AN EXTENSION OF A THEOREM OF F. FORELLI

HIROSHI YAMAGUCHI

1. Introduction.

The classical F. and M. Riesz theorem is stated as follows: Let μ be a bounded regular measure on the circle group T. If

$$\hat{\mu}(n) = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} d\mu(x)$$
= 0 (n < 0),

 μ is absolutely continuous with respect to the Lebesgue measure. The same result is satisfied for the reals R.

Forelli in [4] extended this theorem to the n-dimensional Euclidean space \mathbb{R}^n . That is,

THEOREM 1.1 (cf. [4; Theorems 3 and 4], [10; 6.2.2. Theorem, p. 140]). Suppose S is a compact set of unit vectors in the interior of \mathbb{R}^n_+ and F is a Borel set in \mathbb{R}^n with S-width zero. Let μ be a bounded regular measure on \mathbb{R}^n such that $\hat{\mu}$ vanishes on \mathbb{R}^n_- . Then we have $|\mu|(F)=0$.

Moreover he proved the following in [4].

THEOREM 1.2 (cf. [4; Theorem 2], [10; 6.2.2. Theorem (b)]). Suppose S is a compact set of unit vectors in \mathbb{R}^n_+ and F is a Borel set in \mathbb{R}^n with S-width zero. Let μ be a bounded regular measure on T such that $\hat{\mu}$ vanishes on \mathbb{Z}^n_- . Then $|\mu|(\varphi(F)) = 0$, where φ is the canonical map from \mathbb{R}^n onto \mathbb{T}^n .

On the other hand, deLeeuw and Glicksberg in ([2; Theorem 3.1, p. 186]) extended the F. and M. Riesz Theorem to a compact abelian group. In this paper we extend above Forelli's theorems to a LCA group. First we state our results.

THEOREM 1.3. Let G be a LCA group and ψ a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_k $(1 \le k \le n)$. Let φ be the dual homomorphism

Received December 28, 1981.

of ψ . For each $x \in G$, let S_x be a compact set of unit vectors in the interior of \mathbb{R}^n_+ and put $S = \{S_x\}_{x \in G}$. Let F be a Borel set in G with S-width zero in the direction of φ . Then we have $|\mu|(F) = 0$ for every measure $\mu \in M(G)$, whose Fourier–Stieltjes transform vanishes on $\{\gamma \in \hat{G}; \psi(\gamma) \in \mathbb{R}^n_-\}$.

COROLLARY 1.4. Let G be a LCA group and ψ a continuous homomorphism from \widehat{G} into R^n such that $\psi(\widehat{G})$ contains e_k $(1 \le k \le n)$. Let χ_k be an element in \widehat{G} such that $\psi(\chi_k) = e_k$, Λ a discrete subgroup of \widehat{G} generated by χ_k $(1 \le k \le n)$ and K the annihilator of Λ . Let S be a compact set of unit vectors in the interior of R^n_+ and F a Borel set in R^n with S-width zero. Then $|\mu|(\varphi(F)+K)=0$ for every measure $\mu \in M(G)$, whose Fourier-Stieltjes transform vanishes on $\{\gamma \in \widehat{G}; \psi(\gamma) \in R^n_-\}$, where φ is the dual homomorphism of ψ .

REMARK 1.5. In Corollary 1.4, we note that $\varphi(F) + K$ is a Borel set in G on account of Proposition 2.6 in section 2.

Let G be a LCA group with the dual group \hat{G} . We denote by m_G the Haar measure on G. M(G) is the Banach algebra of bounded regular measures on G under convolution multiplication and the total variation norm. $M_s(G)$ and $L^1(G)$ denote the closed subspace of M(G) consisting of measures which are singular with respect to m_G and the closed ideal of M(G) consisting of measures which are absolutely continuous with respect to m_G respectively. We denote by Trig G the space of all trigonometric polynomials on G. For a subset E of G, $M_E(G)$ is the space of measures in M(G), whose Fourier-Stieltjes transforms vanish off E. E° (E) and E^{-} (E) mean the interior and the closure of E respectively. For a subgroup E of E denotes the annihilator of E.

2. Definitions and several propositions.

Let Z be the integer group, R_+ will denote the set of nonnegative real numbers, R_- the set of nonpositive real numbers, Z_+ the set of nonnegative integers and Z_- the set of nonpositive integers respectively. For $x = (x_1, \ldots, x_n)$, $(y_1, \ldots, y_n) \in \mathbb{R}^n$, $\langle x, y \rangle$ denotes the scalar product, i.e. $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. Let u be an unit vector in \mathbb{R}^n (that is $\langle u, u \rangle = 1$). For a set E in R, we define E_u as follows:

(2.1)
$$E_{u} = \{x \in \mathbb{R}^{n}; \langle x, u \rangle \in E\}.$$

DEFINITION 2.1. Let S be a set of unit vectors in \mathbb{R}^n . A subset F of \mathbb{R}^n is said to have S-width zero if to every $\delta > 0$, there is a countable collection of pairs (E, u) with E an open set, u in S, $\bigcup E_u \supset F$, and $\sum m_R(E) < \delta$.

Let e_i be the unit vector in \mathbb{R}^n such that $e_i = (0, \dots, 1, \dots, 0)$ $(1 \le i \le n)$. Let

 ψ be a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_i $(i=1,2,\ldots,n)$ and φ the dual homomorphism of ψ , that is $(\varphi(t),\gamma)$ = exp $(i\langle t,\psi(\gamma)\rangle)$.

DEFINITION 2.2. For each $x \in G$, S_x is a set of unit vectors in \mathbb{R}^n . Put $S = \{S_x\}_{x \in G}$. A subset F of G is said to have S-width zero in the direction of φ , if $\{t \in \mathbb{R}^n : \varphi(t) + x \in F\}$ has S_x -width zero for each $x \in G$.

Let χ_i be an element in G such that $\psi(\chi_i) = e_i$ $(1 \le i \le n)$ and put $\Lambda = \{m_1 \chi_1 + \ldots + m_n \chi_n; m_i \in \mathbb{Z}\}$. Then Λ is a discrete subgroup of \widehat{G} . Let K be the annihilator of Λ . We define a continuous homomorphism $\alpha : \mathbb{R}^n \oplus K \mapsto G$ by

$$\alpha(t, u) = \varphi(t) + u.$$

We define a closed subgroup D of $\mathbb{R}^n \oplus K$ by

$$(2.3) D = \ker(\alpha).$$

The following propositions are proved in parallel with [11]. However we give the complete proofs.

