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AN EXTENSION OF A THEOREM OF F. FORELLI

HIROSHI YAMAGUCHI

1. Introduction.

The classical F. and M. Riesz theorem is stated as follows: Let u be a
bounded regular measure on the circle group T. If

1 (= _
a(n) = |, ¢ du(x)
=0 (n<0),

u is absolutely continuous with respect to the Lebesgue measure. The same
result is satisfied for the reals R.

Forelli in [4] extended this theorem to the n-dimensional Euclidean space
R". That is,

THEOREM 1.1 (cf. [4; Theorems 3 and 4], [10; 6.2.2. Theorem, p. 140]).
Suppose S is a compact set of unit vectors in the interior of R". and F is a Borel
set in R" with S-width zero. Let u be a bounded regular measure on R" such that [i
vanishes on R".. Then we have |u|(F)=0.

Moreover he proved the following in [4].

THEOREM 1.2 (cf. [4; Theorem 2], [10; 6.2.2. Theorem (b)]). Suppose S is a
compact set of unit vectors in R". and F is a Borel set in R" with S-width zero. Let
U be a bounded regular measure on T such that ji vanishes on Z". Then |u|(¢(F))
=0, where ¢ is the canonical map from R" onto T".

On the other hand, deLeeuw and Glicksberg in ([2; Theorem 3.1, p. 186])
extended the F. and M. Riesz Theorem to a compact abelian group. In this
paper we extend above Forelli’s theorems to a LCA group. First we state our
results..

THEOREM 1.3. Let G be a LCA group and  a continuous homomorphism from
G into R" such that  (G) contains e, (1<k<n). Let ¢ be the dual homomorphism
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of Y. For each x € G, let S, be a compact set of unit vectors in the interior of R",
and put S={S,} ... Let F be a Borel set in G with S-width zero in the direction
of @. Then we have |u|(F)=0 for every measure p € M(G), whose Fourier—
Stieltjes transform vanishes on {y € G; y(y) € R}

COROLLARY 1.4. Let G be a LCA group and  a continuous homomorphism
from G into R" such that y(G) contains e, (1<k<n). Let y, be an element in G
such that Y (x,) = e,, A a discrete subgroup of G generated by y, (1<k<n) and K
the annihilator of A. Let S be a compact set of unit vectors in the interior of R"
and F a Borel set in R" with S-width zero. Then |u|(@(F)+ K)=0 for every
measure p € M(G), whose Fourier-Stieltjes transform vanishes on {y € G;
Y (y) € R}, where ¢ is the dual homomorphism of .

REMARK 1.5. In Corollary 1.4, we note that ¢ (F)+ K is a Borel set in G on
account of Proposition 2.6 in section 2.

Let G be a LCA group with the dual group G. We denote by mg the Haar
measure on G. M(G) is the Banach algebra of bounded regular measures on G
under convolution multiplication and the total variation norm. M (G) and
L'(G) denote the closed subspace of M(G) consisting of measures which are
singular with respect to mg and the closed ideal of M (G) consisting of measures
which are absolutely continuous with respect to mg respectively. We denote by
Trig (G) the space of all trigonometric polynomials on G. For a subset E of G,
ME(G) is the space of measures in M (G), whose Fourier-Stieltjes transforms
vanish off E. E° (I%) and E~ (E) mean the interior and the closure of E
respectively. For a subgroup H of G, H* denotes the annihilator of H.

2. Definitions and several propositions.

Let Z be the integer group, R, will denote the set of nonnegative real
numbers, R_ the set of nonpositive real numbers, Z, the set of nonnegative
integers and Z _ the set of nonpositive integers respectively. For x = (x,,. . ., x,),
W15 - -»¥w) € R, {x,y) denotes the scalar product, i.e. {x,y>=Y"_, x;y;. Let u
be an unit vector in R” (that is {u,u)>=1). For a set E in R, we define E, as
follows:

2.1) E, = {x e R"; {x,u) e E} .
DEeFINITION 2.1. Let S be a set of unit vectors in R". A subset F of R" is said to

have S-width zero if to every 4 >0, there is a countable collection of pairs (E, u)
with E an open set, u in §, UE,oF, and X mg(E) <.

