> and prove
that they are representable (Lemma 3.7), finite and unramified and almost
always closed immersions (Corollary 3.9).

The clutching sequence Theorem 3.5 is used in section 4 to compute the
pullback of the basic line bundles on M, , by B. Actually what we are doing
here is computing the self-intersection of the divisor at infinity S, , of M, ,
(section 4).

1. n-pointed stable curves.

Let S be a scheme, and let g, n be non-negative integers such that 2g—2+n
>0.

DerFINITION 1.1. An n-pointed stable curve of genus g over S is a flat and
proper morphism n: C — S together with n distinct sections s;: S — C such
that

i) The geometric fibres C, of n are reduced and connected curves with at most
ordinary double points.
ii) C, is smooth at P,=s,(s) (1<i<n).
iii) P;#P; for i}
iv) The number of points where a nonsingular rational component E of C,
meets the rest of C; plus the number of points P; on E is at least 3.
v) dimH'(C,,0c)=g.

Note that if n=0 and g=2, then C is a stable curve in the sense of [3].

Before we start with the technicalities, we briefly state some facts about the
basic sheaves on a stable curve. Let n: C — S be a stable curve with sections s;,
1 <i<n. Since n is flat and the geometric fibres are reduced with only ordinary
double points, 7 is locally a complete intersection morphism [8]. Therefore
there is a canonical invertible dualizing sheaf w¢s on C. For reference, see [6],
where w¢s is also denoted by n'Os.
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A way of constructing wc/s is via the theory of determinants [7]. The sheaf
Qs of relative Kihler differentials is flat over S (see section 3, Proposition 3.2)
and locally on C we can find a two-term free resolution

0) = &' — &° > Qcsly — (0).

This means that Q.5 considered as a complex supported only in degree 0 is a
perfect complex, so we may form its determinant. We then have canonical
isomorphisms

A3 & AMAX(#1)7 o ey Qcislu = ocsly -

Since the fibres of n are reduced and one-dimensional, rank £° =rank &' +1
=k+1. Let § be an element of Qs ,, where x € U and let v € &2 be an element
which maps to 7. Choose a basis wy,w,,...,w, of &' and let wi,w5,...,w} be
the dua) basis. Considering the elements w; as elements of £° as well, we get
an element

VAW AW, A L AWRW, AWy A LA W E (ATEC D AT (EY)),

which is independent of the choice of ¢ and the w;s. Composing with the
isomorphisms above, we see that we have a canonical homomorphism

v QC/s — W¢ys -

In general, this homomorphism is neither injective nor surjective, but it is an
isomorphism near every point of C where n is smooth. Since Qs is flat over S,
we have compactibility with any base change; i.c.,

a) For any morphism T— S we have a commutative diagram

pT(Q¢)s) = Qcxytyr
ptv] ¥]

pi(wcs) = wcxsTyT

b) If S=Spec (k), where k is an algebraically closed field, f: C — C is the
normalization of C, and x;,...,X,, V;,- - ., Vm are the points of C such that z;
=f(x)=f (), 1 £i<m, are the double points of C, then w/s is the sheaf of 1-
forms # regular on C except for simple poles at the x’s and the y’s and such that

Res, (n)+Res, (1) = 0 for 1Sis<m.

c) If S is locally noetherian and of finite Krull dimension, and & is a
coherent sheaf on C, then

Hom@s (Rln*g'_, (O) = Homwc (-9'-, wC/S)

(cf. {6, VII, Corollary 4.3.])
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DeFINITION 1.2. We denote by M, , the category of n-pointed stable curves.
Morphisms in this category are diagrams of the form

c-Lc
s, C ln' s,( l n
S £ S
where
(1) fsi=1sg for 1ZiZn.
(i1) f,m’ induce an isomorphism
C = CxgS' .

We denote by Z, , the category of n-pointed stable curves with an extra section
4. Morphisms in Z, , are diagrams as above such that fA'=4g.

The category M, , is a stack fibred in groupoids over the category of
schemes. For a definition of stack, see [3, Definition 4.1]. In the next
paragraph we prove that M, , is a separated algebraic stack, smooth and
proper over Spec (Z).

The following definition plays a central role in this whole paper.

g.n

DEeFiNITION 1.3. A morphism of pointed stable curves over S:

cLc
.\,Cln s:(ln'
S =8

is called a contraction of

(i) Cisan n+ 1-pointed curve, C' is an n-pointed curve and fs;=s;for 1 Li<n.
(ii) If we consider the induced morphism on a geometric fibre C,, we have one
of two possible cases:

a) f;: C, — C, is an isomorphism.
b) There is a rational component E<C, such that s,,,(s) € E, f,(E)=x
is a closed point of C;, and

fi i CNE - C\ {x}
is an isomorphism.

The picture in Figure 1 below shows the only two non-trivial contractions over
Spec (k), where k is an algebraically closed field.
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Figure 1.

REMARK. We leave to the reader to verify that when S=Spec (k), k an
algebraically closed field, then for every C over S, there is one, and up to a
unique isomorphism, only one contraction C — C'. In fact, we have an
equivalence of categories:

Mg,n+1(k) - Zg,n(k) .

In order to prove that there is an isomorphism of stacks M, ,,, — Z, ,, we
need the following results, which are corollaries of [5, III 4.6.1].

LEMMA 1.4. Let Y be a locally noetherian scheme, f: X — Y a proper
morphism,  a coherent sheaf on X, and y a point on Y. Suppose f~'(y)=
X xySpec (k(y)) is an n-dimensional scheme and that

H(f'(0), F®o,k(y) = (0).
Then:

i) There exists a neighbourhood U of y in Y such that Rf %|y,=(0).
ii) For each integer p=0 the canonical morphism
(R F)y, = HHS T ), F ®p, 0,/my ™)
is surjective.
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Proor. Consider the diagram

/') —— X' —— X
! | !
Spec (k(y)) — Spec (0,) 4 Y.

Since i is flat, we can reduce the proof of the lemma to the case, where Y is
affine and y is a closed point of Y. Since R"f,Z is coherent, the first assertion is
equivalent to (R"f,#),=(0).

By [5, 1II 4.2.1], it suffices to prove that

H'(f'(0), #®,0,/m;*') = (0) forallp.

It is true for p=0, so we proceed to prove it by induction.
Let X, =X xySpec (0,/m?*"). Then X ,_, is a closed subscheme of X, with
the same underlying topological space. Hence by induction hypothesis we have

H'(X,,F®¢, 0,/m)) = H'(X ,_{, F ®¢,0,/m)) = (0).
On X, we have an exact sequence of sheaves
0) > mF/m'F - Fimb'F > FimbF — (0).
So from the long exact cohomology sequence it suffices to prove that for each p
* H"(X ,,m;F /m2* ' F) = (0) .

If we denote by Z the fibre f 7! (y)= X, then m?.# /m?* ' % may be considered
as an (z-module and we have:

H"X,,mF/my* '\ F) = HYZ,mF /mb* ' F) .
Let Q, denote the kernel of the surjection
FImF Q,ymo/mitt — mbF mi 1 F
We then have an exact sequence

. HYZ, F|m F @,y mom2*Y) — H(Z,m.F /mb* '\ F) - H"*(Z,Q,) .