PROPOSITION 2.3. α is an onto continuous homomorphism.

PROOF. For $x \in G$, there is $t_k \in (-\pi, \pi]$ such that $(x, \chi_k) = e^{it_k}$ (k = 1, 2, ..., n). Put $t = (t_1, ..., t_n)$ and $u = x - \varphi(t)$. Then we have

$$(u, \chi_k) = (x, \chi_k)(-\varphi(t), \chi_k)$$

$$= e^{it_k} \cdot e^{-i\langle t, \psi(\chi_k) \rangle}$$

$$= e^{it_k} \cdot e^{-it_k}$$

$$= 1 \qquad (k = 1, 2, \dots, n).$$

Hence u belongs to $K = \Lambda^{\perp}$. Thus $\alpha(t, u) = x$. This completes the proof.

Proposition 2.4.

$$D = \{(t, -\varphi(t)) \in \mathbb{R}^n \oplus K; t \in (2\pi\mathbb{Z})^n\},\$$

where

$$(2\pi Z)^n = \{(2\pi m_1, \ldots, 2\pi m_n); (m_1, \ldots, m_n) \in Z^n\}.$$

PROOF.

$$D = \{(t, u) \in \mathbb{R}^n \oplus K; \varphi(t) + u = 0\}$$
$$= \{(t, -\varphi(t)); \varphi(t) \in K\}.$$

On the other hand, for $t = (t_1, \ldots, t_n) \in \mathbb{R}^n$, we have

$$\begin{split} \varphi(t) \in K & \Leftrightarrow (\varphi(t), \gamma) = 1 & (\gamma \in \Lambda) \\ & \Leftrightarrow (\varphi(t), m_j \chi_j) = 1 & (m_j \in \mathbb{Z}; \ 1 \leq j \leq n) \\ & \Leftrightarrow e^{im_j t_j} = 1 & (m_j \in \mathbb{Z}; \ 1 \leq j \leq n) \\ & \Leftrightarrow t_j = 2\pi t_j & \text{for some } t_j \in \mathbb{Z} \ (1 \leq j \leq n) \ . \end{split}$$

Thus this completes the proof.

Proposition 2.5. $D^{\perp} = \{ (\psi(\gamma), \gamma|_K); \gamma \in \widehat{G} \}.$

PROOF. Let γ be in \hat{G} . For $(t, -\varphi(t)) \in D$, we have

$$((t, -\varphi(t)), (\psi(\gamma), \gamma|_K)) = \exp(i\langle t, \psi(\gamma) \rangle)(-\varphi(t), \gamma|_K)$$

$$= \exp(i\langle t, \psi(\gamma) \rangle)(-\varphi(t), \gamma)$$

$$= \exp(i\langle t, \psi(\gamma) \rangle) \exp(-i\langle t, \psi(\gamma) \rangle)$$

$$= 1.$$

Hence we have $(\psi(\gamma), \gamma|_K) \in D^{\perp}$.

Conversely, let (t, σ) be in D^{\perp} $(t = (t_1, \ldots, t_n), \sigma \in \hat{K})$. Let σ_* be an element in \hat{G} such that $\sigma_*|_K = \sigma$. Then, for $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n$, we have

$$1 = ((t, \sigma), (2\pi m, -\varphi(2\pi m)))$$

$$= \exp(i\langle t, 2\pi m \rangle)(\sigma_{*}, -\varphi(2\pi m))$$

$$= \exp(i\langle t, 2\pi m \rangle) \exp(-i\langle \psi(\sigma_{*}), 2\pi m \rangle)$$

$$= \exp(i\langle t, \psi(\sigma_{*}), 2\pi m \rangle).$$

Hence there exists $k = (k_1, \ldots, k_n) \in \mathbb{Z}^n$ such that $t - \psi(\sigma_*) = k$. Put $\gamma = k_1 \chi_1 + \ldots + k_n \chi_n + \sigma_*$. Then we have $\gamma|_K = \sigma_*|_K = \sigma$. Moreover,

$$\psi(\gamma) = k_1 \psi(\chi_1) + \ldots + k_n \psi(\chi_n) + \psi(\sigma_*)$$

$$= k + \psi(\sigma_*)$$

$$= t.$$

Thus we have $(t, \sigma) = (\psi(\gamma), \gamma|_K)$. This completes the proof.

PROPOSITION 2.6. $\alpha((-\pi,\pi)^n \times K) = G$ and α is a homeomorphism on the interior of $(-\pi,\pi)^n \times K$. In particular, α is onto, open continuous homomorphism.

PROOF. By the proof of Proposition 2.3, we can verify $\alpha((-\pi,\pi]^n \times K) = G$, and by Proposition 2.4, α is one-to-one on $(-\pi,\pi]^n \times K$. Let $\alpha(t_{\delta},u_{\delta}) = \varphi(t_{\delta}) + u_{\delta}$ converge to $\alpha(t_0,u_0)$, where $t_{\delta},t_0 \in (-\pi,\pi)^n$ and $u_{\delta},u_0 \in K$. Since $\{t_{\delta}\}$ is bounded, there exist a subnet $\{t_{\gamma}\}$ of $\{t_{\delta}\}$ and $t_1 \in [-\pi,\pi]^n$ such that $t_{\gamma} \xrightarrow{\gamma} t_1$. Then

$$u_{\gamma} \xrightarrow{\gamma} \varphi(t_0) - \varphi(t_1) + u_0$$
.

Hence $\varphi(t_0) - \varphi(t_1)$ belongs to K. This means

$$1 = (\varphi(t_0 - t_1), \gamma)$$

= $\exp(i\langle t_0 - t_1, \psi(\gamma) \rangle)$ for all $\gamma \in \Lambda$.