Let e; be the unit vector in R” such that ¢;=(0;7.,1,...,0) (1Zi<n). Let
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Y be a continuous homomorphism from G into R” such that y(G) contains e;
(i=12,...,n) and ¢ the dual homomorphism of , that is (¢(t),7)
=exp (it ¥ (¥)))-

DeriNiTION 2.2. For each x € G, S, is a set of unit vectors in R". Put
S={S.}xec- A subset F of G is said to have S-width zero in the direction of ¢,
if {t e R"; ¢(t)+x € F} has S,-width zero for each x € G.

Let y; be an element in G such that Y (x;)=e; (1<i<n) and put A={m,y,
+...+my,; meZ}. Then A is a discrete subgroup of G. Let K be the
annihilator of A. We define a continuous homomorphism a: R"@ K +— G by

2.2) alt,u) = () +u.
We define a closed subgroup D of R"@ K by
(2.3) D = ker (o) .

The following propositions are proved in parallel with [11]. However we
give the complete proofs.

PROPOSITION 2.3. o is an onto continuous homomorphism.
ProoF. For x € G, there is t, € (—n, n] such that (x, y)=e™ (k=1,2,...,n).
Put t=(ty,...,t,) and u=x—¢(t). Then we have

1) = (=), 1)
= itk g = KLY
= et o ik
=1 (k=12,...,n).
Hence u belongs to K =A"*. Thus a(t,u)=x. This completes the proof.
ProrposiTioN 2.4,
D = {(t,—p() e R"@K; t € 2nZ)"},

where

(2r2)" = {(2nmy,. .., 2nm,); (my,...,m) e Z"} .

Proor.
D = {(t,w e R"®K; ¢(t)+u=0}
= {(t. —o®); 9(t) € K} .
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On the other hand, for t=(t,,...,t,) € R", we have '
e) e K <= (p()y) = 1 v €4)
< (p@my) =1 (meZ;1<j<n)
N | (mje Z;1<j<n)
<« t; = 2nl; for some l;e Z (15j<n).

Thus this completes the proof.
PROPOSITION 2.5. D* = {(¥(y),7lx); 7 € G}.

ProOF. Let y be in G. For (t, — (1)) € D, we have
((t, =), (W), 7lK)) = exp (i[t, y @) (— @ (1), 7Ik)
€Xp (i<ta '/’(Y)))( - (P(t)’ ‘Y)

exp (i<t, y (y)>) exp (= i<t, ¥ (¥)))
=1.

Hence we have (y(y),ylk) € D*.
Conversely, let (t,0) be in D* (t=(ty,. . .,t,), ¢ € K). Let o, be an element in
G such that g, |x=0. Then, for m=(m,,...,m,) € Z", we have

1 = ((¢,0), 2nm, — o (2nm))

exp (i<t, 21m)) (0 ,, — @ (2mm))
exp (it, 2nm)) exp (— i<y (o ), 2nm))
= exp (i{t—y(a,),2mm)) .

Hence there exists k=(k,,...,k,) € Z" such that t—y(o,)=k. Put y=ky,
+...+k,,+0, Then we have y|x =0 |x=0. Moreover,

V) = k) + - k() + ()
= k+¥(0,)

=1t.

Thus we have (t,0)= (¥ (y),7]x). This completes the proof.

ProposiTION 2.6. a((—n,7]"x K)=G and a is a homeomorphism on the
interior of (—m,7]" x K. In particular, a is onto, open continuous homomorphism.
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Proor. By the proof of Proposition 2.3, we can verify «((—n,n]" x K)=G,
and by Proposition 2.4, o is one-to-one on (—m,m]" x K. Let a(ts us) =@(t;)
+us converge to a(ty, tg), where t5,t, € (—m, )" and usu, € K. Since {t;} is
bounded, there exist a subnet {t,} of {t;} and t, € [ —=,n]" such that ¢, 1> ¢,.
Then

u, > @(to) —@(ty) +uo .
Hence ¢(t,)— ¢(t,) belongs to K. This means
1

(@(to—1t1),7)
= exp (ito—t,,¥(y))) forallyea.

