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MULTIPLIER REPRESENTATIONS AND
AN APPLICATION TO THE PROBLEM WHETHER
A®,X DETERMINES 4 AND/OR X

EHRHARD BEHRENDS
Abstract.

In this paper we define and investigate a new class of Banach space
invariants. These invariants are constructed by means of the multiplier algebra
Mult (X) of a Banach space X. Mult (X) consists of all linear and continuous
operators T: X — X such that every extreme functional is an eigenvector of
the transposed operator T'.

With each k in the Choquét boundary of Mult (X) we associate a Banach
space X,. If Mult (X) does not behave too pathologically X can be regarded as
a space of sections in the product space of the X, such that the T € Mult (X)
correspond to multiplication operators associated with certain continuous
functions. Such a representation will be called a multiplier representation.

We investigate these multiplier representations in the slightly more general
setting of Banach spaces of vector-valued functions which are A-modules for an
arbitrary function algebra A. Our results generalize theorems for function
modules which correspond to the special case when A4 is a CK-space.

In the last chapter the theory is applied to the study of A ®, X, where A is a
function algebra and X is a Banach space such that Mult(X) is finite-
dimensional. We obtain necessary and sufficient conditions concerning X such
that 4 and/or X can be reconstructed from 4 ®, X. In addition it is possible to
describe the structure of all isometries of A®, X.

1. Introduction.

Multiplication operators on algebras have been generalized in a number of
ways. We will consider a definition which concerns operators in arbitrary
Banach spaces.

1.1. DerINiTION. ([1], [4]). Let X be a Banach space, Ey the set of extreme
functionals, i.e. the set of extreme points of the unit ball of X'. A linear
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continuous operator T: X — X is called a multiplier, if there is a function ar
from Ey into the scalar field K (=R or C) such that poT=ar(p)p for every
pE€ Ex.

The collection Mult (X) of all multipliers on X is obviously a commutative
Banach algebra in [X] which contains the identity operator. A certain
subalgebra of Mult (X), the centralizer Z(X) of X, plays an important role in
M-structure theory; we refer the reader to [2] for a survey of this theory.

Whereas Z(X) is a CK-space, Mult (X) can only be considered as a function
algebra, i.e. a closed subalgebra of a CK-space which separates the points and
contains the constant functions; this will be proved in proposition 2.1 below.

For each k in the Choquet boundary ch (Mult (X)) of Mult (X) we define a
Banach space X,. There is a natural map w from X into the Banach space
product [T* {X, l k € ch (Mult (X))} which is an isometrical isomorphism if, in
a sense, ch (Mult (X)) is not too small. If this is the case, X can be identified
with w(X), and the T e Mult (X) can be regarded as multiplication operators
associated with continuous functions. We will then say that X admits a
multiplier representation.

Several properties of w(X) (and therefore of X if X has a multiplier
representation) are related in a simple way with the properties of the X,. Since
these results only depend on the fact that w(X) as a subspace of the product of
the X, satisfies some semicontinuity and module conditions we discusss a
slightly more general situation: we consider arbitrary function algebras A,
families of Banach spaces (X,)rech4» and closed subspaces X of
[1°{X, | k € ch A} which are A-modules in a natural way and for which the
mappings k — || x(k)|| are upper semi-continuous for every x € X. Such spaces
X, which will be called A-modules, share some properties with function
modules. For example, we obtain a theorem by which the extreme functionals
of X can be described in a simple way by means of the extreme functionals of
the X,, a result which strictly generalizes the theorem of Cunningham, Effros,
and Roy [6].

Of particular interest will be the multiplier representation of 4 ®, X, where
A is a function algebra. This multiplier representation can easily be determined
if the multiplier of X is finite-dimensional. Using this we will be able to derive
necessary and sufficient conditions concerning X such that 4 and/or X can be
reconstructed from A ®, X. For example, we will show that A®, X and B®, Y
are isometrically isomorphic iff A=B and X =Y (A4, B function algebras, X, Y
Banach spaces with one-dimensional multiplier algebra). Also we obtain a
result of Cambern by which it is possible to describe all isometries of 4 ®, X,
when A is a function algebra and X is a reflexive Banach space which contains
no nontrivial M-summands (I am grateful to Professor Cambern for making
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available to me a preprint containing this theorem; this paper has been the
starting point of the present investigations).

Finally we note that our theory gives new results only in the case of complex
scalars. In the real case the multiplier algebra coincides with the centralizer,
and the corresponding theorems concerning the centralizer have already
been published (see chapter 4 in [2]).

2. Mult (X) and the associated family {X, | k € ch (Mult (X))}.

X will always denote a nonzero Banach space. At first we collect together
some simple properties of Mult (X).

2.1. PROPOSITION.

(i) If T: X — X is an operator such that there is a subset E < Ey which is
weak*-dense in Ex and a function ar: E — K such that poT=ar(p)p for p € E,
then T is a multiplier. Further, ay can be extended as a weak*-continuous
Sunction to all of Ex \ {0} (Ex =the weak*-closure of Ey).

(i) There are a compact Hausdorff space K, and an isometric algebra
homomorphism g,: Mult (X) —» CK, such that g,(Mult (X)) is a function
algebra over K. Also there is amap v: Ex — K, such that ar(p)= (0o(T))(v(p))
for p € Ex, Te Mult (X).

(iii) Let €>0 and S, T e Mult (X) such that
leo (T)(K) = loo(S)(K)| +¢&  for every k € K, .
Then || Tx|| £ |Sx|| +e¢| x| for every x € X.

PrOOF. (i) We first show that every p, € Ex \ {0} is an eigenvector of T'.
We choose a net (p;);; in E such that w* —lim p,=p, and an element x, € X
such that py(xq)=1. p; — p, implies p;(x,) — 1 and

pi(Txo) = ar(p)pi(xo) = po(Txo)
so that (ar(p;); is convergent; let
ar(po) := limar(p) .
We then have
po(Tx) = limp,(Tx) = lim ar(p)p:(x) = ar(po)po(x)

for every x € X so that pyo T=ar(po)po-
In this way ar is extended to all of Ex \ {0}, and this extension is obviously
unique. It will also be denoted by ar in the sequel. ar is weak *-continuous



120 EHRHARD BEHRENDS

since the mappings p > ar(p)p(x) are continuous (they coincide with
p — p(Tx)), and for every p, there is a vector x, such that p(x,)=+0 for p in an
neighbourhood of p,.

(ii) Let L be the locally compact space Ex \ {0}. By T+ ar we may embed
Mult (X) as a subspace of C°L, the space of bounded continuous functions on
L. Note that this mapping is an isometric algebra homomorphism. We identify
CbL with C(BL), where BL denotes the Stone-Cech compactification of L.
Finally, setting

“k ~ 1 iff ap(k) = ay(l) for every Te Mult (X)” (for k,I € L)

we define K,:=fL/~.
With
v := the canonical map p — [p] from Ey to K,
Qo : = the composition of T+ ar and the canonical map which assigns to ar
the induced map from K, to K, v and g, have the properties claimed.