Hence we have $t_0 - t_1 \in (2\pi \mathbb{Z})^n$. On the other hand, since $t_0 \in (-\pi, \pi)^n$ and $t_1 \in [-\pi, \pi]^n$, we have $t_0 = t_1$. Hence $u_{\gamma} \xrightarrow{\gamma} u_0$, and so (t_{γ}, u_{γ}) converges to (t_0, u_0) . Thus α is a homeomorphism on the interior of $(-\pi, \pi]^n \times K$. Now we put

$$J_i = \{(t_1, \ldots, t_n); |t_j| \le \pi \ (j \ne i), t_i = \pi\}$$

 $(i=1,2,\ldots,n)$. Then, by Proposition 2.4 we have

$$\alpha((-\pi,\pi)^n \times K) \cap \alpha(J_i \times K) = \emptyset$$

(i = 1, 2, ..., n). Hence

$$\alpha((-\pi,\pi)^n\times K) = G \setminus \bigcup_{i=1}^n \alpha(J_i\times K).$$

Therefore, since $\alpha(J_i \times K) = \varphi(J_i) + K$ are closed, $\alpha((-\pi, \pi)^n \times K)$ is open. Thus α is an open continuous homomorphism. This completes the proof.

PROPOSITION 2.7. $G \cong \mathbb{R}^n \oplus K/D$. In particular,

$$\{(\psi(\gamma),\gamma|_K); \gamma \in \hat{G}\} = D^{\perp} \cong \hat{G}.$$

Proof. This is obtained from ([7; Theorem (5.27), p. 41]), Proposition 2.5, and Proposition 2.6.

Proposition 2.8. The following are satisfied.

(I)
$$\alpha(L^1(\mathbb{R}^n \oplus K)) \subset L^1(G);$$

(II)
$$\alpha(M_s(\mathsf{R}^n \oplus K)) \subset M_s(G) .$$

PROOF. Let π_D be the natural homomorphism from $\mathbb{R}^n \oplus K$ onto $\mathbb{R}^n \oplus K/D$.

Then

$$\pi_D(L^1(\mathbb{R}^n \oplus K)) \subset L^1(\mathbb{R}^n \oplus K/D)$$
.

Moreover, by Proposition 2.4, we have

$$\pi_D(M_s(\mathbb{R}^n \oplus K)) \subset M_s(\mathbb{R}^n \oplus K/D)$$
.

On the other hand, for $\mu \in M(\mathbb{R}^n \oplus K)$, we have

$$\alpha(\mu) (\gamma) = \int_{\mathbb{R}^n \oplus K} (-\gamma, \alpha(t, u)) d\mu(t, u)$$

$$= \int_{\mathbb{R}^n \oplus K} \exp(-i\langle \psi(\gamma), t \rangle) (-\gamma|_K, u) d\mu(t, u)$$

$$= \hat{\mu}(\psi(\gamma), \gamma|_K)$$

$$= \pi_D(\mu) (\psi(\gamma), \gamma|_K).$$

Hence, by Proposition 2.7, (I) and (II) are obtained. This completes the proof.

Next we define a continuous homomorphism $\alpha_1: \mathbb{R}^n \oplus \widehat{G} \mapsto \mathbb{R}^n \oplus \widehat{K}$ as follows:

(2.4)
$$\alpha_1(t,\gamma) = (t + \psi(\gamma), \gamma|_K).$$

Then the following propositions are satisfied. (These propositions are also proved in parallel with [11].)

Proposition 2.9.

(I)
$$\ker (\alpha_1) = \{((m_1, \ldots, m_n), -(m_1\chi_1 + \ldots + m_n\chi_n)) \in \mathbb{R}^n \oplus \widehat{G}; \\ (m_1, \ldots, m_n) \in \mathbb{Z}^n\};$$

(II)
$$\alpha_1(\left[-\frac{1}{2},\frac{1}{2}\right]^n \times \hat{G}) = \mathbb{R}^n \oplus \hat{K}.$$

Proof. (I):

$$\ker (\alpha_1) = \{ (t, \gamma) \in \mathbb{R}^n \oplus \hat{G}; (t + \psi(\gamma), \gamma|_K) = 0 \}$$

$$= \{ (t, \gamma) \in \mathbb{R}^n \oplus \hat{G}; \gamma \in \Lambda, t = -\psi(\gamma) \}$$

$$= \{ ((m_1, \dots, m_n), -(m_1 \chi_1 + \dots + m_n \chi_n)); (m_1, \dots, m_n) \in \mathbb{Z}^n \}.$$

(II): Let (t, σ) be an element in $\mathbb{R}^n \oplus \widehat{K}$ $(t = (t_1, \dots, t_n) \in \mathbb{R}^n)$. We choose $\gamma \in \widehat{G}$ such that $\gamma|_K = \sigma$. Then there is $(m_1, \dots, m_n) \in \mathbb{Z}^n$ such that

$$t - \psi(\gamma) \in [m_1 - \frac{1}{2}, m_1 + \frac{1}{2}) \times \ldots \times [m_n - \frac{1}{2}, m_n + \frac{1}{2}]$$
.

Put $\psi(\gamma) = (y_1, ..., y_n)$ and $s_k = -y_k + t_k - m_k$ (k = 1, 2, ..., n). Then $s = (s_1, ..., s_n) \in [-\frac{1}{2}, \frac{1}{2}]^n$

and

$$\alpha_1(s, \gamma + m_1 \chi_1 + \ldots + m_n \chi_n)$$

$$= (s + \psi(\gamma) + m_1 \psi(\chi_1) + \ldots + m_n \psi(\chi_n), \gamma|_K)$$

$$= (t, \sigma).$$

Hence (II) is proved. This completes the proof.

Proposition 2.10. The following are satisfied.

- (I) $\alpha_1((-\frac{1}{2},\frac{1}{2})^n \times \hat{G})$ is an open set in $\mathbb{R}^n \oplus \hat{K}$;
- (II) α_1 is a homeomorphism on $(-\frac{1}{2},\frac{1}{2})^n \times \hat{G}$;
- (III) α_1 is an open continuous homomorphism.