Hence we have t,—t, € (2nZ)". On the other hand, since t, € (—n,7n)" and
t; € [~m, n]", we have t,=t,. Hence u, > u,, and so (t,u,) converges to
(to, o). Thus o is a homeomorphism on the interior of (—m,n]" x K. Now we
put

Ji = {(ty,.. 1) G Sw (G#i), t;=m}
(i=1,2,...,n). Then, by Proposition 2.4 we have
a((—m, )" xK)Na(J;xK) = &
(i=1,2,...,n). Hence

a((—m,mn)"xK) = G\ L"J a(J; x K) .
i=1

Therefore, since a(J; x K)=¢(J;)+ K are closed, o((—n, )" x K) is open. Thus
o is an open continuous homomorphism. This completes the proof.

ProrosiTioN 2.7. G=R"@K/D. In particular,
{Wo)lk); ye Gy =D =G

Proor. This is obtained from ([7; Theorem (5.27), p. 41]), Proposition 2.5,
and Proposition 2.6.

ProposiTioN 2.8. The following are satisfied.
@ a(L'(R"®K)) = L1(G);
an 2(M,(R"®K)) = M,(G).

Proor. Let n; be the natural homomorphism from R"@ K onto R"@® K/D.
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Then
np(L'(R"®K)) = L' (R"®K/D) .
Moreover, by Proposition 2.4, we have
np(M,(R"®K)) = M,(R"®K/D) .
On the other hand, for y € M(R"@® K), we have

a(”)A(Y) = J‘R"QK ( -7 a(t’ u)) d”(t’ u)

j exp (— iKY (), D) (—ylk. W) du(t, u)
R"®K

AW G),7Ik)
np(w) (Y @) ylk) -
Hence, by Proposition 2.7, (I) and (II) are obtained. This completes the proof.

Next we define a continuous homomorphism oy : R"®G — R"®K as
follows:

24 o (t,y) = (E+YG)YIK) -
Then the following propositions are satisfied. (These propositions are also
proved in parallel with [11].)
ProPoOSITION 2.9.
(I) ker (al) = {((ml" . -,mn)’ - (MIXI +... +man)) € Rn®61
(ml,- . ~’mn) € Zn}y

(I u([-43)"xG6) = R"®K .

Proor. (I):
ker (@) = {(t.y) e R"®G; (t+¥(¥),7lk)=0}
= {tYeR®Gyed t=-y@)
={((my,...,m), — (myxy + ... +myx,); (my,....,m,) e Z"} .

(II): Let (¢, 0) be an element in R"® K (t=(t,,.. .,t,) € R"). We choose y € G
such that y|x=ga. Then there is (m,,...,m,) € Z" such that

t"w(')’) € [ml —~-2L’m1+%)x cee X [mn'-_%’mn'*_%) .
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Put Y (y)= (ys». . ..ya) and sy =~y +t,—my (k=1,2,...,n). Then
S = (Sp...,5) €[5
and
A (S y+myxy+ - +myy,)
= (s+¥@)+myQ)+ ... +mb ()l
= (t,0).

Hence (II) is proved. This completes the proof.

ProrosITION 2.10. The following are satisfied.

(D) o« ((=%,9"x G) is an open set in R"®K;
(IT) «, is a homeomorphism on (—1,3)" x G;
(III) a is an open continuous homomorphism.

Proor. (I): By Proposition 29, a, is one-to-one on [—3,4)"xG and
@, ([—%Y"x G)=R"@®K. Hence we have

(1) al((_%,%)"xc) = R"@K\ 'Ul al(IjXG) ’
=
where
L=[=-52" x{=jx[-32""7 (5j=n).
Cramm. o, (I; x Gy=ao, (I; x G), where
I = D540 x (=g x [-3417.
Let (t,7) be an element in I; x G (t=(ty,.. ooty =5t - -5 1,). We define t,

(k=+)) as follows:

k=

- {q~1 if t,=3
L if tye[—33)-

Put m,=t,—t, (k+j) and
s = (‘t.l" . .,;:i_l, —_%’tj*‘l" . .,t”) .

Then s € I; and

“1(& —(z kak>+}’> = ( —<Z mk'#(lk))""f’(’)’)ﬂ"l()
k#j k#*j
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t+y )i
al(t9Y|K) .
Thus Claim is proved. On the other hand, since
o, (I; x 6) = ijx 0} +{(¥mylk); v e G}
= I;x {0} +D*,

a,(I;x G) is a closed subset of R"@ K. Hence, by (1) and Claim, o, ((—4,%)" x G)
is an open set in R"@ K.