The sheaf #/m,F ®,, m2/m2* ! is just a direct sum of %/m,#’s and therefore
its nth cohomology group vanishes by the hypothesis. The last term vanishes
since Z is n-dimensional. This proves the first assertion. For the second
assertion we replace # by ¥ =m{F. By (*) we see that ¥ satisfies the condition
of the lemma so by the first assertion we have (R"f,%),=(0).

From the long exact sequence of cohomology sheaves we get

R F)y = (R (F/mF)), — (RS (m}F)), = (0).
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But R"7'f (F/miF) is a skyscraper sheaf, whose stalk at y is
H" ' (f~'(y), #/mb.F). This completes the proof of the lemma.

COROLLARY 1.5. Let S be a scheme, X and Y S-schemes and f: X — Y a proper
S-morphism, whose fibres are at most one-dimensional. Let &% be a coherent sheaf
on X, flat over S, and consider the following two conditions:

(1) For each closed point y € Y,

HY (f'(y), F ®c, k() = (0) .

(2) For each closed point y € Y, the sheaf # ® ¢ k() is generated by its global
sections.

Then if F satisfies (1), we have
i) R'f,.F = (0).
ii) fZ is S-flat .
i) For any morphism T — S we have canonical isomorphisms
J+F ®os O (fx 1), (F®0sO7) -

If & satisfies both (1) and (2) we have
iv) The canonical map f*f,F — F is surjective.

Proor. We may assume Y and S affine. Let i be a finite affine covering of X.
The first three assertionsv follows immediately by considering the sheaves
1 €.(U, F) of alternating Cech cochains on Y. By the second part of the pre-

vious lemma and condition (2) it follows that, for each closed point x € X, we
have a surjection

f*f*'gr- - 9'®(ka(x) 2

so iv) follows by Nakayama’s lemma.

Let f: C — C' be a contraction of an n+ 1-pointed stable curve over §, s;
(1£iZn+1) the sections of C over S, and t;=s;f (1 <i<n) the sections of C’
over S. For every open U in C’, a regular function on U with at least simple
zeros at the sections t; pulls back to a regular function on f ~!(U) with at least
simple zeros at the s;’s (1<i<n). Hence we have a canonical morphism of
sheaves on C’

w: Oc(—ty— ... =) > f,0c(=s,— ... —s,) .

By definition, the geometric fibres of C — C’ are at worst PVs. Since they all
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have at least one rational point via one of the compositions s;on’ (1<i<n+1),
all fibres are at worst P'’s. Each such fibre has at most one s; (1 <i<n) on it, so
Oc(—s,—...—s,) satisfies condition (1) of Corollary 1.5. Therefore the
formation of f, commutes with base change over S. When §=Spec (k), u is
easily seen to be an isomorphism. Since an extension of fields is faithfully flat, u
is an isomorphism at every point of C’, so by Nakayama’s lemma u is always
surjective. By Corollary 1.5 ii), f,O0c(—s,—...—s,) is flat over §, so by the
same reasoning u is an isomorphism. The inverse of the isomorphism u induces
an isomorphism of sheaves on C’:

m@c'(gc'/& f*mc(—s‘ — ... —S")) oy ”mwc(gc/s, ch(—-tl - ... "t")) .
By the general theory of sheaves of modules there is a canonical isomorphism

Horrego(Qcys fxOc( =51 — .. =3,)) = fyHorno(f*Qeys, Oc(—51— ... —5,)) -

Combining this with the natural map f*Qc/s — Q¢/s We get a morphism
SuHHorrg (Qciss Oc(—$1— ... =5,)) = Homeo(Qcys, Oc(—ti— ... —1,)).
For a stable curve n: X — S, let & be the cokernel of the morphism y: Qy /s

— wys. We have
Ass Hormp, (#,0x) = Supp F N Ass Oy

[2, Chapt. IV, § 1, Prop. 10.]

Since X is flat over S, the associated points of Oy lie over the associated
points of @5. However, © is smooth at the associated points of the fibres and &#
is supported on the closed set where n is not smooth, so w}/s - Q}/s is
injective. Consider the diagram

f*'}fmﬂc(gC/Sa @C(_sl — ... “S,,)) d Jfomgc,(gc'/s, (gcl(—'tl - ... -—tn))
Al . 1
Selogs(sy+ ... +s,) ) weyslty+ ... +t,)
and let # denote the subsheaf of Hore.(Rc/s, Oc(—t;— ... —t,)) generated

by wcs(ty+ ... +t,) and the image of fv,"(wc/s(s1 +...+s,)). On the
nontrivial fibres of C — C', wcs(s;+ ... +s,) is non-canonically isomorphic
to Op, so it satisfies both conditions of Corollary 1.5. Therefore, on the
geometric fibres of C" — §, the map Sfelogs(sy+ ... +5,) ) — PR g,k factors
through wc/s(t; + . . . +t,) . By Nakayama’s lemma, then wcs(t; + ... +¢,)
~ %, so we get a global factorization which again by Nakayama’s lemma is an
isomorphism. Pullback by f gives us

[ (@es(ti+ .. +1)) < A (ocs(si+ ... +5) ) = ogslsy+...+s,) .
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By checking on the geometric fibres we see that the surjection on the right is an
isomorphism. Since for locally free sheaves f* commutes with dualization we
get an isomorphism

[rocs(ty+ ... +1t) = ocs(sy+ ... +s,) .
By the general theory of sheaves there is an induced map
wC'/S(tl +... +tn) - f*wC/S(sl + ... +S") .

Again wcs(s, + ... +s,) is trivial on the fibres of fso we may apply Corollary
1.5 and Nakayama’s lemma to show that this map, too, is an isomorphism. We
sum this up in

LemMA 1.6 (MAIN LEMMA). Consider a contraction f: C — C' as in Definition
1.3. We denote by & and F' the sheaves wcs(s;+ ... +s,) and wcs(si+ ...
+s,) respectively. Then for all k>0 we have:

a) There are canonical isomorphisms

'@k ~ k
FO = [ (F®

and
f*gw@k -~ 9,-®k'
b) R (F® = (0).
c) Rin, (F® ~ Rin, (#F'®% for i20.

ProOF. The isomorphism f*%#'® ~, %®k follows from what we have just
done. Pushing this down we at least get a map

FO > [ SN F ) [(F.

Since # is trivial on the fibres of f, so is # ®* and Corollary 1.5 applies.to # ®,
On the geometric fibres the above composition is an isomorphism and f, (¥ ®k
is flat over S. The same reasoning as before then proves a). b) is exactly the first
assertion of Corollary 1.5 and ¢) follows from a) and the Leray spectral
sequence which is degenerate by b).

DErFINITION 1.7. Let # be a coherent sheaf on a scheme X. We will say that
F is normally generated if the canonical map

r(X,#)® - rx,#

is surjective for k= 1.
For any pair of Ox-modules #,9, let S(#,9) denote the cokernel of the
map
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rX,#)rX,% - I'X,7®%).

