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REMARKS ON NAMIOKA SPACES AND
R. E. JOHNSON’S THEOREM ON
THE NORM SEPARABILITY OF

THE RANGE OF CERTAIN MAPPINGS

JENS PETER REUS CHRISTENSEN

Abstract.

We give miscellaneous remarks on the class of Hausdorff spaces (and
metrizable spaces) for which Namioka’s theorem on separately continuous
functions holds. We also show that this can be used to give a simplified and
vastly generalized proof of a remarkable theorem of R. E. Johnson on the norm
separability of the range of certain weakly continuous mappings. The measure
in Johnsons theorem is replaced by a countable chain condition on the open
sets and the class of domain spaces, for which the theorem holds, is vastly
extended.

KEY wORrRDS AND PHRASES. Norm separability off range. Countable chain
condition.

We shall call a Hausdorff topological space X a Namioka space, if for any
separately continuous function f: X x Y — Z, where Y is a compact Hausdorff
space and Z is a metrizable space, we have that there exists a dense G, subset
A< X, such that fis jointly continuous at each point of 4 x Y.

It is indeed possible to replace an arbitrary metric space Z with the interval
[—1,1] (usual metric) using a trick discussed in [2].

It is not known what metric spaces are Namioka spaces. Below we shall
make some preliminary observations, which may eventually lead to a solution
of this problem.

First let us recall the definitions of o-well and 7-well a-favorable spaces in
[2]. Let us consider the following topological “game” on the Hausdorff space
X between the players a and f.
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The player f starts the game by choosing an open non empty subset U, of
X. Then the player a chooses an open subset V, of U, and a point x; € V, (his
“move” is the pair (V,x,) with x, € V, and V, 2 U,). Then B chooses an open
non empty subset U, of V; (he may choose as he wishes but is expected to try
to escape x,). Next o chooses an open subset V, of U, and a point x, € V, ...

We shall fix the rule that « wins in the o-game if any subsequence x, of the
sequence x, accumulates to at least one point of I=1, U,=MN%, V,. In the
t-game we demand (for « to win) that any subnet x,, (d € D) accumulates to a
point in 1.

We shall consider only strategies for « depending on the previous moves by
B. We shall call X a o-well or 1-well a-favorable space if there exists a winning
strategy for a in the g-game or the t-game respectively.

Any g-well o-favorable space is a Namioka space. The more restricted class of
t-well a-favorable spaces has the property of being closed under arbitrary
topological products (see [2]).

It is a remarkable observation, that any metrizable space X which is a-
favorable in the original Choquet sense (see [1], it seems to be known that for
metrizable spaces this is equivalent with X containing a dense G; subset of its
completion) is automatically t-well a-favorable! Hence an arbitrary product
of such spaces is a Namioka space!

Let us sketch the proof of this statement. Any strategy ¢ for o in the original
Choquet game which is contained in a winning strategy is itself winning. If
therefore  is a winning strategy for o in the Choquet game, we can choose a
winning strategy o = such that

diam (a(U)) £ $diam (U) A 1

for all non empty open sets. U. If we choose an arbitrary point in o(U) we get a
winning strategy for « in the t-game.

The fact that a-favorable implies t-well a-favorable is not true in general as
the real line with the Sorgenfrey topology shows.

The attention of the author was drawn to the above mentioned facts abour
metrizable spaces and the Sorgenfrey topology by F. Topsee and J. Hoffmann-
Jorgensen (oral discussion).

Although the real line with the Sorgenfrey topology is a-favorable but not o-
well a-favorable, it is still a Namioka space. To see this one need only the fact
that a non empty Sorgenfrey open subset of the real line has non empty
interior in the usual topology, and a slight modification of the proof of
Theorem 1 in [2] shows that (R. Sorgenfrey) is a Namioka space.

It is not known whether there exists a non Baire metrizable Namioka space.
The theorem below might support the conjecture that any metrizable Namioka
space is Baire.
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THEOREM 1. The rational numbers Q with the usual topology is not a Namioka
space.

Proor. The proof uses a slight modification of J. Hoffmann-Jorgensen’s
example discussed in [2]. Since Q is homeomorphic with the space of rationals
in [ —1, 1], it is no restriction to let Q in the proof denote this space. Let Z be
the set of mappings from Q2 into [—1,1] equipped with the pointwise
topology. Of course Z is a compact metrizable space. The mapping F goes
from Qx[—1,1] into Z and is defined by putting the value of F(q,r) at the
point (x,y) € Q? equal to

F(g,n(x,y) = 2(x—q)(y—n/((x—q)*+ (y—r?)

whenever this quotient is defined, and equal to zero, if the quotient is
undefined. Now it is easy to show that F is separately continuous on Q x
[—1,1] and the joint continuity points (q,r) € Qx [ —1,1] are exactly those
points where r is irrational! Hence Q is not a Namioka space. This finishes the
proof of Theorem 1.