(IT): Suppose
(11 (tu’ ya) > oy (t()’ YO)

((tw)’a)a (th ))0) € (_%9 %)" X G) Let {al(té;))&)} be any Subnet Of {al (ta7)’a)}' Then
there exist a subnet {t,} of {t;} and ¢, € [—3,3]" such that t; > t,. Since

(tﬂ + ¥ (vp), Yp|K) £ (to +¥ (o)l volk) »

(W (yp)ylx) converges to (to—t; +¥(¥o),Volg)- By Proposition 2.5, we have
(to—t1 +¥ (o) volg) € D*. Hence by Proposition 2.5, there exists y, € G such
that

WG yilk) = (o=t +¥ (o), Volk) -
This means that y,—7y, € 4, and so Y (y,)—¥(y,) € Z". Hence we have t,=t,
because t, € (—3%,3)" and t, € [—4,4]" Therefore we get (t5,75) 4> (to,70)-

This proves (II).

(III):  (III) is easily obtained from (I) and (II).
This completes the proof.

The following three remarks are easily obtained from the definition.

REMARK 2.11. Let S be a set of unit vectors in R"” and E, a subset of R" with S-
width zero (k=1,2,3,...). Then UPE, is also a set with S-width zero.

REMARK 2.12. Let G be a LCA group and ¢ a continuous homomorphism
from R" into G. For each x € G, S, is a set of unit vectors in R". Put $={S,}, ¢.
Let E,; be a subset of G with S-width zero in the direction of ¢ (k=1,2,3,...).
Then UL E, is a set with S-width zero in the direction of ¢.

REMARK 2.13. Let S be a set of unit vectors in R” and F a subset of R" with S-
width zero. Then F +a is also a set with S-width zero for every a € R".
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3. Key lemmas.

DerINITION 3.1. For 0<e <4, we define a function 4,(x,0) on R"@K by
A.(x,0) = .-ljl max(l——%lxd,O)
for 6=0 and 4,(x,06)=0 for a=t=6 (x=1(xy,...,x,) € R").
Let G be compact abelian group and ¥ a homomorphism from G into R"

such that y(G) contains e, (k=1,2,. . .,n). Let ¢ be the dual homomorphism of
. For 0<e<3, we define a subset V, of R"@®K by

V, = {(ty. .. t,0) € R"®K; |t;| <e (1Lin), 6=0} .
Then V,N D*={0}. Since G is compact, by Proposition 2.7,
D* = {(¥O)ylk); v€ G}

is a discrete subgroup of R"@ K. For u € M(G), by regarding u as a measure in
M(R"®K/D) (cf. Proposition 2.7), we define a function @ on R*"®K as
follows:

3.1 9(60) = 5 A6, ((0)~ (WHLIK) -

Then, by ([6; A.7.1. Theorem, p. 421]),
(3.2 @, e MR"®K) and ()| = |lul,

where (®}) is the inverse Fourier transform of @,

The following two lemmas can be proved in parallel with [10]. However we
give the complete proofs.

LEMMA 3.2. Let G be a compact abelian group and ¢ a homomorphism from G
into R™ such that y(G) contains e, (1<i<n). For 0<e<}, the following are
satisfied.:

I @ eL'(R"®K) if pe L'(G);
I e M,R"®K) if pe M,(G).

Proor. (1) is obtained from ([6; A.7.1. Theorem, p. 421]).

(II): Let u € M,(G) and put A= u|. Then, by (3.2), | («Pf‘)v |=A. Let ¢ be
any positive number and K’ a compact set in R"@®K. Since D*NK' is a
compact set in D*, by ([3; Theorem 1]), there exists
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pW) = Y ci(—y.y) € Trig (G)
with (Y (7),7:1x) € D*\ (D* N K’) such that

Pl <1 and [} ciy)l > A—¢ .
Now we define p(t,u) € Trig (R"@ K) by

plew) = Y ciexp (=KL y @) (v -
Then [|ll,, S 1. Since @;(¥(),7lx)= (), we have

IZ cid)f;('//(}’i),)’ilK)l = |Z ciit(y)l
> A—¢.