(iii) By (i) we have
lar(p)l = las(p)l+& for every pe Ey .
Now, for x € X, choose p € Ey such that p(Tx)=| Tx|. We then have
ITx|l = |p(Tx)| = lar(pp(x)| = las(p)p(x)| +lp(x)|
= [pSx)+elp(¥) = [SxIl +elx]| .

Now let ¢: Mult (X) — CK be any representation of Mult (X) as a function
algebra, i.e. ¢ is an isometric algebra homomorphism and g(Mult (X)) is a
function algebra over K.

2.2. LEMMA. Suppose that k is a point in the Choquet boundary of ¢(Mult (X)).
Further, let S, T be multipliers on X such that |g(S)(k)|, |e(T)(k)| > 1. Then, for
every >0, there is an R in Mult (X) such that

le(R)(k)| > 1
and

ISx = [IRx[| +elxll, Tx| = [Rx|+elx| for every x € X .

Proor. Consider the mapping gog, *: range g, — rangeg (g, as in 2.1(ii)).
0x: f > f(k) is a multiplicative functional on range g, which is extreme in the
dual unit ball. Since gogg ! is an isometric algebra isomorphism, §,00004 ! is
also extreme. Thus, there is a k, € K, in the Choquet boundary of range g,
such that §, =d,0000, '. We have
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(*) 00(T)(ko) = o(T)(k) for every Te Mult (X)
so that in particular
1+n 2= min {lgo(T)(ko)l, leo (S)(ko)l} > 1.
Choose a neighbourhood U of k, such that
min {|go (T) (Ko}, leo(S)(ko)l} > 1+n/2 for kye U.

Since k,, lies in the Choquet boundary of range g, there is a multiplier R, on X
such that

00(Ro)(kg) = 1 = [lgo(Ry)l ,
loo(Ro) (ko) < e(1+n/2)~"  for ko ¢ U;

cf. Theorem 2.3 below.
With R:=(1+#/2)R,, we then have, for every k, € K,,

leo (Ro)(Eo)l < min {'QO(T)(EO)L 'QO(S)(EO)l} +e,
and the assertion follows immediately from 2.1(iii) and (*).
In the preceding proof we have used a theorem from the theory of function

algebras which will be of importance frequently in this paper. We cite this
theorem for the sake of easy reference:

2.3. THEOREM. Let A be a function algebra over a compact Hausdorff space K.
Then, for every k, in the Choquet boundary of A, every neighbourhood U of k,
and every £>0, there is an f in A such that

flko) = IIfll =1, |f(KI =& for every k¢ U.
Proor. [7, Theorem 22].
The following definition is fundamental for our investigations:

2.4. DerINITION. For x € X and k in the Choquet boundary of ¢(Mult (X)) let
x| (k) := inf {|| Tx| | T e Mult (X),|o(T)(k)|>1} .

2.5. PROPOSITION,

(i) x — |x|,(k) is a semi-norm for every k € ch(range g).
(i) k > |x|,(k) is upper semicontinuous for every x € X.
(iii) |Txl|,(k)=le(T)(k)||x|,(k) for x € X, T e Mult (X), and k € ch(range o).
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Prook. (i) For S, T e Mult (X) with |o(S)(k)|, |o(T)(k)| > 1 and >0 we choose
R as in 2.2. It follows that, for x € X, '

Ix+yl,(k) = [R(x+y)]
[Rx] + IRy

I\

= ISxI+ 1Tyl +eClixl+ Nyl -

Hence

Ix+ylp(k) = |xlo(k) +1ylo (k) +&(llx] + [y 1)

and thus, since ¢ >0 was arbitrary,

Ix +ylo(k) = Ix], (k) + ]y (k) .
The proof of the remaining assertions is routine.

(i) This follows immediately from the definition and the fact that the
mappings k — ¢(T)(k) are continuous.

(iil) First, let T, be a multiplier such that ¢(T,)(k)=0 and ¢>0. Using
Theorem 2.3 we obtain an S € Mult (X) such that |g(S)(k)|>1 and ||e(T,)e(S)|
<e&. It follows that

[Toxl|,(k) = IISTox|l < ellx|| for every £>0

so that |Tyx|,(k)=0.
For arbitrary T e Mult (X) define T,:=T—[o(T)(k)] Id. By the first part of
the proof we have |Tx —(T)(k)x|,(k)=0 so that, since |-|,(k) is a semi-norm,

ITx|y(k) = le(T)(K)Ix|y(K) .

2.6. DEFINITION. Let K and ¢ be as above and k € ch (range g). We define
X\, to be the Banach space associated with the semi-normed space (X, |-|,(k)),
i.e. the completion of

X/{x| Ixl,(k)=0},

the quotient provided with the norm ||[x]]|:=|x|,(k).

2.7. UNIQUENESS THEOREM. Let @,: Mult(X) - CK, and g,: Mult (X)
— CK, be isometric algebra isomorphisms from Mult (X) onto functions algebras
over K, and K,, respectively.

Then there are a homeomorphism t: ch(range 9,) — ch(range g,) and a family
of isometric isomorphisms

et Xioo = Xy -
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Thus the family (X} ,)kech(rangeo) IS essentially the same for every representation
¢: Mult(X) — CK.

PROOF. g,00; ! is an algebra isomorphism from range g, onto range g,.
Thus there is a homeomorphism ¢: ch(range g,) — ch(rangeg,) such that

Lezo0r "(NI(t(K) = £ (k)

for every ferangeg; and every k ech(rangeg,). It follows that, for
T e Mult (X),

e (MY > 1 it [(ex(TH(e(K) > 1.

Hence

Ixl,, (k) = |x],,(¢(k))

for every x so that X, , =X,
As an illustration we consider a simple

ExampLE. Let X =A be any function algebra over a compact Hausdorff
space K. Since A is isometrically isomorphic with the restriction of A4 to its
Shilov boundary we may assume that ch 4 is dense in K. It is then easy to see
that

Mult (4) = {M, | hed} = A4,

where M, denotes the multiplication operator f+ hf:
Every M, is in Mult (A), since E 4 is just the set

{40, | kechA,|A=1}.

Conversely, for Tin Mult (A) let h:=T1. Then, for f € A, Tf and hf coincide on
ch A so that by continuity T=M,.
Now let ¢: A — CK be the identical representation. Theorem 2.3 gives

|fl,(k)=1|f (k)| for f € A and k € ch A; it follows that the X, , are just the scalar
field.

Further examples will be discussed later.