Clearly, # is normally generated if and only if (%, # ®%) = (0) for all k> 1. We
shall need the following result of [13].

GENERALIZED LEMMA OF CASTELNUOVO. Suppose & is an invertible sheaf on a
complete scheme X offnite type over a field k such that I' (X, %) has no base
points and suppose ¥ is a coherent sheaf on X such that

H(X,FQL ) = (0) for i=1.

Then
(@) HX, FRFL) = (0) for i+j=0, i=1.
(b) S(FRZL, L) = (0) fori=0.

THEOREM 1.8. Let C be an n-pointed stable curve over Spec (k) with
distinguished k-valued points P,,...,P,. We denote by ¥ the invertible sheaf

&L = wci(D),

where D=P;+P,+ ... +P
Then we have

n

a) H'(C,£®™=(0) for m=2.
b) I'(C, £®™) is base-point-free for m=2.
c) £®™ is normally generated for m>3.

Proor. By the Kiinneth theorem we may assume that k is algebraically
closed. Let x be a node of C. We will call x a disconnecting node if B,(C), the
blowing up of C with center x, is disconnected. We first prove the theorem in
case C has no disconnecting nodes. Let x be a node of C. From the exact
sequence

0) = Oc — pyOgcy— k- (0),
we get x(Oc)=x(0p ) — 1. Since B,(C) is connected, we have
dim H'(B,(C), Op () = dim H'(C,00) -

From this formula we see that a curve of genus 0 without disconnecting nodes
is nonsingular, i.e., P* and a curve of genus 1 is either nonsingular or a “ring” of
PVs as in Figure 2 below.

For g=0, C=P! and the theorem is clear. When g=1 and C is nonsingular,
the theorem is classical. Consider, then, a “ring” of P"’s. In a noncanonical way,
wcx~0c, and since there are lots of distinguished points spread around, £
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N/

Figure 2.

restricted to each P! has degree =1. Hence I'(C,.?) is base-point-free and
H'(C, #)=(0). The theorem then follows from Castelnuovo’s Lemma. When
g =2, we have the following result. If E is an effective divisor on C, then

I'(wc(E)) is base-point-free for deg E=0 or degE22,
H'(wc(E) = 0 if degE=1.

ProOOF. Let x be a k-rational (closed) point of C. From the short exact
sequence

(0) » mw(E) > w(E) > o(E)®k — (0)
we get the long exact sequence
= I'(w(E)) = I'(0(E)®k) > H' (m.w(E)) %> H'(w(E)) - (0) .

Hence I'(w(E)) is base-point-free if and only if « is an isomorphism for all
points x € C. By duality, a is an isomorphism, if and only if

dim Horre g (m,, O(—E)) = dim r(C,0(—E)).
But we have

dim I'(C, O(— E + x)), x nonsingular

99720 (My, O(— E)) {dlm I'(B,(C),0p (—E)), x singular .

The result follows, since B, (C) is connected.

This proves a) and b) of the theorem. To prove c), consider the diagram
I'(*"(kmD))® I (w)® I (w™~ ' (mD)) — TI'(w*"(kmD))® I (™ (mD))

L b
[(@"* ' (kmD)®I (@™~ (mD)) 4> I(w**™((k+1)mD)).
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By Castelnuovo’s Lemma, o is surjective, since I'(w) is base-point-free and
H'(w*™~'(kmD)) = (0) for k=1 and m=3.
B is surjective, since I'(w™ ! (mD)) is base-point-free for m=2 and
H'(o'((k—1)mD)) = (0) for r22.

Hence y is surjective for all k=1 and m>3.

We now prove the theorem by induction on the number of disconnecting
nodes. Let x be a disconnecting node of C, C,, and C, the two connected
components of B,(C). If x, (respectively x,) is the point of C, (respectively C,)
which maps to x, and if we take x, (respectively x,) to be an extra distinguished
point on C, (respectively C,), we see that C, is an [+ 1-pointed stable curve
and C, is an [, + 1-pointed stable curve, where I, +1, =n. Let £, (respectively
Z,) be the sheaf w¢ (D,) (respectively wc,(D,)), where D, (respectively D,) is
the distinguished divisor of C, (respectively C,). If i; and i, are the closed
immersions of C, and C, into C, we have by property b) of the dualizing
sheaves

X ~ ZP", p=1,2.

Moreover, both C, and C, have fewer disconnecting nodes than C, so the
theorem holds for ¥, and %, by the induction hypothesis.
We have an exact sequence

0) = I'(L™ - M(&NOI (LT = kx) > H'(L™) —» H(LT)@H' (L)
— (0).

For m22, a,, is surjective by part b) of the theorem and H'(£%)=(0) for B
=1,2 by part a) of the theorem. This proves a) for Z. Part b) of the theorem is
clear, since a section of ¥™ is the same as a pair of sections (s,t) with
se I'(Z7) and t € I' (&%) such that s(x,)=t(x,). To prove part c) let m=3 and
k=1 and consider a section s of I'(£L**1™) such that s(y)=0 for all points
y € C,. Let sy,. . .,s, be sections of I'(#%™) and ¢t,,. . .,t, be sections of I'(£7T)
such that s|¢ is the image of s, ®t, + ... +5,®t, by the canonical map. Since
I'(£7) is base-point-free we can find sections u of I'(#%™) and v of I'(#7) such
that u®v (x,)=+ (0). Hence there are scalars a,,...,q,, b,,...,b, such that

au(xy) = si(x;) and  bp(x,) = ti(x,), 1Zisr.

The sections §; defined as s; on C, and as qu on C, and the sections t; defined
as t;on C, and as by on C, are global sections of £*™ and #™, respectively. By
the canonical map the section

51 ®0 +... +5,®L € (L™ QT (L™
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maps to s because Y a;b;=0. This argument holds just as well for a section s of
r(Z**Ym) which vanishes on C,. It follows that the image of the map

r(gkm)@r(grn)_) r(g(k#—l)m)

contains all sections which vanish at x. The theorem will follows, if we can
show that there is at least one section in the image that does not vanish at x,
but this is clear since £¢ is base-point-free.

COROLLARY 1.9. If C and & are as in Theorem 1.8, then ™ is very ample for
k=3.

Proor. & restricted to each irreducible component has positive degree and
is therefore ample. Furthermore, it is clear that a normally generated ample
sheaf is very ample.

CoroLLARY 1.10. Let C be an n+ 1-pointed stable curve over a field k with
distinguished points P,,...,P,,, and such that 2g—2+n>0. Then the sheaf
wcik(Py+ ... +P,) satisfies a), b), and c) of Theorem 1.8.

ProoF. Clear' by Lemma 1.6 and the theorem.

CoOROLLARY 1.11. Let n: C — S be an n+ 1-pointed stable curve with 2g—2

+n>0. Then the sheaf n,(wc/s(s;+ . .. +5,)®™) is locally free of rank (2g—2
+nm—g+1 for m=2.