Hence, by ([3; Theorem 1]), we have &} M (R"@®K)". This completes the
proof.

Next we consider the case that G is a general LCA group and ¢ is a
continuous homomorphism from G into R” such that y(G) contains e; (1<i
<n). Let K and A be as in section 2 and ¢ the dual homomorphism of . Let G
be the Bohr compactification of G and K the closure of K in G. Then K is
annihilator of 4 in G. We define y G=G, — R" by V,.(0)=y(y), and let ¢,
be the dual homomorphism of .. We define a continuous homomorphism «,,
from R*@K into G by a,(t,u)=¢,(¢)+u. Then, as seen in section 2, a, is an
onto, open continuous homomorphism and

D, (=ker (a,) = {(2nm, — ¢, Q2nm)); me Z"} .
Moreover, by Proposition 2.7,
Gd = Di = {(l//*(Y)sle)» Y E Gd} s

where G, is the group G with the discrete topology.

Let ¢ be a positive real number such that 0 <e <4 and pu a measure in M(G).
Regarding p as a measure in M(G), we define a function , &% on R"®K, as
follows:

(33) *¢f¢(t’ 0') = Z ﬁ(y)Ac((t’ O') - ('/’()’),V|K)) .

yeG,

Then, by Lemma 3.2, ,4° belongs to M(R"®K). Noting that (R"®K)"
gR"@Kd, we define a function @5 on R"@®K by

(34 Di(t,0) = ,P,(t,0).

Then the following is satisfied.
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LemMA 3.3. Let G be a LCA group and  a continuous homomorphism from G
into R" such that (G) contains e; (1 <i<n). Let ¢ be a positive real number such
that 0<e<3%. Then the following are satisfied:

I ¢.e MR"®K) if pe M(G);
am (@)1 = lpl;
() @t e L'(R"®K) if pe L' (G);

(IV) @ e M,R"®K) if pe M,(G).

Proor. (I): By Lemma 3.2 and the construction of &, it is sufficient to
prove that @} is continuous on R"®K. Put

I = {(t,y) e R"®G; [t| <3¢}

Il

and

IO

{(t,y) e R"®G; |t|] <3¢} ,

where |t|=max, ¢;c, |t (t=(t;,...,t,)). We define a continuous homomor-
phism «; from R"®G into R"®K and a function ¥’ on R"®G as follows:

(1) 0‘1(f,)’) = (t+‘ll(y)sy‘K)9
YL(t,y) = AWOAY) ,

where
A = ﬁ max(l—llt,‘|,0>.
k=1 €
CLAM.
Wi(t,y) = Oi(o(ty)  for (6y) e[—44xG.
Indeed,

CACA(RY)

= &, (t+y(),ylk)

= *G’Z(t"’!//*()’),}’lk)

= ZG A4+, )71 — (¥, (). Tlr))

= Z ﬁ(y+m1X1 +... +man)Ae (t_m’o)

m=(my,...,m)eZ"
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= A()4.(t,0) (t—me[—¢e]" < m=0)
= fi(y).4(t)
= Y.ty .

Thus Claim is proved. Hence, by Proposition 2.9.(I) and Claim, @ vanishes
on a, ([ -3¢ 3¢]" x G). Therefore, in order to prove the continuity of &5, we
may only prove that ¢ is continuous on the open set «, (I°). Suppose o, (t5,7;)
converges to a,(t,yo) ((to,yo) € I°). Then, by Proposition 2.10.(II), (t57y,)
converges to (t,,7,). Hence,

1i§n P (o, (1575) = li;n ¥i(tsys)
= ¥ (to, Vo)
= (01 (6o, 70) -
This proves (I).
(I). By Lemma 3.2, we have
@) = 12 Imreok)
= lullm@

= |yl .

(IIT). Let u be a measure in L' (G). Then there exists a sequence {g,} in L'(G)
such that fi, has a compact support and lim, ||, — [ =0. We note that &, has
a compact support (cf. Proposition 2.10 and Claim). Hence, by (1),
@: e L'(G). By (II),

lim || (%) — (#5) || = lim |u—p,] = 0.