Let ¢: Mult (X) —» CK be a fixed representation of Mult (X) as above. For
simplicity we will write X, instead of X, , for k € ch(range g).

We will try to identify X with a space of sections in the Banach space
product [T™ {X, | k € ch(range g)} (the subspace of the product which consists
of those tupels for which the supremum of the norms of the elements is finite).
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The construction is modeled after the similar construction in the case of
function modules.

2.8. THEOREM. w: X — []* X,, defined by [w(x)](k):= the residue class of x
in X,, has the following properties:

(i) a) w is a linear continuous map with ||w|| = 1.
b) k — ||[[w(x)](k)| is upper semicontinuous for every x € X.
¢) w(X) is a (rangep)-module. More precisely: for xe X and
T € Mult (X), we have w(Tx)=9(T) w(x)
(pointwise multiplication).
d) {[w(x)](k) | x € X} is dense in X, for every k € ch(range ).

(i) w is unique in the following sense: If g;: Mult (X) —» CK; (i=1,2) are
representations of Mult (X), and the corresponding ’s and X,’s are denoted
by w,,w, and X}, X% then there are a homeomorphism t: ch(rangepg,)
— ch(range g,) and a family of isometric isomorphisms w,: Xi — Xi such that

([ ()] (k) = [w,(x)](t (k)
for x € X and k € ch(range g,).
PRrOOF. (i) a), b), and d) follow immediately from properties of |-|,(k), which

have been proved in Proposition 2.5. For the proof of c), let T e Mult (X),
x € X, and k € ch(range g) be given. o(T)—(T)(k)1 vanishes at k, so that

ITx —o(T)(k)x|,(k) = 0
by 2.5(iii). By the definition of w this means
[o(Tx—e(T)(k)x)1(k) = 0,
that is (w(Tx))(k)= (e(T)(k))(w(x))(K).
(ii) This is just a restatement of theorem 2.7.
Unfortunately w(X) contains less information than X in general. A

counterexample will be given in section 4. However, the complexity of the
known counterexamples indicates that they represent an exceptional situation.

2.9. DerFINITION. X is said to have a multiplier representation, if w is an
isometrical isomorphism. Since ||w| =1 this means that || (x)|| = ||x| for every
x or, equivalently, that

sup |x| (k) = [x]| .
p



MULTIPLIER REPRESENTATIONS AND AN APPLICATION TO ... 125

The notation “multiplier representation” is justified by the fact that on this case
we may identify X with w(X), so that the Te Mult(X) are precisely the
multiplication operators M,, h in the function algebra Mult (X).

We have already noted that our construction coincides with the construction
of the function module representation if Z(X) is all of Mult (X). Since X is
always a subspace of the function module representation (cf. Chapter 4 in [2]),
this means that X has a multiplier representation in this case. The T e Z(X) are
characterized by the fact that there is an S € Mult(X) such that ag=ar
(complex conjugate). Hence, trivially, we have Z(X)=Mult (X) if the scalars
are real. However, there are a number of complex spaces for which this is also
true:

2.10. ProOPOSITION. Both of the following conditions imply that Z(X)
= Mult (X), so that X has a multiplier representation:

(i) X can be embedded as a selfadjoint subspace of a CK-space
(if) Mult (X) is finite-dimensional.

Proor. (i) Suppose that X <« CK and that x € X for every x € X. For
Te Mult (X) we define S:X — X by Sx:=(Tx). It is easy to see that
S € Mult (X) and that ag=ar (note that every p € Ey has the form AJ, for
suitable k € K, |A]=1).

(ii) We have shown in 2.1(ii) how Mult (X) can be regarded in a natural way
as a function algebra over a quotient of B(Ex\ {0}). Since every finite-
dimensional function algebra is selfadjoint (see e.g. Corollary 1 in section 3.4 of
[7]) it follows that for every T e Mult (X), there is an S such that ag=ar.

Further examples of Banach spaces which have a multiplier representation,
will be given in the next sections.

3. A-modules.

If X has a multiplier representation, X can be identified with w(X). The
properties of w(X) as a subspace of [ [* X, (Theorem 2.8) lead to the following -
definition:

3.1. DerINITION. Let A be a function algebra over a compact Hausdorff
space, (X )iecha @ family of Banach spaces, and X a closed subspace of

[1%{X, | k € ch A}; we will regard X as a space of vector-valued functions on
ch A.
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X is called an A-module, if
(i) the (pointwise defined) product fx is in X for f€ 4 and x € X,
(ii) k — ||x(k)|| is upper semicontinuous for every x € X,
(iti) {x(k) | x € X}~ =X, for every k € ch 4,
(iv) {k| k echA, X,+1{0}} is dense in ch A.

EXAMPLES/REMARKS.

1. If 4 is a self-adjoint function algebra, i.e. a CK-space, then the definition
coincides with the definition of function modules. Function modules have been
investigated in detail in Chapter 4 of [2].

2. Let X, be an arbitrary Banach space, and A4 a function algebra over K as
above. For k echA, define X,:=X, Then A® X,, the injective tensor
product of 4 and X, can be embedded in a natural way as a subspace of
IT* X,; we define

(f®xo)(k) 1= f(k)xo

and extend this definition in the obvious way to all of 4 ®, X . It is easy to see
that 4®, X, satisfies 3.1(i)—(iv).

3. If X is any Banach spaces which has a multiplier representation, then
X =w(X) is a Mult (X)-module by Theorem 2.8.

4. The most important properties are (i) and (ii). (iii) guarantees that the
fiber spaces X, are not greater than necessary, and by (iv) the f€ 4 can be
identified with the multiplication operators x — fx on X.

3.2. LEMMA. Let X be an A-module.
(i) For kg € ch A and x, € X, , there is an x € X such that xq=x(ky). Thus
3.1(iii) can be replaced by

“{x(k) 1 xe X} = X, for every kechA.”

(ii) For ky e ch A, x € X, U a neighbourhood of k,, and ¢ >0, there isan f € A
such that || f1| =/ (ko) =1,

I/xl = lxkoll +& [l flen ap vl < .
Proor. (i) By 3.1(iii), we may write xo=3 x,(k,), where x, € X and
2. Ix4(ko)ll <00. For n e N, choose neighbourhoods U, of ko such that
Ixa (R = lIxn (ko) +27"
for k e U,N (ch A) and f, € 4 such that
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fulk)) = 16l = 1, Nfilkull £ lxa(kl A+ 1Ix, )7 o
We have

(fixw ko) = xu(ko) —and [l fix,ll < lIxalko) +27"
so that x:=3 f,x, (which obviously has the claimed properties) exists in X.
(i) Choose a neighbourhood V of k, contained in U such that
Ix()l = llx(ko)ll +¢
for k e VN (ch A) and an f € A such that

Slko) = 11 = 1, [flkavll S e +lxID7".
Such an f obviously satisfies || fx|| = ||x(ko)| +e.