PROOF. (I): By Proposition 2.9, α_1 is one-to-one on $[-\frac{1}{2},\frac{1}{2})^n \times \hat{G}$ and $\alpha_1([-\frac{1}{2},\frac{1}{2})^n \times \hat{G}) = \mathbb{R}^n \oplus \hat{K}$. Hence we have

(1)
$$\alpha_1((-\frac{1}{2},\frac{1}{2})^n\times \hat{G}) = \mathbb{R}^n \oplus \hat{K} \setminus \bigcup_{j=1}^n \alpha_1(I_j\times \hat{G}),$$

where

$$I_j \, = \, \left[\, - \tfrac{1}{2}, \tfrac{1}{2} \right)^{j-1} \times \left\{ \, - \tfrac{1}{2} \right\} \times \left[\, - \tfrac{1}{2}, \tfrac{1}{2} \right)^{n-j} \qquad (1 \leqq j \leqq n) \; .$$

CLAIM. $\alpha_1(I_i \times \hat{G}) = \alpha_1(\bar{I}_i \times \hat{G})$, where

$$\bar{I}_i = \left[-\frac{1}{2}, \frac{1}{2} \right]^{j-1} \times \left\{ -\frac{1}{2} \right\} \times \left[-\frac{1}{2}, \frac{1}{2} \right]^{n-j}.$$

Let (t, γ) be an element in $\bar{I}_j \times \hat{G}$ $(t = (t_1, \dots, t_{j-1}, -\frac{1}{2}, t_{j+1}, \dots, t_n))$. We define \tilde{t}_k $(k \neq j)$ as follows:

$$\tilde{t}_k = \begin{cases} t_k - 1 & \text{if } t_k = \frac{1}{2} \\ t_k & \text{if } t_k \in \left[-\frac{1}{2}, \frac{1}{2} \right] \end{cases}.$$

Put $m_k = \tilde{t}_k - t_k \ (k \neq j)$ and

$$s = (\tilde{t}_1, \ldots, \tilde{t}_{i-1}, -\frac{1}{2}, \tilde{t}_{i+1}, \ldots, \tilde{t}_n).$$

Then $s \in I_i$ and

$$\alpha_1\left(s, -\left(\sum_{k\neq j} m_k \chi_k\right) + \gamma\right) = \left(s - \left(\sum_{k\neq j} m_k \psi(\chi_k)\right) + \psi(\gamma), \gamma|_K\right)$$

$$= (t + \psi(\gamma), \gamma|_K)$$

= $\alpha_1(t, \gamma|_K)$.

Thus Claim is proved. On the other hand, since

$$\begin{split} \alpha_1(\bar{I}_j \times \hat{G}) &= \bar{I}_j \times \left\{0\right\} + \left\{\left(\psi(\gamma), \gamma|_K\right); \ \gamma \in \hat{G}\right\} \\ &= \bar{I}_j \times \left\{0\right\} + D^{\perp} \ , \end{split}$$

 $\alpha_1(\bar{I}_j \times \hat{G})$ is a closed subset of $\mathbb{R}^n \oplus \hat{K}$. Hence, by (1) and Claim, $\alpha_1((-\frac{1}{2}, \frac{1}{2})^n \times \hat{G})$ is an open set in $\mathbb{R}^n \oplus \hat{K}$.

(II): Suppose

$$\alpha_1(t_\alpha, \gamma_\alpha) \xrightarrow{\alpha} \alpha_1(t_0, \gamma_0)$$

 $((t_{\alpha}, \gamma_{\alpha}), (t_0, \gamma_0) \in (-\frac{1}{2}, \frac{1}{2})^n \times \widehat{G})$. Let $\{\alpha_1(t_{\delta}, \gamma_{\delta})\}$ be any subnet of $\{\alpha_1(t_{\alpha}, \gamma_{\alpha})\}$. Then there exist a subnet $\{t_{\beta}\}$ of $\{t_{\delta}\}$ and $t_1 \in [-\frac{1}{2}, \frac{1}{2}]^n$ such that $t_{\beta} \xrightarrow{\beta} t_1$. Since

$$(t_{\beta} + \psi(\gamma_{\beta}), \gamma_{\beta}|_{K}) \xrightarrow{\beta} (t_{0} + \psi(\gamma_{0}), \gamma_{0}|_{K}),$$

 $(\psi(\gamma_{\beta}), \gamma_{\beta}|_{K})$ converges to $(t_{0} - t_{1} + \psi(\gamma_{0}), \gamma_{0}|_{K})$. By Proposition 2.5, we have $(t_{0} - t_{1} + \psi(\gamma_{0}), \gamma_{0}|_{K}) \in D^{\perp}$. Hence by Proposition 2.5, there exists $\gamma_{1} \in \hat{G}$ such that

$$(\psi(\gamma_1),\gamma_1|_K) = (t_0 - t_1 + \psi(\gamma_0),\gamma_0|_K).$$

This means that $\gamma_0 - \gamma_1 \in \Lambda$, and so $\psi(\gamma_0) - \psi(\gamma_1) \in \mathbb{Z}^n$. Hence we have $t_0 = t_1$ because $t_0 \in (-\frac{1}{2}, \frac{1}{2})^n$ and $t_1 \in [-\frac{1}{2}, \frac{1}{2}]^n$. Therefore we get $(t_\beta, \gamma_\beta) \xrightarrow{\beta} (t_0, \gamma_0)$. This proves (II).

(III): (III) is easily obtained from (I) and (II). This completes the proof.

The following three remarks are easily obtained from the definition.

REMARK 2.11. Let S be a set of unit vectors in \mathbb{R}^n and E_k a subset of \mathbb{R}^n with S-width zero $(k=1,2,3,\ldots)$. Then $\bigcup_{1}^{\infty} E_k$ is also a set with S-width zero.

REMARK 2.12. Let G be a LCA group and φ a continuous homomorphism from \mathbb{R}^n into G. For each $x \in G$, S_x is a set of unit vectors in \mathbb{R}^n . Put $S = \{S_x\}_{x \in G}$. Let E_k be a subset of G with S-width zero in the direction of φ (k = 1, 2, 3, ...). Then $\bigcup_{i=1}^{\infty} E_k$ is a set with S-width zero in the direction of φ .

REMARK 2.13. Let S be a set of unit vectors in Rⁿ and F a subset of Rⁿ with S-width zero. Then F + a is also a set with S-width zero for every $a \in R^n$.

3. Key lemmas.

DEFINITION 3.1. For $0 < \varepsilon < \frac{1}{3}$, we define a function $\Delta_{\varepsilon}(x, \sigma)$ on $\mathbb{R}^n \oplus \hat{K}$ by

$$\Delta_{\varepsilon}(x,\sigma) = \prod_{i=1}^{n} \max\left(1 - \frac{1}{\varepsilon}|x_{i}|, 0\right)$$

for $\sigma = 0$ and $\Delta_{\varepsilon}(x, \sigma) = 0$ for $\sigma \neq 0$ $(x = (x_1, \dots, x_n) \in \mathbb{R}^n)$.