Proor. Clear, since C is flat over S and

R'm,(wcs(si+ ... +5)®") = (0) for m22.

2. Contraction and stabilization.

In this paragraph we will constantly make use of the following fact:
Let & be a coherent sheaf on a scheme Y, then we have a one to one
correspondence:

Triples consisting of:
‘1)amapf:S—+Y, ]

2) an invertible sheaf ¥ on S / -
l 3) an epimorphism a: f*# — &

S-valued points
>
of Prof(Sym F)

Two triples (f, #,a) and (f’, &',a) are equivalent, if f=f" and kera=kera'.
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ProposITION 2.1. Given any n+ 1-pointed stable curve X over S with2g—2+n
>0, there is one and up to canonical isomorphism only one contraction.

Proor. Let n: X — S be the curve and define
S =, (oxs(s;+ ... +5)%)
¥ = (—D S

i20

By Corollary 1.11, &' is a locally free sheaf on S for i>2.
We define

XC
Y

I

Proj(F)
Proj(Sym 7).

I

By Theorem 1.8. and Corollary 1.5. we have a surjection:
(L) > ocsls;+ ... +5,)®?

ie. a morphism p: X — Y. But since wy;(s+ ... +5,)%* is normally
generated by Corollary 1.9, X¢ is exactly the image of this morphism, and X* is
flat over S, since &' is flat for i>2.

For uniqueness consider a diagram:

X
p| .
X S, X
s (x| l
S = S

where ¢ is a contraction. We have to prove that a map f exists making the
diagram commutative.
By Lemma 1.6 c) we have an isomorphism:

Ma@x/s(sp+ ... +5)8 & w,wxs(si+. .. +5,)®,
Hence by Corollary 1.5 and Theorem 1.8 a surjection:
n*(myoxs(sy+ ... +5)%) > wxs(si+. .. +5,)®F
and this is f.
In the language of stacks, the proposition says that contraction is a 1-

morphism of stacks:
c: Mg,n+1 - Zg,n .
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The rest of this paragraph will be devoted to the construction of an inverse to ¢
which we call stabilization:

St Zyn— Mg iy

LEMMA 2.2. Let S be a noetherian scheme, and n: X — S a flat family of
reduced curves with at most ordinary double points. Let A: S — X be a section
defined by an Ox-ideal ¢. Then

1) # is stably reflexive with respect to m [see appendix].

2) The subsheaf ¢’ of the total quotient ring sheaf K x consisting of sections
that multiply ¢ into O is isomorphic to the dual of ¢, that is §'~ ¢
='f07330x(/’(9x)~

3) A4*(F /Oy) is an invertible sheaf on S.

Proor. The theorem is of local nature so let s be a point of S such that x
= A(s) is an ordinary double point of the fibre ' (s), o the completion of the
local ring O ,, with residue field k. We consider the category A of Artin local o-
algebras with residue field k and the functor G on A defined by:

Cartesian diagrams of the form

k[[x,y1)/(x-y) <+ B

G(4) = sl1 ah modulo
isomorphisms
ke——2—4

where g(x)=g(y)=0 and gp=ph

It follows from the general theory of deformations that there exists a versal
deformation

k[[xy1)/(x-y) <+ 2
el BT

k «—2— of

where # =o[[s,t,x,y]]/(xy—st), & =0o[[s,t]], and h(x)=s, h(y)=t.
This means that there exist two element b,c in o such that 0 X.x
~o[[x,y]]/(xy—bc) and # corresponds to the ideal generated by x—b and y

—c. The Lemma now follows from Proposition 6 of the appendix and the
example.
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DEFINITION 2.3 (The stabilization morphism). Consider an S-valued point of
Z, . ie. an n-pointed stable curve n: X — S together with n sections s,,.. ., s,
and an extra section 4. Let ¢ be the Oy-ideal defining 4, and define the sheaf
X on X via the exact sequence

0 Ox 2 # ®Ox(s,+5,4...45) > A =0
where ¢ is the “diagonal” &(t)= (t, ¢).
Then

X* = Proj(SymX) .

It is clear by Lemma 2.2 that for any T— S we have a canonical
isomorphism

Yrs: (X)r= (X7

and that the y’s satisfy the “cocycle” condition for any pair of morphisms
U->T,T—S.

THEOREM 2.4. With notations as in Definition 2.3 the sections s,,. . .,s, and 4
have unique liftings s},5%,. . ., S, 4+, to X* making X* an n+ 1-pointed stable curve
and p: X* — X a contraction, i.e. the assignment X° to X is a 1-morphism of
stacks

S Zyy > Mgty

Proor. The theorem is local on S. We must study the map p in the
neighbourhood of points, where 4 meets non-smooth points of the fibre and in
the neighbourhood of points, where 4 meets one of the other sections. Since n
is smooth near the s’s we may study these cases separately.

Cast 1. 4 meets a non-smooth point x in the fibre.
In this case we have a completed fibre-product diagram

Xp-r(g = X°
2] pl
X, = X

0, ~ o[[x,y11/(xy —bc)
and we have an exact sequence
0.0, 0,00, (#,) -0,

where
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= (1)

(note that in this case we have ¢ =~X).

Therefore X’lp—n(x) is covered by two affines Spec f(R,) and Spec f(R,),
where

R,
R,

@x{s}/(x + bs, ¢ — ys)

o[[yI1{s}/(ys—<)
o[[x]]{t}/(xt+b) .

Hence we see that X* — S is a flat family of reduced curves with at most
ordinary double points.

The surjection A*(A) — A*(AH/Ox)=A*(F /Ox) gives us a lifting of the
section 4. Recall Lemma 2.2 that 4*(¢ /0Oy) is an invertible sheaf on S.

In the coordinates we have chosen s, , , (p(x)) is the point given by s=t= —1.
In particular X* — S is smooth at s, ., (p(x)).

Ot} (xt+b,ct —y)

Caske II. In this case 4 is a divisor. Assuming only one section s we have
0 Ox > Ox(HBOx(s) > A — 0.

It is therefore clear that the fibres of p are at most projective lines, so by
Corollary 1.5, X* — S is a flat family of curves with at most ¢ rdinary double
points.

The composition

F L, ST DO (s, ... +5,) > A — 0

gives us an injection # <= J and it is clear that the cokernel is simply Oy (s,
+5,+ ... +s,)lUr, 5. Hence for each i we have surjections s¥*(X") — s*0Ox(s,

. +s,) and this defines the liftings of the s;s. The picture for §=Spec (k)
looks as follows in Figure 3.

Case (I)

LN P
/ S/n+l\_— A

Case (II)

Figure 3.

Math Scand 52 12
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LEMMA 2.5. Consider a diagram

Y ‘o xs
al r|

g X = X s
l l
S = S

where q is a contraction and p is as in Theorem 2.4. Then there is a unique
isomorphism f: Y — X* making the diagram commutative.
Proor. By Corollary 1.5 we have isomorphisms
Ox = q,0y
and
Ox(—=s;—...—=5,) " q,0p(—t;—...—1t,).