The following theorem is a generalization of the Cunningham-Effros—Roy
theorem ([6]; for another proof see Theorem 4.5 in [2]).

3.3. THEOREM. Let X be an A-module as in 3.1. By Ey we denote the set of
functionals

0, ®po : X > po(x(k)),
where k € ch A such that X, #{0} and p, € Ey,.

(i) Ex is contained in Ey, the set of extreme functionals on X.
(i) ExcEx (weak*-closure).
(i) ExycEy is not true in general.
(iv) If ch A is closed, then ExycEy.
(V) If X is the, A-modul A®,X, (see Example 2 above), then Eyc Ey.

Proor. (i) The proof is similar to the proof of Theorem 4.5 in [2].

Let k € ch 4 with X, +{0} and p, € Ex,_be given. We assume that 6,®p,
=1/2(ry +r,) (with ry,r, in the unit ball of X’) and we have to show thatr, =r,
=0, ®Po-

Suppose that we have shown that

* ri(x) = ry(x) = 0 for every x € X such that x(k)=0 .

We then define p;: X, — K by x(k) — r;(x) (i=1,2). Because of (*) and 3.2(i),
the p; are well-defined linear functionals on X,, and 3.2(ii) implies that

Ipill, P2l £1. We have p,=1/2(p, +p,) so that p,=p, =p,. This proves that
0 ®po=ry =T,
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It thus remains to prove (*). Let x € X with x(k)=0 and | x| =1 be given,
and ¢>0. We choose a neighbourhood U of k such that ||x(k')||<e for
k"€ UN(ch A) and an X € X such that [|X(k)|| =1, [|X]| S 1+e, | %]cha vl Se,
|Po(%(k))| =1 —¢. Such an x can be constructed by using Lemma 3.2(ii) and the
fact that X, +{0}.

It follows that ||bx + X|| <1+ 2¢ for every b € K with |b]= 1. Consequently we
have |r;(bx +X)|£1+2¢ (i=1,2) for these b. On the other hand,

1—¢ = |poL(bx+X)(k)]|
[(0x®Ppo) (bx + X)|
(1/2)(Iry (bx + X)| + Ir, (bx + X)1)

is valid so that necessarily |r;(bx+X)|21—4¢ (i=1,2, all b € K with |b|=1).
Because of

i

A

@ £ 14+¢ and |r(X) = 1-3¢

(this follows from 6,®p,=1/2(r,+r,) and |po(X(k))|=1—¢) this is only
possible if |r;(x)| < 5e¢ (i=1,2), and since ¢ was arbitrary this proves that r,(x)
- =r,(x)=0.
(ii) It suffices to show that the closed convex hull (closure with respect to the
weak *-topology) of Ey is the unit ball of X'. Suppose that there is a g with |q||

=<1 which is not in this closure. The Hahn—Banach theorem provides us with
an x € X such that |p(x)|£1 for p e Ey and |gq(x)|> 1. It follows that

Ix = sup [x(K)| = sup{lpo(x(k)| | kechA, pyeEx} <1,
but this is not possible since |g(x)|>1 and |g| =1.

(iii) Let 4 be a function algebra over a compact Hausdorff space K such
that there are:

a kg in (chA4)”"\chA4,
a continuous function hy: K — [1/2,1] such that hy(ky)=1, he(k)<1 for
every k=k,.

We define X, =C for every k € ch 4 and regard X :=hyA in a natural way as an
A-module in [T* {X, | k € ch A}. Then hy1 does not attain the norm on Ey so
that Ex $ Ey in this case.

(iv) This assertion will be proved by using a similar property of function
modules.
We define Y<[]* X, by

Yi= {x;+/x; | xp,x,€ X, fe A}~
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(f=the complex conjugate of ). We have X c Y, and Y is a function module
over ch A in the sense of [2, Definition 4.1]:

Y is an (A + A)-module and thus a C(ch 4)-module,

k — |ly(k)|l is upper semi-continuous for every y € Y (it clearly suffices to
consider elements of the form x, +fx,; if || x, (ko) +f (ko)x, (ko) <a, the element
x; +f(ko)x, is in X so that 3.1(ii) and the continuity of f provide us with a
neighbourhood U of k, such that ||(x, +fx,)(k)| <a for k € U).

Now let p e Ex be given. We choose a g € Ey such that g|y=p. By the
Cunningham-Effros—Roy theorem ¢ (and thus p) has the form §,®p, with
k € ch A such that X, +{0} and p, € Ey,.

(v) A®, X, is a subspace pf C(K, X,) (the space of continuous functions
from K to X,) in a natural way. Thus, every p € Ex has by Singer’s theorem the
form 6,®p, with k € K, p, € Ex, (cf. [2, Corollary 4.6]). k is necessarily
contained in ch A since otherwise §, and thus p would admit a proper
decomposition by norm one functionals.

3.4. COROLLARY . If X is an A-module, then h +— M, is an isometric algebra
homomorphism from A into Mult (X); M, denotes the multiplication operator
X +— hx.

Proor. M, is well-defined by 3.1(i), and the multiplier property follows
immediately from 2.1(i) and 3.3(iii). Finally, we have | M,|| = | k|| by 3.1(iv) and
3.2(ii).

3.5. COROLLARY. Let X be an A-module and T: X — X a linear continuous
operator.

(i) If T is a multiplier, then there are multipliers T, in Mult (X,) (all k € ch A)
such that T=[]T,, that is (Tx)(k)=T,(x(k)) for every k and x.

(i) Conversely, if T has the form T=T1] T,, where every T, is a multiplier, then
T is also a multiplier.

Proor. (i) We define T,: X, — X, by T, (x(k)):=(Tx)(k) for x € X. T, is
defined on all of X, by 3.2(i). T is also well-defined: if x(k)=0, then

pol(Tx)(K)] = (3, ®po(Tx) = ar(6,®po) (0, ®po)(x) = 0

for every p, € Ex,, so that (Tx)(k)=0.
The T, are in Mult (X,), since pooT,=ar(d,®po)p, for every p, e Ex,.
Finally, we have T=]] T, by definition.

(ii) The assumption implies that every p € Ex is an eigenvector of T'.
Therefore T is a multiplier by 2.1(i) and 3.3(ii).

Math. Scand. 52 — 9
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3.6. COROLLARY. Let X be an A-module such that Mult (X ) is one-dimensional
for every k € ch A. Then

Mult(X) = {M, | h:chA — K
a bounded function such that M, X < X}.

ProoF. “>” follows immediately from 2.1(i) and 3.3(ii), and “<=” is a
consequence of 3.5(i).