Let G be compact abelian group and ψ a homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_k $(k=1,2,\ldots,n)$. Let φ be the dual homomorphism of ψ . For $0 < \varepsilon < \frac{1}{3}$, we define a subset V_{ε} of $\mathbb{R}^n \oplus \hat{K}$ by

$$V_{\varepsilon} = \{(t_1, \ldots, t_n, \sigma) \in \mathbb{R}^n \oplus \hat{K}; |t_i| < \varepsilon \ (1 \le i \le n), \ \sigma = 0\}$$

Then $V_{\epsilon} \cap D^{\perp} = \{0\}$. Since G is compact, by Proposition 2.7,

$$D^{\perp} = \{ (\psi(\gamma), \gamma|_{K}) ; \gamma \in \widehat{G} \}$$

is a discrete subgroup of $\mathbb{R}^n \oplus \hat{K}$. For $\mu \in M(G)$, by regarding μ as a measure in $M(\mathbb{R}^n \oplus K/D)$ (cf. Proposition 2.7), we define a function Φ^{ε}_{μ} on $\mathbb{R}^n \oplus \hat{K}$ as follows:

(3.1)
$$\Phi_{\mu}^{\varepsilon}(t,\sigma) = \sum_{\gamma \in \widehat{G}} \hat{\mu}(\gamma) \Delta_{\varepsilon} ((t,\sigma) - (\psi(\gamma), \gamma|_{K})).$$

Then, by ([6; A.7.1. Theorem, p. 421]),

(3.2)
$$\Phi_{\mu}^{\varepsilon} \in M(\mathbb{R}^n \oplus K)^{\widehat{}} \quad \text{and} \quad \|(\Phi_{\mu}^{\varepsilon})^{\widecheck{}}\| = \|\mu\|,$$

where $(\Phi_{\mu}^{\varepsilon})^{\check{}}$ is the inverse Fourier transform of Φ_{μ}^{ε} .

The following two lemmas can be proved in parallel with [10]. However we give the complete proofs.

LEMMA 3.2. Let G be a compact abelian group and ψ a homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_i $(1 \le i \le n)$. For $0 < \varepsilon < \frac{1}{3}$, the following are satisfied:

- (I) $\Phi^{\varepsilon}_{\mu} \in L^{1}(\mathbb{R}^{n} \oplus K)^{\hat{}}$ if $\mu \in L^{1}(G)$;
- (II) $\Phi_{\mu}^{\varepsilon} \in M_s(\mathbb{R}^n \oplus K)$ if $\mu \in M_s(G)$.

PROOF. (I) is obtained from ([6; A.7.1. Theorem, p. 421]).

(II): Let $\mu \in M_s(G)$ and put $A = \|\mu\|$. Then, by (3.2), $\|(\Phi_{\mu}^{\epsilon})^{\tilde{}}\| = A$. Let ϵ' be any positive number and K' a compact set in $\mathbb{R}^n \oplus \hat{K}$. Since $D^{\perp} \cap K'$ is a compact set in D^{\perp} , by ([3; Theorem 1]), there exists

$$p(y) = \sum c_i(-y, \gamma_i) \in \text{Trig}(G)$$

with $(\psi(\gamma_i), \gamma_i|_K) \in D^{\perp} \setminus (D^{\perp} \cap K')$ such that

$$||p||_{\infty} \le 1$$
 and $|\sum c_i \hat{\mu}(\gamma_i)| > A - \varepsilon'$.

Now we define $\tilde{p}(t, u) \in \text{Trig}(\mathbb{R}^n \oplus K)$ by

$$\tilde{p}(t, u) = \sum_{i} c_{i} \exp(-i\langle t, \psi(\gamma_{i}) \rangle) \cdot (-u, \gamma_{i}|_{K}).$$

Then $\|\tilde{p}\|_{\infty} \leq 1$. Since $\Phi_{\mu}^{\varepsilon}(\psi(\gamma), \gamma|_{K}) = \hat{\mu}(\gamma)$, we have

$$|\sum c_i \Phi^{\varepsilon}_{\mu}(\psi(\gamma_i), \gamma_i|_K)| = |\sum c_i \hat{\mu}(\gamma_i)|$$

$$> A - \varepsilon'.$$

Hence, by ([3; Theorem 1]), we have $\Phi_{\mu}^{\varepsilon} \in M_s(\mathbb{R}^n \oplus K)$. This completes the proof.

Next we consider the case that G is a general LCA group and ψ is a continuous homomorphism from \widehat{G} into \mathbb{R}^n such that $\psi(\widehat{G})$ contains e_i $(1 \le i \le n)$. Let K and Λ be as in section 2 and φ the dual homomorphism of ψ . Let \widehat{G} be the Bohr compactification of G and \widehat{K} the closure of K in \widehat{G} . Then \widehat{K} is annihilator of \widehat{A} in \widehat{G} . We define ψ_* : $\widehat{\widehat{G}} = \widehat{G}_d \mapsto \mathbb{R}^n$ by $\psi_*(\gamma) = \psi(\gamma)$, and let φ_* be the dual homomorphism of ψ_* . We define a continuous homomorphism α_* from $\mathbb{R}^n \oplus \widehat{K}$ into \widehat{G} by $\alpha_*(t,u) = \varphi_*(t) + u$. Then, as seen in section 2, α_* is an onto, open continuous homomorphism and

$$D_*(=\ker(\alpha_*)) = \{(2\pi m, -\varphi_*(2\pi m)); m \in \mathbb{Z}^n\}$$
.

Moreover, by Proposition 2.7,

$$\hat{G}_d = D^{\perp}_* = \{ (\psi_*(\gamma), \gamma |_{\vec{K}}); \ \gamma \in \hat{G}_d \},$$

where \hat{G}_d is the group \hat{G} with the discrete topology.

Let ε be a positive real number such that $0 < \varepsilon < \frac{1}{3}$ and μ a measure in M(G). Regarding μ as a measure in $M(\bar{G})$, we define a function ${}_*\Phi^{\varepsilon}_{\mu}$ on $R^n \oplus \hat{K}_d$ as follows:

(3.3)
$$*\Phi^{\varepsilon}_{\mu}(t,\sigma) = \sum_{\gamma \in \hat{G}_d} \hat{\mu}(\gamma) \Delta_{\varepsilon} ((t,\sigma) - (\psi(\gamma), \gamma|_{\bar{K}})) .$$

Then, by Lemma 3.2, ${}_*\Phi^{\varepsilon}_{\mu}$ belongs to $M(R^n \oplus \bar{K})$. Noting that $(R^n \oplus \bar{K})$ $\cong R^n \oplus \hat{K}_d$, we define a function Φ^{ε}_{μ} on $R^n \oplus \hat{K}$ by

(3.4)
$$\Phi_{\mu}^{\varepsilon}(t,\sigma) = {}_{\star}\Phi_{\mu}^{\varepsilon}(t,\sigma) .$$

Then the following is satisfied.