Letxe X,a€e #,,beq,Oy(t,+y—t;—...—t,) Then a may be considered as
an element of q,0y(—t,,,) and so

abe q,Oy(—t,—...—t) = Ox(—=s,—...—5,),
i.e. we have a morphism of sheaves
4 Oy(tysi—ti— ... —t) > F (—=s;—...—5,).

We leave to the reader to check that this is an isomorphism on the geometric
fibres of n so by flatness it is an isomorphism. We may put this together in a
commutative diagram with exact rows.

(O) - q*wY(—tl e '—tn) —Lh, qtmy(1n+l =t —... ’%)@‘I*@Y "(._“_’ q*@Y(tn+l) - (0)
2 2 2
0) = Ox(=s,—...=5) —— F(=5,—...—5)®0x > (0).

By Corollary 1.5 the composition
* A = q*q,Oy(t, 1) = Oy(t,y)
is a surjection and this defines a morphism
f: Yo X5,

f is easily seen to be an isomorphism on the geometric fibres of n so by
flatness f is an isomorphism everywhere. For uniqueness we simply mention
that an automorphism of P! fixing three distinct points is the identity.
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COROLLARY 2.6. Contraction and stabilization are inverse to each other.

THEOREM 2.7. For all relevant g,n, M, , is an algebraic stack, proper and
smooth over Spec (Z). The substack S, , consisting of singular curves is a divisor
with normal crossings relative to Spec (Z). (We refer to [3] for definitions.)

Proor. For g=2, n=0 the result is proved in Theorem 5.2 of [3]. We
consider first the cases g=0, n=3, and g=1, n=1, M, 3=Spec (Z), so here is
nothing to prove. For g=1, n=1 we make use of the clutching morphism of the
next paragraph. Consider the 3-pointed elliptic curve E having three rational
components as in Figure 4 below.

Figure 4.

Clearly E has no non-trivial automorphisms leaving the dstinguished points
fixed, and so clutching defines a closed immersion M; ; = M, ,.
Assuming for the moment that the theorem is proved for M, ,, we see
that M, , in M, , is the intersection of four branches of S, ,, and §, , is the
intersection with a fifth branch. See the example at the end of section 3. This
proves the theorem for M, ,. We then proceed by induction with respect to n,
having in mind that M, ,,, is the universal n-pointed curve. The divisor

Sener = 7 (S U U St

where a “point” in Sﬁf',:';‘ 1} corresponds to a curve of the type in Figure 5.
Since n: M, ., — M, , is smooth near the sections Sé';',,";‘ 1} we only have to
prove that n“(Sg,,,) has normal crossings. Near a singular point of n~'(S, ,)
the morphism 7 looks formally like

o[[ty ... 411 = o[[x, ¥ty .. ti...,t1],

where t; — x'y. S, , has local equation t,-t,...t, so n~'(S,,) has local
equation x-y-t, ...t ...t
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Figure 5.

3. The clutching morphism.

In this section we will study families of curves without stability conditions.

DEeFINITION 3.1. A prestable curve is a flat and proper morphism n: X — S
such that the geometric fibres of n are reduced curves with at most ordinary
double points. No connectedness is assumed.

Recall that for any morphism X — S Lichtenbaum and Schlessinger [8]
have defined the notion of a cotangent complex L.(X/S). In general this
complex is defined only locally on X, but it is unique up to homotopy, so it
defines cotangent sheaves. For any coherent # on X, we have for 05i<2

T{(X/S,F) = H(#ormeg, (L. (X/S), F))
T,(X/S,#) = H{(L.(X/S)®gy F) .

ProposiTiON 3.2. If n: X — S is a prestable curve, then

a) To(X/S,0x)=QY/s is flat over S,
b) Ti(X/S, F) = Jorf (x5, F),
¢) T,(X/S,F)=(0) for all F.

PRroOF. Since a reduced curve with at most ordinary double points is locally
a complete intersection and the morphism = is flat, it follows that = is locally a
complete intersection morphism. That means that we have factorisations

X:UC‘—»A','/
LI
SoV

where the ideal defining U, .#, is generated by a regular sequence. By [8] we
have T>=T,=0 and
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(*) 0) = i*(F) > i*Qy v — (0)

is a cotangent complex for the mofphism U-V.

To prove a) and b) we have to show that d is universally injective. i*(.#)
and
i*Qlyy v are flat over Oy and the cotangent complex commutes with base
change, since 7 is flat so in fact all we have to prove is that d is injective.
Let X" =T,(U/V,0Oy)=kerd. By the Jacobian criterion of smoothness, %,
= (0) for all x € U, where = is smooth. So if 4< U is the closed subset of U,
where = is not smooth, we have

Supp(X) < 4.
Since i*(#) is locally free and )¢ <i*(#), we have
Ass (X)) < Ass (U).
Since U is flat over V we have [2, Chap. IV, 2.6.2]

Ass (U) = Ass (U)) .
(V) yeALst(V) (u,)

Therefore since the fibres of n are reduced
ANAss(U) = .
Hence # = (0) and d is injective.
COROLLARY 3.3. Let m: X — S be a prestable curve, & a locally free sheaf on

X,and dy: &, — Q%5 a surjection. Then &, =ker (d,) is locally free and d,: &,
— &y, — (0) is a cotangent complex for the morphism m.

Let n: X — S be a prestable curve, and s,,s,: S — X two non-crossing
sections such that n is smooth at all points s;(t) (t€S).

THEOREM 3.4. With the notations above there is a diagram

X 25 X
5 (ln n'l)s
S =S

such that

(1) ps,=ps, and p is universal with respect to this property.

(2) p is a finite morphism.

(3) If'tis a geometric point of S, the fibre X is obtained from X, by identifying
the two points s,(t) and s,(t) in such a way that the image point is an ordinary
double point.
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(4) As a topological space, X' is the quotient of X under the equivalence
relation s, (t)~s,(t) for all t € S.
(5) If U is open in X' and V=p~'(U), then

rU,0x) = (he L (V,0x) | sth)y=s3(h)} .

(6) The morphism n': X' — S is flat, so by (3), n’ is again a prestable curve.

Proor. Properties (4) and (5) determine X' as a ringed space. To show that
X' is a scheme satisfying (1), (4), and (5), all we have show is that X’ is locally
affine.

If x € X', and p~!(x) does not meet any of the sections, we can clearly find
an affine neighbourhood of x.

Suppose therefore that x =p,s, (t). Since = is flat and any curve is projective,
we may assume that n is locally projective. Hence we can find an affine Uc X
containing s,(t) and s,(¢). Let V=S be an open affine contained in
s (U)Ns; 1(U) and containing t. The restriction of = to W=UNn"1(V)
yields an affine morphism W — ¥ with two disjoint regular sections. Localizing
further, if necessary, we may assume that W= Spec (B), V=Spec (4), and that
the sections are defined by two principal ideals (f;) and (f;) of B.

We have two split-exact sequences of A-modules

©0—>BJLsB A (0), i=1,2.