Hence &% € L'(G).

(IV). This can be proved as same as in Lemma 3.2(II). This completes the
proof.

4. Proofs of Theorem 1.3 and Corollary 1.4.

LeEMMA 4.1. Let G be a LCA group and  a continuous homomorphism from G
into R” such that (G) contains e; (1 <i<n). Let ¢ be a positive real number such
that 0<e<i and o the homomorphism defined in section 2. Then we have
a((dﬁ)v):u for all u e M(G).
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Proor. For y € G, we have

»

a((25)) ()

It

(—o(t,u),y) () (t,u)
JR"®K

~

= (— @), 7)(—uy)d(®:) (t,u)
J R"®K

r

= exp (— it Y ))(—uyl) d(P5) (t,w)
JR@OK

= Ay) .

Hence we have at((tbf,)v):u and the proof is complete.

Now we prove Theorem 1.3. We may prove only that u(E)=0 for each Borel
set E in F. By the definition, we note that E has also S-width zero in the
direction of ¢. Let yx, be an element in G such that Y =(1,1,...,1).
Considering y,u instead of u, we may assume that u satisfies

(1) fiy) =0 on {yeG; Y@ eR™,},

where R | ={x=(x,...,x,) € R"; x,£1 (1=k=<n)}. Let ¢ be a positive real
number such that 0<¢ <. Then, by the construction of @ and (1), we have
(2 @i (y,0) =0 for yeRL .

Indeed, suppose

Doy (t,y) = Pi(t+Y()yIk) + 0.

Then, by Claim in Lemma 3.3 and (1), we have y/(y) ¢ R, and t € (—¢,¢)", and
so Y(y)+t & R™. Since o, ([ —1%,3)"x G)=R"®K, (2) is proved.

Let m be the natrual hombmorphism from R"@K onto K and put
n=n(l(¢f,)vl). Then, by ([13, Corollary 1.6]), there exists a family {4}, x of
measures in M(R"@® K) with the following properties:

(3) h+— A,(f)is a n-measurable function for each bounded Borel measurable
function f on R"®K,

(4) supp (4,) = R"x {h},
() Al =1,

~

6 () (g) = J Ay(g) dn(h) for each bounded Borel function g on R"@K .
K
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By (4), there exists a measure v, € M(R") such that dA,(x, u) =dv,(x) x dd,(u),
where §, is the Dirac measure at h. Then, by (2) and ([13, Lemma 2.1]), we
have

(7 0 =0 on R™ aa h(y.
On the other hand, by Lemma 4.1 and (6), we have
®) W(E) = (9) (a~'(E))

= J Ay(o™  (E))dn(h)
K

and
) a Y (E)NR"x{h} = {x eR"; @p(x)+he E}x{h}.
Now we put E(h)={x € R"; ¢(x)+h € E}. Then, since E has S-width zero in
the direction of ¢, E(h) has S,-width zero. Hence, by (7), (9), and ([10; 6.2.2.
Theorem (a), p. 140]), we have
A(a”H(E) = vu(E(h)
=0 aa h(n.

Thus, by (8), we have u(E)=0. This completes the proof of Theorem 1.3.

Next we prove Corollary 1.4. We put S={S,},.¢ (S,=S for all x € G). Then,
by Theorem 1.3, we may prove only that ¢(F)+ K has S-width zero in the
direction of ¢. For x € G, we choose t, € (—n,n]" and u, € K such that x
=(ty)+uy. Then we have

{te R"; p()+x € ¢(F)+ K}
= {teR"; @(t) € p(F)— @ (to) + K —uy}
= {te R"; ¢(t) € (F —ty)+ K}
c F—ty+(2nZ)", (p(s)e K < se (2n2Z)").

Hence, by Remarks 2.11 and 2.13, {t € R"; ¢(t)+x € ¢ (F)+ K} has S-width
zero, so that ¢ (F)+ K has S-width zero on the direction of ¢. This completes
the proof of Corollary 1.4.