LEMMA 3.3. Let G be a LCA group and ψ a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_i $(1 \le i \le n)$. Let ε be a positive real number such that $0 < \varepsilon < \frac{1}{3}$. Then the following are satisfied:

(I)
$$\Phi^{\varepsilon}_{\mu} \in M(\mathbb{R}^n \oplus K)$$
 if $\mu \in M(G)$;

(II)
$$\|(\boldsymbol{\Phi}_{\boldsymbol{\mu}}^{\varepsilon})^{\tilde{}}\| = \|\boldsymbol{\mu}\|;$$

(III)
$$\Phi_{\mu}^{\varepsilon} \in L^{1}(\mathbb{R}^{n} \oplus K)^{\widehat{}}$$
 if $\mu \in L^{1}(G)$;

(IV)
$$\Phi_{\mu}^{\varepsilon} \in M_s(\mathbb{R}^n \oplus K)$$
 if $\mu \in M_s(G)$.

PROOF. (I): By Lemma 3.2 and the construction of Φ_{μ}^{ε} , it is sufficient to prove that Φ_{μ}^{ε} is continuous on $\mathbb{R}^n \oplus \hat{K}$. Put

$$I = \{(t, \gamma) \in \mathbb{R}^n \oplus \hat{G}; |t| \leq \frac{3}{2} \varepsilon\}$$

and

$$I^{\circ} = \{(t, \gamma) \in \mathbb{R}^n \oplus \hat{G}; |t| < \frac{3}{2}\varepsilon\},$$

where $|t| = \max_{1 \le i \le n} |t_i|$ $(t = (t_1, \dots, t_n))$. We define a continuous homomorphism α_1 from $\mathbb{R}^n \oplus \hat{G}$ into $\mathbb{R}^n \oplus \hat{K}$ and a function Ψ^{ε}_{μ} on $\mathbb{R}^n \oplus \hat{G}$ as follows:

(1)
$$\alpha_1(t,\gamma) = (t + \psi(\gamma), \gamma|_K);$$

$$\Psi^{\varepsilon}_{\mu}(t,\gamma) = {}_{\varepsilon} \Delta(t)\hat{\mu}(\gamma),$$

where

$$_{\varepsilon}\Delta(t) = \prod_{k=1}^{n} \max\left(1 - \frac{1}{\varepsilon}|t_{k}|, 0\right).$$

CLAIM.

$$\Psi^{\varepsilon}_{\mu}(t,\gamma) = \Phi^{\varepsilon}_{\mu}(\alpha_1(t,\gamma)) \quad \text{for } (t,\gamma) \in \left[-\frac{1}{2},\frac{1}{2}\right]^n \times \hat{G}$$

Indeed,

$$\begin{split} & \Phi_{\mu}^{\varepsilon}(\alpha_{1}(t,\gamma)) \\ &= \Phi_{\mu}^{\varepsilon}(t+\psi(\gamma),\gamma|_{K}) \\ &= {}_{\star}\Phi_{\mu}^{\varepsilon}(t+\psi_{\star}(\gamma),\gamma|_{\bar{K}}) \\ &= \sum_{\tau\in G_{d}} \hat{\mu}(\tau)\Delta_{\varepsilon}((t+\psi_{\star}(\gamma),\gamma|_{\bar{K}}) - (\psi_{\star}(\tau),\tau|_{\bar{K}})) \\ &= \sum_{m=(m_{1},\ldots,m_{n})\in\mathbb{Z}^{n}} \hat{\mu}(\gamma+m_{1}\chi_{1}+\ldots+m_{n}\chi_{n})\Delta_{\varepsilon} \ (t-m,0) \end{split}$$

$$= \hat{\mu}(\gamma)\Delta_{\varepsilon}(t,0) \qquad (t-m \in [-\varepsilon,\varepsilon]^n \iff m=0)$$

$$= \hat{\mu}(\gamma)_{\varepsilon}\Delta(t)$$

$$= \Psi_{\mu}^{\varepsilon}(t,\gamma).$$

Thus Claim is proved. Hence, by Proposition 2.9.(II) and Claim, Φ^{ϵ}_{μ} vanishes on $\alpha_1([-\frac{5}{4}\epsilon,\frac{5}{4}\epsilon]^n \times \hat{G})^c$. Therefore, in order to prove the continuity of Φ^{ϵ}_{μ} , we may only prove that Φ^{ϵ}_{μ} is continuous on the open set $\alpha_1(I^{\circ})$. Suppose $\alpha_1(t_{\delta},\gamma_{\delta})$ converges to $\alpha_1(t_0,\gamma_0)$ $((t_0,\gamma_0) \in I^{\circ})$. Then, by Proposition 2.10.(II), $(t_{\delta},\gamma_{\delta})$ converges to (t_0,γ_0) . Hence,

$$\lim_{\delta} \Phi^{\varepsilon}_{\mu}(\alpha_{1}(t_{\delta}, \gamma_{\delta})) = \lim_{\delta} \Psi^{\varepsilon}_{\mu}(t_{\delta}, \gamma_{\delta})$$
$$= \Psi^{\varepsilon}_{\mu}(t_{0}, \gamma_{0})$$
$$= \Phi^{\varepsilon}_{\mu}(\alpha_{1}(t_{0}, \gamma_{0})).$$

This proves (I).

(II). By Lemma 3.2, we have

$$\begin{aligned} \| (\boldsymbol{\Phi}_{\mu}^{\varepsilon})^{\check{}} \| &= \| (_{*} \boldsymbol{\Phi}_{\mu}^{\varepsilon})^{\check{}} \|_{M(\mathbb{R}^{n} \oplus \bar{K})} \\ &= \| \mu \|_{M(\bar{G})} \\ &= \| \mu \| . \end{aligned}$$

(III). Let μ be a measure in $L^1(G)$. Then there exists a sequence $\{\mu_n\}$ in $L^1(G)$ such that $\hat{\mu}_n$ has a compact support and $\lim_n \|\mu_n - \mu\| = 0$. We note that $\Phi_{\mu_n}^{\varepsilon}$ has a compact support (cf. Proposition 2.10 and Claim). Hence, by (I), $\Phi_{\mu_n}^{\varepsilon} \in L^1(G)$. By (II),

$$\lim_n \| (\varPhi_\mu^\epsilon)^\check{} - (\varPhi_{\mu_n}^\epsilon)^\check{} \| = \lim_n \| \mu - \mu_n \| = 0 .$$

Hence $\Phi_{\mu}^{\varepsilon} \in L^{1}(G)$.