Since the sections do not cross, we have (f,)+ (f2)=B, so (f;})N (f2)= (/1,./2)
and the ring of invariants is given by

B = A@(fnfz)B .

B’ is isomorphic to B as an A-module, hence B’ is flat over A. It is easy to check
that Spec (B') satisfies (1), (4), (6) of the theorem for the morphism W — V.
Suppose B=A[x,,...,x,] and write

xl' = ali+f1b]|‘ = a2i+f2b2i

with a;; € 4, b;;€ B .
The elements y;,=x? — (a,;+a,;)x; are in B’, hence

Aly,,...,y.] = B' <« B < B.

B is a finite B”"-module, and since A is noetherian, B’ is a finitely generated A-
algebra and B is a finite B’-module. This proves (2).

To show (3), note first that the construction of B’ commutes with base
change, hence we may assume that A=k is an algebraically closed field. If B
denotes the completion of B with respect to the ideal (f;'f,) we have an
isomorphism.
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k([x11@K[D1] ~ B

sending x to f; and y to f,. The completion of B’ with respect to the ideal
f1f2B, corresponds then to the kernel of the map

' KIxT1@KIDT] — k
sending (a,b) to a—b and this is just k[[x,y]]/(xy).

THeOREM 3.5. (The clutching sequence). We consider the diagram as in 3.4

X 2 X
“(ln wl)s
S =S

and denote x" the conormal bundle of S in X via the section s,
® = sF(Qys) & sH(wys) ~ s#(Ox(—=D)),

where D; is the divisor on X defined by s;.
Then on X' we have a short exact sequence (the clutching sequence)

0) - 5,(x@x%?) - Qx5 — P, QRxss — (0).

PROOF. It turns out to be a bit messy to define the map s, (¥ ®x?) - Qx5
so we take double coverings
Y - Y
o ol
X -2 X
where Y=X11X,

s, in first factor ~ s, in second
Yy =Xx[]x/[". 2 .
s, in first factor ~ s, in second

The section s: S — X’ lifts to two sections ¢, and t, in Y.
The picture is given by Figure 6.
Assuming everything to be affine we have

S = Spec(T), X = Spec(R), Y = Spec(R@R).

The Z/2Z action simply interchanges the factors. The four sections of Y are
defined by non-zero-divisors (f;,1) and (1, f), i=1,2.
The affine sets

Y,
Y

Spec (R;, ®R,)
Spec (R;,®R;)

]
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Figure 6.

are invariant sets for the map q. Clutching the sections of Y, and Y, gives us an

affine covering Y and Y, of Y’, where
Y; = Spec(S)) i=1,2

and
Sy = {wv) € R, @Ry, | s3w)=5} W)}
S, = {wve R, ®R;, | stw=s10)} .

S, is an R, -algebra via u — (u,n*s3u) and an R -algebra via v
Hence we have a homomorphism

R, ®TR;, — §;.
We leave to the reader to check that
0) - (/2®f1) > R, ®71R;, = §; — (0)
We leave to the reader to check that
0) = (2®f) = R, ®1R;, > §; — (0)

is exact.
Similarly we have the exact sequence

©) - (1®f) = R,®TR;, = S, — (0).

By flatness f; ® f; is not a zero-divisor in R; ®R,, so we have

— (n*sfo,v).

® - (LR (L2®)) = D, or, TOR, &R, S1 = 51— 0.
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Using the canonical isomorphism

QRh@Rh/T ~ Rf1®TQR/1/T®QR/|/T®TRfZ s
where d(u®v)= (u@dv, du®v).

We may write (*) in the form

(**) (0) = (L®N)/(2®£1) > (S, ®r, Qr, /DD (g, /T®r, S1) - Q57— (),

where d(f,® f1)= ((f,,0®df,,df,® (0,f,)) .

Hence in Qg we have

(f2,00d(0, ) = —(0,/1)d(/>,0) .

From the canonical isomorphism

Qr,or,m X Qo 1@, 7

(module multiplication componentwise), we see from (**) that the natural map

Qs,/T - QR,,@R,Z/T

is surjective and that the kernel is generated by the element (0, f,)d(f,,0)=
—(f3,0)d(0, f,) that is we have a right exact sequence

iR /IR, @ foR, [f3R;, -2 Qg 1 — Qr, or, T 0,

where o, (u®v)= (0, u)d(v,0).
The kernel of Qg ;v — Qg g, 7 is a flat T-module and the left hand side of
the sequence above is a locally free rank 1 T-module. Hence a, is injective.
On Y’ we have a similar exact sequence

0 = (iR /fIR)® (2R} /fiR;) —4 Q51 = Qr or, T~ (0),

where o, (u®uv)=(u, 0)d(0, v).
Since both a, and a, vanish on Y| N Y?, they patch up to give a global map

0) = (1)) (V@) D (1), (' @%?) 2> Qs = ¢4 Ry;5s = (0)

o*s, (¥ @x?) .

By definition we see that a is Z/2Z invariant and is therefore induced by a map
o 1 s, (KV@x%P) > Qx5
Since étale morphisms are faithfully flat
0) - s, (xV@%?) = Qx5 — P, Qx5 — (0)

is exact.
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REMARK. Let # be the sheaf of ideals on X’ defining the section s. We have
natural maps

P FIF > py(Sy/IT) = s, xV

pr: F1FP > (I ID) = s, 6P
One checks that these maps give an isomorphism

F15? = s,V Dx?) .
Hence we have an isomorphism
A2 (F1 77 = 5, (V" @x?)
defined by
UAD P DU@p0—p 0@ pyii .

The map o is the composition

s, (K @x?) ~ A2(F/F%) L Qs

where (i A 0)=udv.

DEFINITION 3.6. Let

H = {hy,hy,h,,.. . h,}, hy<h,<...<h

ny

and

K = {ky,ks,. . Ky}, ky<ky<...<k,,

be disjoint subsets of {1,2,...,n}, n, +n,=n.
Let g, and g, be two non negative integers with g, + g, =g. Then for each
quadruple g,,g,, H, K we have a morphism of stacks

Yg.gu H.K * Mg,,n,+l XMgz,nz-H - Mg.n+2 :

L{/e‘";_ﬂ‘

n, n,+1

n+1

n+2

Figure 7.



THE PROJECTIVITY OF THE MODULI SPACE OF STABLE CURVES, II 187

This is obtained by attaching a pair of projective lines and renumbering the
sections as best described by the picture in Figure 7.
We define

Yo: Mg_ynr2 = Mg i

as described by Figure 8.

n+1 n+1

n+2

Figure 8.

Contracting the two last sections gives a morphism

Mg,n+2 - Mg_n .

7Tn«#l.n-’»Z :

We denote by B the composition f=m,,; ,4,°7.
THEOREM 3.7. y is a closed immersion and B is finite.

Proor. Clearly B is quasifinite and n,,,, , ., is proper, so it suffices to prove

that y is a closed immersion.
Let n: C — S be an n+2-pointed stable curve with sections s,,...,S,, .