Note. If M,:chA4 — K is any function such that M, X c X, then h is
bounded on {k| X,#{0}}. To show this note that M,: X — X is a closed
operator (the proof is routine) so that || M, || is finite. With the help of 3.2, one
can then easily show that |h(k)| < ||M,|, whenever X, {0}. It follows that
M, € Mult (X) also in this case.

We now return to the problem of finding Banach spaces which admit a
multiplier representation.

Let X be an A-module such that for every T e Mult (X) there is an he A with
T=M,. Choosing ¢: Mult (X) — A as the mapping M, — h, it is easy to see
(by combining 2.3 with 3.1(ii)) that |x|,(k)=[|x(k)|| for x € X and k € ch 4, so
that the X, , as constructed in 2.6 are precisely the fiber spaces X,. In addition,
the map w: X — []* X, is just the natural embedding in this case so that X
has a multiplier representation.

This simple observation enables us to investigate Banach spaces as follows:

Given X, determine a “natural” function algebra associated with X such that
X can be identified with an A-module. If it is possible to show that Mult (X)
={M,| he A}, then the representation under consideration is a multiplier
representation.

ExaMpLE. Let X, be a Banach space such that Mult(X)=KId and 4 a
function algebra. We regard A®, X, as an A-module over (chA4)~ as in
Example 2 above and we claim that this representation is a multiplier
representation. To this end, let T e Mult (4 ®, X,) be given. By Corollary 3.6,
there is a bounded function h: ch A — K such that Tx=hx for every x € X,
and it remains to show that there is an f;, € 4 such that f,|y, 4=h. Choose any
xo € Xo\ {0} and a p, € X with py(x,)=1. Since A®, X, is a subspace of
C(K, X,) (where K= (ch A)7), p, gives rise to an operator

P: A®,X — CK: (Px)(k) := po(x(K)) .

The range of P is contained in A, since P maps the f®x, into A, and these
elements generate 4 ®, X,. In particular,
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Jo = P(TA®xy) e A,

and evaluation at the k € ch 4 gives f)|, 4=h.

4. Two counterexamples.

In this section we will show that

I. there is a Banach space which has no multiplier representation,

IL. it is not reasonable to consider the Banach spaces X, in 2.6 or 3.1 for
every k in the Shilov boundary (ch A)~™ of 4 (recall that we have always
restricted ourselves to the k in the Choquet boundary).

I. Let A be a necessarily complex function algebra over a compact
Hausdorff space K such that ch A4 is not closed. We fix a k, in (ch 4)"\ch 4
and suppose that ch A is dense in K.

Further, let B € C¢([0, 1]) be a closed subspace such that

Bl: 1€ B,

B2: for any t € [0, 1], there is a g € B which attains its norm precisely at ¢,

B3: there is a g, e B such that he B, hg, € B always imply that

h=constant;
(for example, we could define B as the complex linear span of the functions 1, x,
e*, with g,(x):=e%).

Let L be the disjoint union of [0, 1] with K, where 0 € [0,1] and k, have
been identified; K and [0,1] can be thought of as subsets of K, and k,=0.

We define X to be the complex Banach space of all continuous functions f
from L to C for which f|x € 4 and f|, ;, € B. At first we determine Mult (X).
Since 1 € B, we have A < X in a natural way so that the mappings J,: f+> f(k)
are in Ey for every k € ch A. The §, with k € [0, 1] are also in Exy by B2. Now
let Te Mult (X) be given and h:=T1. We have (Tf)(k)= (hf)(k) for fe X and
k € (ch A)U[O0, 1] since the associated J, are in Ey, and this yields T=M, by
continuity. By B3 h|, ,, is constant; this proves that

Mult (X) < {M,,| he X, hl =const.} = A,

and the reverse inclusion is trivially valid. With ¢ =the isomorphism M, — h|g
(from Mult (X) onto A), we get w = the restriction mapping from X to X|., 4 for
our example, and since ||w(f)|| =1 flamll (which is strictly less than | f|| in
general) for fe X, X cannot have a multiplier representation.

II. The reader will have observed that we used frequently Theorem 2.3
which guarantees that points in the Choquet boundary behave much nicer
than arbitrary points of the base space under consideration. However, it is not
only this property why we restricted ourselves to the k in the Choquet
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boundary. To make this statement clear, we give two further definitions of
“A-modules” which differ slightly from Definition 3.1:

DEFINITION. Let 4 be a function algebra over a compact Hausdorff space K,
(Xkek a family of Banach spaces, X <[ ]* X, a closed subspace. X is called
an A-module*, if X satisfies the conditions 3.1(i)-(iv) (with K instead of ch A).

DEFINITION. Similarly, we define an 4-module**: ch 4 has to be replaced by
the Shilov boundary in 3.1.

Every Banach space X is isometrically isomorphic with a (Mult(X))-
module*.

(Sketch of proof: Consider g,: Mult (X) - CK,, as in 2.1(ii), define
X{, := completion of X|,

for p € BL and embed X by x — (x|, into [T X|,}.)

Thus in a sense the T € Mult (X) can always be considered as multiplication
operators associated with continuous functions. However, neither the
definition “A-module*” nor “A-module**” is reasonable, if one tries to
associate the X, with X in an invariant way, i.e. if one wants to have an
analogue of Theorem 2.8. This is easy to see in the case of the definition “A-
module*”: If 4 is any function algebra over a compact Hausdorff space K, then
K is isometrically isomorphic with the restriction of A to (ch A)~, so that the k
in K\ (ch A)~ have no meaning if 4 is considered as a Banach space. As to the
second case we have the following

CounTerexaMPLE. There are a function algebra 4 and two A-modules**
X, Y (component spaces: X, and Y, for k € (ch A)~, respectively) which are
isometrically isomorphic such that

Mult(X) = {M, | he A} and Mult(Y) = {M,| he 4},
but there is a k, such that X, is not isometrically isomorphic with any Y,.
To construct this counterexample. let ¢,0 be positive numbers such that
there is a ¢ € R with
(1) (1/2)(1—9 7" < ¢ £ (1 +e)(1+26)" .

Further, choose a fumction algebra A such that there are a k, € (ch 4)” \ ch 4,
an open neighbourhood U of k,, a probability measure u on (ch 4)™ \ {k,}
which represents k, such that
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(2 ulU) £46.
(Take e.g.
A = {f| fin the disk algebra, f(0)=£(1)},

K ={z| lzl=1}, ko={0,1},
1 = the normalized Lebesgue measure on K,
U = {e¥| |t|<5/2}.)

Now let ||“l;, -], be norms on C? such that

G (1-9l@bl; = lal+bl = (1+8)l(a,b)l; (=12, a,beC)and

@ (%1, (C%0-1,), and (C? L'-norm) are pairwise not isometri-
cally isomorphic.