(IV). This can be proved as same as in Lemma 3.2(II). This completes the proof.

4. Proofs of Theorem 1.3 and Corollary 1.4.

LEMMA 4.1. Let G be a LCA group and ψ a continuous homomorphism from \widehat{G} into \mathbb{R}^n such that $\psi(\widehat{G})$ contains e_i $(1 \le i \le n)$. Let ε be a positive real number such that $0 < \varepsilon < \frac{1}{3}$ and α the homomorphism defined in section 2. Then we have $\alpha((\Phi_u^{\varepsilon})) = \mu$ for all $\mu \in M(G)$.

PROOF. For $\gamma \in \hat{G}$, we have

$$\alpha((\Phi_{\mu}^{\varepsilon}))^{\hat{}}(\gamma) = \int_{\mathbb{R}^{n} \oplus K} (-\alpha(t, u), \gamma) d(\Phi_{\mu}^{\varepsilon})^{\hat{}}(t, u)$$

$$= \int_{\mathbb{R}^{n} \oplus K} (-\varphi(t), \gamma)(-u, \gamma) d(\Phi_{\mu}^{\varepsilon})^{\hat{}}(t, u)$$

$$= \int_{\mathbb{R}^{n} \oplus K} \exp(-i\langle t, \psi(\gamma) \rangle)(-u, \gamma|_{K}) d(\Phi_{\mu}^{\varepsilon})^{\hat{}}(t, u)$$

$$= \Phi_{\mu}^{\varepsilon}(\psi(\gamma), \gamma|_{K})$$

$$= \hat{\mu}(\gamma).$$

Hence we have $\alpha((\Phi_{\mu}^{\epsilon})) = \mu$ and the proof is complete.

Now we prove Theorem 1.3. We may prove only that $\mu(E) = 0$ for each Borel set E in F. By the definition, we note that E has also S-width zero in the direction of φ . Let χ_* be an element in \hat{G} such that $\psi(\chi_*) = (1, 1, \ldots, 1)$. Considering $\chi_*\mu$ instead of μ , we may assume that μ satisfies

(1)
$$\hat{\mu}(\gamma) = 0 \quad \text{on } \{ \gamma \in \hat{G}; \ \psi(\gamma) \in \mathbb{R}_{-1}^n \} ,$$

where $R_{-1}^n = \{x = (x_1, \dots, x_n) \in R^n; x_k \le 1 \ (1 \le k \le n)\}$. Let ε be a positive real number such that $0 < \varepsilon < \frac{1}{3}$. Then, by the construction of Φ_u^{ε} and (1), we have

(2)
$$\Phi_{\mu}^{\varepsilon}(y,\sigma) = 0 \quad \text{for } y \in \mathbb{R}_{-}^{n}.$$

Indeed, suppose

$$\Phi_{\mu}^{\varepsilon}(\alpha_{1}(t,\gamma)) = \Phi_{\mu}^{\varepsilon}(t+\psi(\gamma),\gamma|_{K}) \neq 0.$$

Then, by Claim in Lemma 3.3 and (1), we have $\psi(\gamma) \notin \mathbb{R}^n_{-1}$ and $t \in (-\varepsilon, \varepsilon)^n$, and so $\psi(\gamma) + t \notin \mathbb{R}^n_{-}$. Since $\alpha_1([-\frac{1}{2}, \frac{1}{2})^n \times \hat{G}) = \mathbb{R}^n \oplus \hat{K}$, (2) is proved.

Let π be the natrual homomorphism from $\mathbb{R}^n \oplus K$ onto K and put $\eta = \pi(|(\Phi_{\mu}^{\epsilon})^{\check{}}|)$. Then, by ([13, Corollary 1.6]), there exists a family $\{\lambda_s\}_{s \in K}$ of measures in $M(\mathbb{R}^n \oplus K)$ with the following properties:

- (3) $h \mapsto \lambda_h(f)$ is a η -measurable function for each bounded Borel measurable function f on $\mathbb{R}^n \oplus K$,
- (4) supp $(\lambda_h) \subset \mathbb{R}^n \times \{h\}$,
- $(5) \quad \|\lambda_h\| \leq 1 \; ,$
- (6) $(\Phi_{\mu}^{\varepsilon})(g) = \int_{K} \lambda_{h}(g) d\eta(h)$ for each bounded Borel function g on $\mathbb{R}^{n} \oplus K$.

By (4), there exists a measure $v_h \in M(\mathbb{R}^n)$ such that $d\lambda_h(x, u) = dv_h(x) \times d\delta_h(u)$, where δ_h is the Dirac measure at h. Then, by (2) and ([13, Lemma 2.1]), we have

$$\hat{\mathbf{v}}_h(\mathbf{v}) = 0 \quad \text{on } \mathbf{R}^n_- \quad \text{a.a. } h \left(\eta \right).$$

On the other hand, by Lemma 4.1 and (6), we have

(8)
$$\mu(E) = (\Phi_{\mu}^{e})^{\check{}}(\alpha^{-1}(E))$$
$$= \int_{K} \lambda_{h}(\alpha^{-1}(E)) d\eta(h)$$

and

(9)
$$\alpha^{-1}(E) \cap \mathbb{R}^n \times \{h\} = \{x \in \mathbb{R}^n ; \varphi(x) + h \in E\} \times \{h\} .$$

Now we put $E(h) = \{x \in \mathbb{R}^n; \varphi(x) + h \in E\}$. Then, since E has S-width zero in the direction of φ , E(h) has S_h -width zero. Hence, by (7), (9), and ([10; 6.2.2. Theorem (a), p. 140]), we have

$$\lambda_h(\alpha^{-1}(E)) = \nu_h(E(h))$$
= 0 a.a. $h(\eta)$.

Thus, by (8), we have $\mu(E) = 0$. This completes the proof of Theorem 1.3.