Contracting s, 4, S,4+, and both s,,, and s,,, gives us a diagram
cC 2 C
T
C// p’ CHI n'’’ S .
On C’ and C” we have extra sections 4’ =pos,, , and 4" =p’os, . , respectively.
On C" we have two extra sections namely

" — "o —_— iy
P'PSns1 = P'DP'Sayr = p'4

and
P'PSus2 = P'P'sprr = p'4".

We define three closed subschemes of S via the cartesian diagrams:

T! -, S Tn c S Trn [SEN S

! = ! e | e

Coing = C' Coing — C" S = C”
P A"
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and finally
T=TxgT xsT".

Note that for any stable curve X — S, X, is defined by the sheaf of ideals
image of Qy/s®wy s in Oy.

Let 4" denote the section of C"’ x T, and let #', #”, and #"" be the sheaf of
ideals defining the sections 4’, A", and A" over T, respectively.

By uniqueness of stabilization we have

E, = p (&) = Proj (Fysm(F" | F))
Ez — pr— 1 (AH) ~ Proj (yym(fnv/jujuv))
E3 — p/u— 1 (All/) ~ E4 - pl//—l(Arrr) ~ Proj (yym(]/uv/jn/j/n')) .

Over T we have the picture in Figure 9.

A/u

< .o

Sn+2

E,
Figure 9.

Consider the general situation where X — S is a stable curve with a section 4.
Let s be a point in S and x = A4(s) a point in X such that X has a double point
with rational tangents at x. If . is the ideal defining the section in the local ring
R=0y ,, we have a map

F®@rSF — R.
We denote by #.# the image of this map. Clearly S #5 .
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If we take completions with respect to the maximal ideal m=m, in R we have
by general theory of Zariski rings

FI )Y 2 I (F) =) .
So we have a diagram
S eI SF) =(ss)
U U
S IS .

By the example in the appendix .# =.# (#) and so since R is a faithfully flat
R-algebra # =.# . The exact sequence

(*) 0)—> R/F > I /FF — F R > (0)

shows that .# /#.# is locally free of rank 2. If X, does not have rational
tangents at x, there is an étale neighbourhood §" — S of S such that the
sequence (*) is exact on Xg; hence (*) is exact in any case, and the E’s are flat
over T. p and p’" induce proper maps E;, — E; and E, — E,. On the geometric
fibres they are isomorphism, so by Nakayama’s lemma they are closed
immersions. By flatness they are isomorphisms.

The isomorphisms E, ~ E;~ E,~ E, shows that they all have exactly three
sections. Hence they are all isomorphic to P¥. In particular we have three extra
sections t,, t,, and t; in Cp, that is in Figure 10.

Figure 10.

The three schemes Cy\t,(T), E,, and E, patched along their common open.
sets yields a stable curve C; over T with n+4 sections. Contracting the two
last sections in Cr gives us a morphism:
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T—>M=M_1:2UU Mg, :1%Mg, 044

and the diagram
T = §

! l
M 1 Mg,n+2

commutes by the universal property (1) of the clutching construction. It is
cartesian by the very definition of T.

DeFiNiTION 3.8, Let H={h,,h,,...,h,} and K={k,k,,...,k,} be
complementary subsets of {1,2,...,n} with hy <h,<...<h, and k, <k,<...
<k,, Let g, and g, be integers with g=g, +g,. The finite morphisms

ﬁO : Mg—l,n+2 - Mg,n

and

ﬂg,,g,,H,K : Mgh"l"'l X Mgzv"z"‘l - MS’"

define closed substacks 57 , and S, . p x of M, ,, and these are the irreducible
components of S, ,. When g, =0 we write for short Sg , H,K=S£ » OF simply
SH. If also g, =0, then H should contain at most one of the integers 1, 2, 3.

COROLLARY 3.9.

a) The clutching morphism B is finite and unramified.
b) When g, +g, or n*0, B, . u k is a closed immersion.

Proor. Let X be a scheme and n: C — X an n-pointed stable curve and let
D be the curve over C obtained from Cx 5 C by stabilization. Since the
geometric fibres of n are reduced with ordinary double points, Cg,, — X is
unramified. Define the scheme T by the fibre product

T — X
! l
M £ M,,
Then T— X factors as follows.
T <5 Dsing Xc Csing - Csing - X

and this proves a); b) is clear.

We conclude this section with a picture of the zoo of 2-pointed stable curves
of genus 2. S, , and its intersections define a stratification of M, , into locally
closed non-singular connected strata as follows



THE PROJECTIVITY OF THE MODULI SPACE OF STABLE CURVES, II 191

dimension 54 3 2 1 0
number of components 1 4 13 24 23 10.

The 23 components of dimension 1 corresbond to the curves in Figure 11.

AR K K

%
3

Figure 11.

The 10 components of dimension 0 correspond to the curves in Figure 12.

b S
e oy F g

Figure 12.

The last components here are isomorphic to M, ; and S, ; respectively.
(A dotted line stands for an elliptic curve. The number 2 indicates that
by ordering the points we actually have 2 components of this type).

Appendix. Stably reflexive modules.

Let R and S be noetherian rings and h: S — R a ring homomorphism
making R into a flat S-algebra.

DErFINITION 1. A noetherian R-module M is stably reflexive with respect to
the homomorphism h, or if there can be no doubt about the homomorphism
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we say simply that M is stably reflexive with respect to S, if M satisfies the
equivalent properties of the theorem below.
THEOREM 2. The following are equivalent.
1) a) For all i>0 and all S-modules N
Extik (M,R®gN) = (0).
b) The canonical map
omn: M ®sN — Homg (M,R®sN)
is an isomorphism.
a’) For all i>0 and all S-modules N
Exti (M ,R®gN) = (0).
b’) The canonical map
YN : M®sN — Homg (M ,R®gN)

is an isomorphism.

2) There exists an infinite complex of finite locally free R-modules
(* ... E?4d}, g1 &', po &, p1 &, g2,
such that for all S-modules N,
E®sN and E "®gN are acyclic and M~imd° .

3. There exists an infinite acyclic complex (*) such that if B'=imd', then
a) B and B" are S-flat,
b) Extk (B, R)=Exty (B’ ,R)=(0) for i>0,
c) M=B°

Proor. We do a cyclic proof in the order

3=2=1=3.
3 = 2 is immediate .
By 2) we have exact sequences

(*)w 0 > M®sN — E'®sN — E?@gN —
(* )y ) » M ®sN — E” @N —» E"V®gN — ...
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Since the canonical map
Yen: FQgN — Homg (F,R® N)

is an isomorphism when F is a finite locally free R-module, 1) follows from the
diagrams:

(*)n 0) — M®sN - E'®sN — E’®¢N - ...
| l [

(**)n (0) » Homg (M',R®gN) — Homg (E'",R®5N) — Homg (E2,R®sN) — ...

* 0 — M ®sN - E” ®sN -  EV®N ...
} l |

(** )y (0) > Homg (M,R®3N) — Homg (E°,R®3N) — Homgx (E"',R®sN) — ...