We define the fiber spaces by
X, := Y, := (C}L'norm) if k e (chA)™\ {ko}
Xko = (CZ,”'”l), Yko = (Cz» ””2) ,

and the spaces X and Y as {(f,gho | fige A} in TI*X, and []*Y,
respectively; in this definition h, denotes the function

1 if ke (ch4)™\U
ho(k) := 172 if ke U\ {ko}
]c if k=k,
We claim that

a) X and Y are A-modules**,
b) XY,
) Mult(X)={M, | he 4}, Mult(Y)={M,| he 4},

and X, is isometrically isomorphic with no Y, by construction.

a) The proof us routine; the only less obvious fact is the upper
semicontinuity of the k — ||((f,2ho)(k)|, and this follows from the first
inequalities in (1) and (3).

b) It suffices to show that

1 @holl = 1(fs ol (ch )~ (ko)

in X and Y. This implies that X=>~Y since both modules coincide on
(ch A)™ N\ {ko}.

Let f,g € 4 be given with ||(f,g)hol(ch 4)-\ {k,}I| = 1. This means in particular
that
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1 if ke (chA) \U
If 0l +1gk)| < {2 if k e UN {ko} .

so that

I (ko) + g ko)l = deu|+l f gdul

= j\f (k) du(k) +Jlg(k)| du(k)

f du+2j dy
K U

£1+20.

1A

The second inequalities in (1) and (3) now imply that || ((f, g)ho)(ko)|; =1 which
proves b).

c) By a) and b), X and Y are even A-modules in the sense of 3.1 when
restricted to ch A. Thus every multiplication operator M, is a multiplier.
Conversely, if Te Mult (X) (respectively Mult (Y)), there is an h:chA — C
with T=M, by 3.6. Since (1,1)h, € X (respectively Y) we have (h,h)hy € X
(respectively Y), so that there is an f € 4 with (f, f)ho= (h, h)h,. Hence h € A,
and the proof of c) is complete.

5. Spaces for which Mult (X) is finite-dimensional.

In view of the applications of our theory in section 6 we investigate now the
class of Banach spaces X for which Mult (X) is finite-dimensional.

5.1. ProposiTION. Mult (X) is finite-dimensional iff X can be written as a finite

product X = []® X, where every Mult (X)) is one-dimensional.

i=1

ProoF. Suppose that Mult (X) is n-dimensional. We have already shown in
Proposition 2.10 that Mult (X) coincides with the centralizer of X in this case.

Therefore X can be written as X =[][* X, where every X; has one-
i=1

dimensional centralizer ([2, 5.3b]). The Mult(X,) are necessarily one-

dimensional, since

Mult (X) = I] Mult (X))
i=1
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in a natural way so that dim (Mult (X;))>1 would imply Mult(X)>n, a
contradiction.

The reverse implication follows immediately from

Mult ([T* X)) = TTMult (X)) .

Therefore the spaces we have in mind are built up from spaces for which
Mult (X) is one-dimensional. There are a number of well-known spaces with
this property.

5.2. ProrosiTION. Each of the following conditions implies that Mult (X) is
one-dimensional

(i) X is smooth.

(i) X contains a nontrivial LP-summand for any p in 1, 0o[ (recall that an LP-
summand, 1 <p <00, is a closed subspace J of X such that there exists an L?-
complement of J, i.e. a closed subspace J* of X such that X is the algebraic direct
sum of J and J* and |x +x1|P=||x||? + ||x*|? for x € J and x* € J*; J is called
nontrivial if J % {0}, X).

(iii) dim X =3, and X contains a nontrivial L!-summand.

ProOF. (i) Let X be a smooth Banach space and T e Mult (X). Since Ey
contains the boundary of the dual unit ball every p € X' is an eigenvector of T".
It follows that T’ (and thus T) is a multiple of the identity operator.

(i) We will use the following simple fact from linear algebra: Let V be a
vector space, S: V— V a linear map, xg,X;,...,Xx, € V such that x,=a,x,
+...+a,x, with a;#+0 for i=1,...,n

(*) If the x,,. .., x, are linearly independent and x,,. . ., x, are eigenvectors
of S, then x,,...,x, lic in the same eigenspace of S.

Now let X be a Banach space containing a nontrivial LP-summand J. It is
well-known (see e.g. Lemma 1.4 in [3]) that the annihilators J* and (J*)" of J
and J* in X’ are L9-summands, where 1/p+1/q=1. An elementary calculation
shows that

Ex = {t"p,+(1—t)"p, | p,,p, € Ex, py €J" p, € (JY)", 0St<1},
so that a Te Mult (X) lies in KId, iff a; is constant on
E:= {p| peEy,peJiorpe (JY)}.
Let Te Mult (X) be given and
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pieJ"NEy, pye(YNEy.

po:=(1/2)"4(p, +p,) is also in Ex, and an application of (*) with x;:=p;
(i=0,1,2), V:=X', §:=T' gives ar(py)=ar(p,)=ar(p,). It follows that ar
is constant on E so that Te K1d as claimed.

(iii) In this case the elements of Ey are of the form p+ ¢, where p and g are
extremal in the unit ball of J* and (J1)", respectively; this follows at once from
X' =J"®, (JH" ([2, 1.5]). Suppose that dimJ*=2 (if dim J* =1, we consider
(J*)* instead of J™. We choose any p,,p, € J® and q € (J*)® which are
extremal in the respective unit balls such that p,, p, are linearly independent.
With xg:= —p,+4, x;:=p,+4q, X;:=—p,+4, x3:=p,+q an application of
(*) (from the proof of (ii)) yields ar(p,+q)=ar(p+qg)=ar(—p;+4q)=
ar(—p,+q), whenever Te Mult (X). If follows that ar is constant on Ey
so that Mult (X)=K1Id.

Nortes. 1. In (iii) the condition “dim X =3” can be dropped in the case of
complex scalars. This follows at once from [2, Theorem 1.13] and the fact that
Mult (X) coincides with the centralizer for finite-dimensional spaces by 2.10.

However, the real I¥ contains a nontrial L!-summand whereas Mult (IY) is
two-dimensional.

2. In particular, every L-space which is not two-dimensional has only trivial
multipliers.

By the next theorem, Mult (X) can only be great if X contains subspaces
which are arbitrarily close to c,.

5.3. THEOREM. Let X be a Banach space such that Mult(X) is infinite-
dimensional. Then, for every £>0, there are a subspace Y of X and an
isomorphism I: ¢, — Y such that 1|, |1 | <1+e.

Proor. We represent Mult (X) as a function algebra over K, as described in
the proof of 2.1(ii).