We shall now use the class of Namioka spaces to extend substantially the
class of spaces for which Johnson’s theorem (see [3]) holds. Many results in
automatic continuity theory follows easily from Namioka’s theorem and this
result.

A Hausdorff space X has countable chain condition on the open sets if any
family O, (i € I) of pairwise disjoint non empty open sets is at most countable.

THEOREM 2. Let X be a Namioka space with countable chain condition on the
open sets, and let f: X x Y— Z be a separately continuous mapping, where Y is
compact and Z is metrizable. Then the set of continuous mappings from Y into Z
given by {f(x,.) I x € X} is separable in the metric

D(e,¥) = sup{d(p().¥ ()| ye Y}

where d is any metric on Z.

Proor. Let us first reduce to the case, where Z equals [ — 1, 1] with its usual
metric. To do this we consider

K={kiZ—>[-11]1| V¥, .czlk(z))=k(z,)| £ d(zy,2,)} .

Obviously K is a compact Hausdorff space with the topology of pointwise
convergence. We put Y=YxK and f: Xx¥— [—1,1] is defined by
F((x, i, k) =k(f (x,y)). Now we easily see that
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Sup{lf(xl,i)—](xz,i)l | y e Y} <a<1
imply

sup {d(f(xlﬁy)’f(xlay)) I ye€ Y} _S_ a.

Hence if we can prove the theorem for Z=[—1,1] and arbitrary compact Y,
we have really done. Accordingly we now assume Z=[—1,1].

It is easy to show that any point of the section {x} x Y is a joint continuity
point for f: X x Y— [—1,1] if and only if x is a continuity point for the
associated mapping

F: X — C(Y)

defined by F(x)(y)=f(x,y) (with respect to norm topology on C(Y), see [2]).
Let us choose a maximal family O} (i € I,) of non empty, pairwise disjoint open
sets in X with diam (F (0}))<1/n. Clearly I, is non empty and countable. From
the assumption that X is a Namioka space, we conclude that G,= U,-e'," 0! is
dense in X. Let f, € C(Y) be a sequence, such that each of the sets F(O?)
contains at least one f,. On Y we define the equivalence relation

Vi ~ Ve = Vi f,00) = £,002)

The set of equivalence classes Y is a compact metric space in an obvious way
and the continuous functions on ¥ will be identified with those continuous
functions on Y which respects ~ (see [2] for a similar argument). Let & _(Y)
be the space of all real functions on Y respecting ~, and let us consider Z_(Y)
with the topology of pointwise convergence. Of course #_(Y) is a closed
subspace of % (Y) all real functions on Y with pointwise convergence). Let

Co={feFM| Iflosl/n},
then C, is compact in £ (Y) and therefore
Z(Y) = F.(Y)+C,
is closed in Z (Y). We conclude, that the set F~!(%,(Y)) is closed in X. Since
this set contains G,, we have that it equals X. Consequently for

Z0) = O F)

we have F™Y(Z, (Y))=X. It is fairly obvious that Z_(Y)= Z_(Y), and we
conclude that for each x € X, the function F(x) belongs to the Banach space
C(Y)< C(Y). But C(¥) is separable, since Y is metrizable (and compact) and
this conclude the proof of Theorem 2.
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Theorem 2 was proved originally for compact spaces X supporting a
positive Radon measure (see [3]). The method of proof was very different
from the present paper. Encouraged by discussions with F. Topsee and
J. Hoffmann-Jorgensen we realized an unexpected connection between
Namioka’s theorem (see [4]) and R. E. Johnson’s theorem. At the same time
the proofs are simplified and the theorems are substantially generalized.

AckNOWLEDGEMENTS. The author is thankful for discussions with F. Topsee
and J. Hoffmann-Jergensen who both encouraged this work.

ADDED IN PROOF SEPTEMBER 1982. The attention of the author has been
drawn to a paper by Jean Saint Raymond (Jeux topologiques et espaces de
Namioka, to appear in Proc. Amer. Math. Soc.) where it is shown that the
metrizable Namioka spaces are precisely the (metrizable) Baire spaces! He uses
the methods of the present author (slightly improved) and some new tricks.
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