Note that (**)y and (**")y are left exact by (*)s and (*")s and general facts
about Hom.
To show 1) = 3) note first that b’) with N=S§ tells us that M~M ", and
therefore the definition is completely symmetric with respect to M and M .
Since M is noetherian, so is M and we can find locally free resolutions of
finite R-modules of the form:

Lo ETP AL, ETU 4, B0 M (0)

R AN M AR /A GNY VAN B

By 1) (**)y and (**V)N are exact and in the two diagrams above the left
vertical arrows are isomorphisms. Hence we have (*)y and (* )y exact for
all N.

Let N —» N’ be an injection of S-modules then by (*)y and (*)y-
0) > M®sN — E'®N

| [

(0) > M®sN' — E'®sN’.
Now R is S-flat so E! is S flat and we see from the diagram that M is S-flat
too. By the remark above, M is S-flat as well.
LEMMA. Let (0) > M" —- M — M’ — (0) be a short exact sequence of R-

modules such that M and M’ satisfies 1), then M" satisfies 1).

Math. Scand. 52 — 13
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ProoF. 1a) is clear and from the two diagrams

- Tor$ (M"" N) - M~ ®sN - M ®sN - M” ®sN - 0)
~ l“' l‘PM”.N
(0) — Hom (M',R®sN) — Hom (M,R®sN) - Hom (M",R®sN) — (0)
) — M'®sN - M®gN - M ®sN - 0)
[ Warew I~ I~
0) — Hom (M ,R®3N) - Hom (M ,R®sN) - Hom (M~ ,R®sN) — Exty(M" ,R®sN) —

we see that the canonical maps ¢y vy and Yy v are isomorphisms and that
Extk (M",R®sN)=0 for all N. For i>1 we have exact sequences
(0) = Extg ! (M ,R®gN) — Exth (M" ,R®sN) — Exth (M ,R®sN) —

and the lemma is proved.

Back to proving 3). Combining the resolution ... - E™! - E° > M
— (0) and the exact sequence (*)s we get an infinite acyclic complex (*). If B
denotes the image of d' it follows by the Lemma that B’ satisfies 1) for i <0 and
(imd") satisfies 1) for i=0. However it is clear that (imd* )  ~ B for i=0 so B’
satisfies 1) for i>0 too.

COROLLARY 3. Given a short exact sequence of finite R-modules:
0—->M ->M-—->M-— (0

with M’ stably reflexive with respect to S. Then M" is stably reflexive with
respect to S if and only if M is.

PropOSITION 4. If M is S-stably reflexive, then for any homomorphism S — T
the Rrymodule M 1, is T-stably reflexive and

(* M ®sT = Homg,,, (M1, R®sT) = (M(1) .

PROPOSITION 5. Given S, R and M as before, then M is stably reflexive with
respect to S if and only if for all prime ideals pc R, M, is stably reflexive with
respect to Sy-1,.

Proor. For noetherian M it is well known that all the functors occuring in
property 1) of Theorem 2, commute with localization.

PROPOSITION 6. Suppose S and R are local noetherian rings and h: S — R
a local homomorphism. The following properties are equivalent:
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a) M is S-stably reflexive,
b) M is S-stably reflexive,
¢) M is S-stably reflexive.

Proor. Bourbaki [2, Chap. III, 54.4.]

ReMARK. In view of these propositions, it is clear that stable reflexivity is a
property of coherent sheaves with respect to a morphism. Moreover the
property is local in the Zariski topology as well as in the étale topology.

We leave as exercise the following “local criterion of stable reflexivity”.

ProrosiTiON 7. Given S, R, and M as above and let § be an ideal of S
contained in the radical of S. Denote by S, R,, and M, S/ #*, R®sS/#*, and
M®S/ #* respectively. Then M is stably reflexive with respect to S, if and only
if, for each k, M, is stably reflexive with respect to S,.

Example of a stably reflexive module.
Let S be a ring, b and ¢ elements of S, and let R be the ring:
R = S[x,yl/(xy—bc) .

Note that every element u € R can be written uniquely in the form

U= .. Fu_ X"+ .. tu_ X Hu_ x+ugtuy+uyi+. ..
with the u,’s all in S, and all but a finite number equal to zero. It will be
convenient to write the elements of R as columns
-
U_;
Uy
u=1\ ug
uy
u

|

Let E be R?, «, B, p, and q endomorphisms of E given by:

() () () ()
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LEMMA. The diagram
~E=*sES E*»EL, E-*>
I A
> E-Y, Efay Ey E Ly E Aoy
commutes and has exact rows.
Proor. Commutativity is straightforward to check. Considering E as a free
S-module the elements of E can be written as columns

U_y
Uo
uy
u
()-
Uy
Vo
Uy
L
We may then regard o and B as infinite matrixes:
[ —-b| 0 | O bc 0/0|0 ]
0 [-b| O bc| 00
0 0 |-b 0{1]0
1
o =
-1
0 |[-1] 0 c 0
0 0 | —bc 0fc
| 0 0 0 —bc 010
—clo]o be 0]0]0 ]
0 |—c| O bc|{0]0
0 0 | —c 0j1]0
1
B =
-1
0| -110 bl|0]O
0 0 |-bc 0|b]|0
| 0 0 0 —bc 0/0|b _|
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Let A be the S-homomorphism of E into E given by the matrix
C0]0]0 -1 0 ]0]o]
0(0(0 —-1]0(0
0|00 0(0]0
A=
0
0}j0]|0 0{0]0
0(0]1 0/0]0
L ojofo 1 olofo |
It is then straightforward to check that
aA+AB =1 = A+ Aa.
-1
b -1
-1
-1
1 -1
1 -1
1 -1
1
-b
-b
s 1
— 1
e 1
1
1
—-b 1
—b> —b 1
c & 1le ¢
1 c c ?
1 ¢ 1 ¢
1 1
-1
-b -1
- b -1
c 1le ¢ ¢
c 1 ¢ ¢?
c ¢
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Then PQ=QP=1. Moreover if £, =x—b, {,=y—c, then

(GG
Pa-(o 0).

This shows that the ideal ,# in R generated by &, and &, is isomorphic to the
image of a.

Let t=x+y—b—c; then t is not a zero-divisor, and if ¢, = (x —c¢)/t and &,
= (y —b)/t, then the fractional ideal #’ generated by ¢, and &, is isomorphic to
the image of B, which again is isomorphic to the image of ‘a, that is #'~ ¢ .
One may check that this isomorphism is the right one, ie.fors € #',t € £, s(t)
=s-t.

Since &, +¢&,=1, it is clear that # /R is generated by a single element
say g, also (x—b)-g,=x-1 and (y—c)-¢,=—c-1 so the map R —» ¢ /R
sending 1 to g, factors through S, and it is easy to check that this is an
isomorphism.

S~ #/R.
Summarizing all this we have:
1) The ideal # <R is stably reflexive with respect to S.
2) The fractional ideal #' consisting of all elements of the total quotient ring of

R that maps ¢ into R is isomorphic to the algebraic dual of #.
3) # /R is a free S-module of rank 1.
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