Let £>0 be given. For ¢,>0 (which will be fixed later), we choose positive
numbers &;,¢€,,... such that & +¢,+...<¢g. Since Mult(X) is infinite-
dimensional, we may select a sequence (U,) of disjoint open subsets of K, and
points k, € U,Nch(range g,). For n € N we choose T, € Mult (X) such that

"Tn” = (QO(Tn))(kn) =1, "(QO(Tu))h((,\U,,“ = €

(cf. Theorem 2.3). By the definition of the operator norm there are y, € X, |yl
=1, such that || T,y,|| >1—¢,. We define x,:=T,y, for n € N and claim that
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is isomorphic with c,,.
To this end, we define I from the space of finite sequences to Y by

(e;=the usual ith unit vector). We will prove that

n
Y ax
i=1

for every finite sequence Y a.e; in ¢,. A routine computation then shows that I
can be extended as an isomorphism from ¢, to Y with

(*) (1 —2¢p) max|a| =

< (1 +¢p) max|ay

I, 171 = max {1+eq, (1—260) 7"}

(=1+¢ for suitable ¢,).
Thus it remains to prove (*). Let p € Eyx be a arbitrarily given. With v as in
2.1(ii), v(p) lies in at most one U, say U,. By the choice of the T,, we have

lar, ()l = (o (TP = e,

for n+n, and |aT"0(p)|§1 so that

b(3, ) -

Z r (PP )‘

lIA

(max |a;)(1 +¢&, +¢e,+...)

IIA

(max |a;|)(1 + &)

and this inequality is a fortiori valid if v(p) is contained in no U,). It follows
that X ax;]l < (max la)(1 +&).

On the other hand, if i, € {1,...,n} is arbitrarily given, choose p € Ey such
that

lp(x;,)l = lar, (PN IPi)l = 1—¢ .

We have |ar (p)|=1—¢, so that v(p) lies in U; and therefore in no U; with
i#+i,. Hence

Ip(a;ix;)| = |aT,.(P)| lap(y)l < efajl
for i+i, and thus
1Y axill 2 1p(} aix)

2 |p(a;x;)|l— Z Ip(a;x;)|

i*ip
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2 lag|(1—gp)— (max|al)(e; +&,+...)
2 |a; (1 —gp) — go(max|ay) .

This proves that |3 ax;| = (1 —2¢,) max|aj.

5.4. CoROLLARY. Mult (X) is finite-dimensional for every reflexive Banach
space.

5.5. CoroLLARY. A reflexive function algebra is finite-dimensional.

Proor. For function algebras we have 4 = Mult (X) in a natural way (cf. the
example in section 2).

5.6. COROLLARY. If X is a reflexive space which contains no nontrivial M-
summand, then Mult (X)=KId (M-summands are defined similarly to LP-
summands; the relevant norm condition here is |x + x*| =max {||x|}, [|[x*|}).

Proor. By 5.4 and 2.10, Z(X)=Mult (X) is n-dimensional with n<oo. It
follows that X can be written as a sum of n nonzero M-summands
" (Proposition 5.1). We have n=1, since X is the only nonzero M-summand.

5.7. COROLLARY. An infinite-dimensional function algebra contains subspaces
which are arbitrarily close to c,.

6. On the problem whether 4 ®, X determines 4 and/or X.

In this section we want to apply our theory to tensor products. In a sense the
results may be thought of as variants of theorems of the Banach—Stone type
where K and/or X are reconstructed from CK ®, X =C(K, X) (see [2]). We
resist the temptation to derive theorems for very general situations, only
the case of finite-dimensional Mult (X) is considered. Generalizations can be
obtained similarly to the Banach-Stone case; cf. Chapters 9-11 in [2].

To prepare our investigations we restate the uniqueness theorem 2.7 in the
A-module setting:

6.1. THEOREM. Let X and Y be an A-module and a B-module, respectively, such
that Mult (X)={M, | h € A} and Mult (Y)={M, | h € B} (4 and B functions
algebras).

Then, for every isometric isomorphism 1: X — Y, there are a homeomorphism
t: chB — ch A and a family of isometric isomorphisms u,: X, — Y, such that
(Ix)()=u,(x(¢(D)) for x € X and | € ch B.
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In the special case of tensor products we can prove much more:

6.2. THEOREM: Let A and B be function algebras over K and L, respectively; as
before we may assume that (chA)”" =K and (chB)"=L. If X, and Y, are
Banach spaces with one-dimensional multiplier algebra, then for every isometric
isomorphismI: A®,X, — B®, Y, there are a homeomorphismt: L — K and a
family of isometric isomorphisms u;: X, — Y, (all | € L) such that

(Ix)() = w(x(t(D))

forleLand x e AQ, X,; in these expressions we regard A®, X, and B®, Y,
as subspaces of C(K, X,) and C(L, Y,).

Further, f — fot is an algebra isomorphism from A onto B, and for x, € X,
and y, € Y, the mappings | — u,(x,) qnd k — u;}(k)(yo) are contained in B®, Y,
and A®, X, respectively (so that in particular | — u, and | — u; ! are strongly
continuous).

Proor. We have already shown at the end of section 3 how multiplier
representations of A ®, X, and B®, Y, can be obtained. I induces an isometric
algebra isomorphism

it Mult B®,Y)  B—> Mult(A®,X,) = A

by i(T)=1I"'oTol. Hence there is a homeomorphism t: L — K such that
[+ fot is an algebra isomorphism from A onto B. Theorem 6.1 provides us
with a family of isometric isomorphisms u;: X, — Y, (I € ch B) such that

(Ix)() = u(x(t(}))) for xe A®,X, and lechB.
We have only to show that the u, can be defined for all / in L in such a way that
Ix)(D) = w(x(t(D)), (I ulxy)) e B®,Y,, and
(k= urly (o) € A®, Xo -

The construction is straightforward: For [ € L\ ch B, x, € X, define u,(x,):
= (Ix)(l), where x is any element of A ®, X, such that x(¢(]))=x,.

u, is welldefined: If x(t(l))=0, choose a net I; in ch B with t(I;) — t(I); x(¢(])
=0 implies that x(t(l,)) — 0 so that :

(Ix)() = lim (Ix)(l) = limuy,, (x(t(li))) =0.
lull =1:
lu(xo)l = ITA®x) (DI = M@0l = lIxoll -

u, is an isometrical isomorphism: A direct proof of this fact can easily be
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! instead of I, and a similar

Lof u,

obtained. However, it is sufficient to consider I~
construction as above provides us with an inverse u;
+

It is clear from the construction that (Ix)(l)=u,(x(¢(]))) for every ! and x, and
this identity implies that

(I > u(xp)) = I(1®xy) € B®, Y, and
(k> u- 1(k)0}0)) =1"'(1Qy) € A® X, .

6.3. COROLLARY. (4,B, X, Y, as in 6.2) A®, X, and B®, Y, are isometrically
isomorphic iff A=~B (as algebras) and X,=Y,,.

In the special case, when A and B are the same algebra, Theorem 6.2 can be
improved.