COROLLARY 4.2. Let G be a LCA group and ¥ a continuous homomorphism
from G into R" such that y(G) contains e, (1<k<n). Let ¢ be the dual
homomorphism of Y. Let S be a compact set of unit vectors in the interior of R",
and F a Borel set in R" with S-width zero. Then |u|(¢(F))=0 for every measure
p € M(G) whose FourierStieltjes transform vanishes on {y € G; y(y) € R".}.
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Proor. This obtained from Corllary 1.4.

CoROLLARY 4.3 (Theorem 1.2). Let S be a compact set of unit vectors in the
interior of R". and F a Borel set in R" with S-width zero. Let ¢ be the canonical
map from R" onto T". Then we have |u|(¢(F))=0 for each measure y € M(T"),
whose Fourier—Stieltjes transform vanishes on Z".

ProoOF. Let  be the homomorphism from Z" into R” such that y(m)=m.
Then ¢ is the dual homomorphism of ¥. Hence, by Corollary 4.2, we obtain
the corollary. This completes the proof.

DEerFINITION 4.4. Let G be a LCA group and Y a nontrivial continuous
homomorphism from G into R. Let ¢ be the dual homomorphism of y. A
Borel set E in G is called a null set in the direction of ¢, if {t € R; ¢(t)+x € E}
is a set of Lebesgue measure zero for each x € G.

CoroLLARY 4.5 (cf. [2; Theorem 3.1, p. 186]). Let G be a LCA group, ¥ a
nontrivial continuous homomorphism from G into R and ¢ the dual
homomorphism of . Let E (<= G) be a null set in the direction of ¢ and u € M(G)
a @-analytic measure (ie. i(y)=0 for y € G with ¥(y)<0). Then we have
|ul(E)=0.

PROOF. Since y is nontrivial, there exists y, € G such that y(y,)>0. Let o be
a positive number such that ay(y,)=1. We define a continuous homomor-
phism y, from G into R by y,(y) = (y). Then ,(G) contains 1. Let ¢, be the
dual homomorphism of ¥,. Then, since ¢,(t)=¢(at), E is a null set in the
direction of @,. Moreover we may assume that i(y)=0on {y € G; ¥, (y) <0} by
considering you instead of p. Let S, ={1} and put S={S,},.; Then E is a set
with S-width zero in the direction of ¢,. Hence, by Theorem 1.3, we have |y|(E)
=0. This completes the proof.

REMARK 4.6. In order to prove ([2; Theorem 3.1, p. 186]), deLeeuw and
Glicksberg have used the fact that @-analytic measures are quasi-invariant
under ¢.

REFERENCES
1. N. Bourbaki, Eléments de Mathématique, Intégration vectorielle, Livre VI, chap. 6 (Act. Sci. Ind.
1281), Hermann, Paris, 1959.

2. K. deLeeuw and L. Glickberg, Quasi-invariance and analyticity of measures on compact groups,
Acta Math. 109 (1963), 179-205.



160 HIROSHI YAMAGUCHI

3. R. Doss, On the transform of a singular or absolutely continuous measure, Proc. Amer. Math.
Soc. 19 (1968), 361-363.
. F. Forelli, Measures orthogonal to polydisc algebras, J. Math. Mech. 17 (1968), 1073-1086.
. L. Glicksberg, Fourier-Stieltjes transforms with small supports, Illinois J. Math. 9 (1965), 418—
427.
6. C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Springer-Verlag,
Berlin - Heidelberg - New York, 1979.
7. E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. 1, Grundlehren Math. Wiss. 115,
Springer-Verlag, Berlin - Heidelberg - New York, 1963.
8. L. Pigno and S. Saeki, Fourier-Stieltjes transforms which vanish at infinity, Math. Z. 141 (1975),
83-91.
9. W. Rudin, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics 12)
Interscience Publishers, London, 1962.
10. W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc. New York, Amsterdam, 1969.
11. H. Yamaguchi, Some multipliers on the space consisting of measures of analytic type, Hokkaido
Math. J. 11 (1982), 173-200.
12. H. Yamaguchi, On the product of a Riesz set and a small p set, Proc. Amer. Math. Soc. 81
(1981), 273-278.
13. H. Yamaguchi, Idempotent multipliers on the space of analytic singular measures, preprint.

v &

DEPARTMENT OF MATHEMATICS
JOSAI UNIVERSITY

SAKADO, SAITAMA

JAPAN