Next we prove Corollary 1.4. We put $S = \{S_x\}_{x \in G}$ $(S_x = S \text{ for all } x \in G)$. Then, by Theorem 1.3, we may prove only that $\varphi(F) + K$ has S-width zero in the direction of φ . For $x \in G$, we choose $t_0 \in (-\pi, \pi]^n$ and $u_0 \in K$ such that $x = \varphi(t_0) + u_0$. Then we have

$$\begin{aligned} &\{t \in \mathsf{R}^n; \ \varphi(t) + x \in \varphi(F) + K\} \\ &= \left\{t \in \mathsf{R}^n; \ \varphi(t) \in \varphi(F) - \varphi(t_0) + K - u_0\right\} \\ &= \left\{t \in \mathsf{R}^n; \ \varphi(t) \in \varphi(F - t_0) + K\right\} \\ &\subset F - t_0 + (2\pi Z)^n, \quad \left(\varphi(s) \in K \iff s \in (2\pi Z)^n\right). \end{aligned}$$

Hence, by Remarks 2.11 and 2.13, $\{t \in \mathbb{R}^n; \varphi(t) + x \in \varphi(F) + K\}$ has S-width zero, so that $\varphi(F) + K$ has S-width zero on the direction of φ . This completes the proof of Corollary 1.4.

COROLLARY 4.2. Let G be a LCA group and ψ a continuous homomorphism from \hat{G} into \mathbb{R}^n such that $\psi(\hat{G})$ contains e_k $(1 \le k \le n)$. Let φ be the dual homomorphism of ψ . Let S be a compact set of unit vectors in the interior of \mathbb{R}^n_+ and F a Borel set in \mathbb{R}^n with S-width zero. Then $|\mu|(\varphi(F))=0$ for every measure $\mu \in M(G)$ whose Fourier-Stieltjes transform vanishes on $\{\gamma \in \hat{G}; \psi(\gamma) \in \mathbb{R}^n_-\}$.

PROOF. This obtained from Corllary 1.4.

COROLLARY 4.3 (Theorem 1.2). Let S be a compact set of unit vectors in the interior of \mathbb{R}^n_+ and F a Borel set in \mathbb{R}^n with S-width zero. Let φ be the canonical map from \mathbb{R}^n onto T^n . Then we have $|\mu|(\varphi(F))=0$ for each measure $\mu\in M(T^n)$, whose Fourier-Stieltjes transform vanishes on \mathbb{Z}^n_- .

PROOF. Let ψ be the homomorphism from \mathbb{Z}^n into \mathbb{R}^n such that $\psi(m) = m$. Then φ is the dual homomorphism of ψ . Hence, by Corollary 4.2, we obtain the corollary. This completes the proof.

DEFINITION 4.4. Let G be a LCA group and ψ a nontrivial continuous homomorphism from \hat{G} into R. Let φ be the dual homomorphism of ψ . A Borel set E in G is called a null set in the direction of φ , if $\{t \in R; \varphi(t) + x \in E\}$ is a set of Lebesgue measure zero for each $x \in G$.

COROLLARY 4.5 (cf. [2; Theorem 3.1, p. 186]). Let G be a LCA group, ψ a nontrivial continuous homomorphism from \hat{G} into R and φ the dual homomorphism of ψ . Let E ($\subset G$) be a null set in the direction of φ and $\mu \in M(G)$ a φ -analytic measure (i.e. $\hat{\mu}(\gamma)=0$ for $\gamma \in \hat{G}$ with $\psi(\gamma)<0$). Then we have $|\mu|(E)=0$.

PROOF. Since ψ is nontrivial, there exists $\chi_0 \in \hat{G}$ such that $\psi(\chi_0) > 0$. Let α be a positive number such that $\alpha \psi(\chi_0) = 1$. We define a continuous homomorphism ψ_{α} from \hat{G} into R by $\psi_{\alpha}(\gamma) = \alpha \psi(\gamma)$. Then $\psi_{\alpha}(\hat{G})$ contains 1. Let φ_{α} be the dual homomorphism of ψ_{α} . Then, since $\varphi_{\alpha}(t) = \varphi(\alpha t)$, E is a null set in the direction of φ_{α} . Moreover we may assume that $\hat{\mu}(\gamma) = 0$ on $\{\gamma \in \hat{G}; \psi_{\alpha}(\gamma) \leq 0\}$ by considering $\chi_0 \mu$ instead of μ . Let $S_x = \{1\}$ and put $S = \{S_x\}_{x \in G}$. Then E is a set with S-width zero in the direction of φ_{α} . Hence, by Theorem 1.3, we have $|\mu|(E) = 0$. This completes the proof.

REMARK 4.6. In order to prove ([2; Theorem 3.1, p. 186]), deLeeuw and Glicksberg have used the fact that φ -analytic measures are quasi-invariant under φ .

REFERENCES

- N. Bourbaki, Éléments de Mathématique, Intégration vectorielle, Livre VI, chap. 6 (Act. Sci. Ind. 1281), Hermann, Paris, 1959.
- K. deLeeuw and I. Glickberg, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179-205.

- 3. R. Doss, On the transform of a singular or absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361-363.
- 4. F. Forelli, Measures orthogonal to polydisc algebras, J. Math. Mech. 17 (1968), 1073-1086.
- I. Glicksberg, Fourier-Stieltjes transforms with small supports, Illinois J. Math. 9 (1965), 418– 427.
- C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- E. Hewitt and K. Ross, Abstract harmonic analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer-Verlag, Berlin - Heidelberg - New York, 1963.
- L. Pigno and S. Saeki, Fourier-Stieltjes transforms which vanish at infinity, Math. Z. 141 (1975), 83-91.
- 9. W. Rudin, Fourier analysis on groups (Interscience Tracts in Pure and Applied Mathematics 12) Interscience Publishers, London, 1962.
- 10. W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc. New York, Amsterdam, 1969.
- H. Yamaguchi, Some multipliers on the space consisting of measures of analytic type, Hokkaido Math. J. 11 (1982), 173-200.
- 12. H. Yamaguchi, On the product of a Riesz set and a small p set, Proc. Amer. Math. Soc. 81 (1981), 273-278.
- 13. H. Yamaguchi, Idempotent multipliers on the space of analytic singular measures, preprint.

DEPARTMENT OF MATHEMATICS JOSAI UNIVERSITY SAKADO, SAITAMA JAPAN