6.4. LEMMA. Let A be a function algebra over a compact Hausdorff space and
X, a Banach space. Further let T: A®,X, - A®,X, be an isometrical
isomorphism such that there are isometric isomorpisms u: X, — X,
(k € (ch A)™) with (Ix)(k)=u,(x(k)) for every x and k.

Then there are isometrical isomorphisms u,: X, — X, for every k € K with
Ix) (k) =u(x(k) (x € A®, X, k € K).

ProoF. Let k, € K be given. Suppose that we have shown that
* (Ix)(ko) = 0  whenever x(ko) = 0.

Then it is routine to prove that u, (x(ko)): = (Ix)(ko) (x € A®, X,) defines a
welldefined isometrical isomorphism on X, (for the construction of u,'
consider T~! instead of I). Since (ch A)~ is a boundary for A®, X, and not
only for A (this follows from A=A|,,-) two elements of A®, X, are
identical, iff their restrictions to ch A coincide. In particular, T(f®x,) and
SI(1®x,) have this property so that

(** (nf@xo))(ko) = f(ko)(i(1®xo))(ko) (fe A, xy € X,) .

We will now prove (*). Let x € A ®, X, with x(k,)=0 be given and ¢>0. We
have

x- £ s

for suitable f; € 4, x; € X,. It follows from (**) that

1UX) Kl < IT(Z f:®x0)(ko)ll +¢
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I

1% filko) [A®x()) ko)l + &
HT(A® (X fitko)x§)) (ko) +&
IT(A®x (ko)) +2¢

2¢

Al

IIA

so that (Ix)(ky)=0.

6.5. THEOREM. Let X, be a Banach space with Mult (X,)=KId and A a
function algebra over a compact Hausdorff space K. Then for every isometric
isomorphism I: A®, X, — A®, X, there are an algebra isomorphism ¢ on A,
and a family of isometric isomorphisms u,: Xq — X, (k € K) such that (Ix)(k)
=u,((¢ x)(k)); here ¢ : A®, Xy, > A®, X, denotes the isomorphism ¢@]Id.

Further, k — u,(x,) and k — uy; '(x,) are in A®, X, for every x, € X,.

ProoOF. We construct t and the u, (k € (ch A)7) as in Theorem 6.2 and define
¢@: A — A by ¢(f):=the canonical extension of fot. We then have

(Ix)(k) = u((@ x)(k)) for x e A®, X, and k € (ch A)~ .

This is obvious if x=f®x,, and the general case follows by an approximation
argument.

With T:=1Io(¢p )~ ' we may apply the preceding lemma by which we get
isometric isomorphisms u, on X, for every ke K such that (Ix)(k)
=u,((¢ x)(k)) for every k and x. Finally, this expression implies that

(k = u(xp) = 1(1®x)
and
(k = u7 1 (xp) = (@ ol H(1®x,) for xy € X, ,
and both functions are in A®, X, as claimed.
Note. Cambern [4] has obtained this theorem by using T-set methods in the

case of reflexive Banach spaces which contain no nontrivial M-summand. This
case is contained in the theorem by Corollary 5.6.

Theorem 6.2 will now be extended to situations, where the spaces under
consideration are composed from simple parts.
6.6. LEMMA. Let X,,...,X, be Banach spaces which admit a multiplier
n

representation. Then || X, has also a multiplier representation.

i=1
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Proor. This follows immeduately from Mult (T]*X,) =T Mult (X)).

NoTE. In the A-module setting, Lemma 6.6 can be stated as follows: If the X,
are A;-modules such that

Mult (X)) = {M, | he A} fori=1,...,n,
then []* X, is an []* 4;-module, and
Mult [T X) = {M, | heTI*4,;}.

6.7. THEOREM. Let A,,...,A,B,,...,B, be function algebras and
X3, X3, Y, ..., Y® Banach spaces with one-dimensional multiplier algebra
such that the X (respectively the Y}) are pairwise not isometrically isomorphic.
Further, let

I: TI"4,®.X; - [1°B;®, Y}
be an isometric isomorphism. Then n=m, and there is a permutation
w: {1,...,n} - {1,...,n}

such that the restriction of 1 to A,®X§ is an isometric isomorphism onto
B,y ®, Y§?. Thus I is the product of a family of isometric isomorphisms

I;: A;®X5 — B, ®, Y5

(which can be described by using 6.2).

ProOF. A multiplier representation of X:=[]> 4; ®, X}, can be derived from
(the note after) Lemma 6.6: With A:=]]> A, we represent 4 as a function
algebra over the disjoint union of the (ch 4)~. We have ch 4=Uch 4,, and
with X,:= X} for k € ch A;, we can embed X into [ {X, I kechA} in a
natural way such that

Mult(X) = {M, | he 4}.

Y:=[]*B;®, Y} is represented similarly as a B-module over U(chB)"~
(B:=T1>B).

By 6.1 there is a homeomorphism ¢: ch B — ch 4, and the fiber space X, is
always isometrically isomorphic with Y, Since these fiber spaces are the X
and the Y} respectively, we have n=m and there is a permutation w: {1,...,n}
— {1,...,n} such that X{=Y%®; also ¢t induces a homeomorphism from
chB,; onto chA, and I maps A4;®,X} onto all of B,;,®,Ys?. The
remaining assertions now follow from Theorem 6.2.
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6.8. THEOREM. Let X, and Y, be Banach spaces such that the multiplier
algebras of X, and Y, are finite-dimensional.
By 5.1 we may write X, (and Y,) as

Xo = [I* X (YO = []l°° Y';a>,
o

o=1

where the X, (the Y,) have one-dimensional multiplier algebra and are pairwise
not isometrically isomorphic.

Then, for function algebras A and B, A®,X, and B®, Y, are isometrically
isomorphic iff,

r=s, there is a permutation w on {1,...,s} such that X, =Y, (6=1,...,s)
A" =B™ gs algebras for all o.

)

Proor. We have natural isomorphisms
AR X" 2 A"®, X and A, JI*X, =2[]"4®,X;,

so that we may regard A®,X, and B®,Y, as [[* (4" ®,X, and
[1* (B™®, Y,), respectively. The assertion is thus a corollary to the preceding
theorem.

6.9. COROLLARY. Let X, be as in Theorem 6.8. Then AQ, X, =B®, X, always
implies that A~ B (for function algebras A, B) iff minn,=1.

ProoF. If minn,=1, then A®,X,=B®, X, yields A=B by Theorem 6.8.
For the proof of the converse we refer the reader to Theorem 11.16 in [2],
where it is shown that there are non-isometric CK-spaces A and B with
A® . Xo=B®, X, if minn,>1.

6.10. COROLLARY. Let X, and Y, be as in Theorem 6.8 and suppose that

n=...=n=m=...=m=1.

Then, for function algebras A and B, A®, X, =B®,Y,, iff A=B and X, Y,
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