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LINEAR-TOPOLOGICAL CLASSIFICATION
OF MATROID C*-ALGEBRAS

JONATHAN ARAZY

Abstract.

We classify, up to a linear-topological isomorphism, all matroid C*-algebras
(i.e. direct limits of a sequence of finite dimensional matrix algebras). There are
two isomorphism classes: one is represented by LC(l,), the C*-algebra of all
compact operators on the Hilbert space [,, and the other — by the Fermion
algebra F=®3, M,. In particular, any UHF algebra is isomorphic to F as a
Banach space. We also show that LC(l,) is isometric to a 1-complemented
subspace of F, but F is not isomorphic to a subspace of a quotient space of
LC(l,).

1. Introduction.

Let M, denote the C*-algebra of all complex n x n-matrices with the usual
algebraic operations and norms. A C*-algebra A is called a matroid C*-algebra
(or, briefly, a matroid) if there exists a sequence {4,}%, of C*-subalgebras of
A, possibly with different units, so that:

() A4FA s k=1,23,...
(i) Ay is C*-isomorphic to M, for some positive integer n(k);
k=1,2,3,...
(iii) Ug, 4, is dense in A4 in the norm topology.

If, moreover,
(ivy A hasauniteand ee A, k=12, ..

then A is called a UHF algebra (i.e., uniformly hyper-finite algebra or, a Glim
algebra, see [6, Chapter 6]). We call the sequence {A4,};%, an admissible
sequence for the matroid A.

The classification of matroids up to a C*-isomorphism is due to Glimm [2]
(in the UHF case) and Dixmier [1] (in the general case). Glimm proved that if
{A:}%, and {B,};>, are admissible sequences for the UHF algebras A4 and B
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respectively, with 4, C*-isomorphic to M, and B, C*-isomorphic to M,,,,
then A is C*-isomorphic to B if and only if

sup {j; 3k (p’|n(k)} = sup {j; Ik (p| m(k))}

for every prime number p. In particular, there exist uncountably many non-C*-
isomorphic UHF algebras. Dixmier constructed a “dimension function” d 4 on
the set E 4 of projections of a general matroid A, and showed that two matroids
A and B are C*-isomorphic if and only if d 4(E 4) = dg(E ). He also showed how
to compute d4(E,) in terms of the dimensions {n(k)};>, of an arbitrary
admissible sequence {4}, for A. Another (easy) remark of Dixmier is that a
unital matroid is, in fact, a UHF algebra (see [1, 1.2]).

Using the fact that two C*-algebra are linearly isometric if and only if they
are Jordan-*-isomorphic (see [3] and [5]) one obtains easily that the isometric
classification of matroids coincides with the Glimm-Dixmier classification as
C*-algebras.

We are interested here in the linear-topological classification of matroids,
i.., in the classification up to a Banach-space isomorphism. Our main result is
the following theorem, which shows a completely different phenomenon.

THEOREM 1.1. (a) Every matroid C*-algebra is isomorphic either to LC(l,),
the C*-algebra of all compact operators on l,, or to the Fermion algebra
F=®,21 M;;

(b) LC(l,) is isometric to a subspace of F which is the range of a contractive
projection from F.

(c) F is not isomorphic to a subspace of a quotient space of LC(l,).

The representation of LC(l,) as a matroid is quite obvious. Let {a,}~, be an
increasing sequence of finite-rank projections on I, tending strongly to I, the
identity operator. Let A,=a,-LC(l,)  a;, and n(k)=rank (a,). Then A4, is C*-
isomorphic to M,,, A,E Ay 4y, and UL, A, is norm-dense in LC(l,).

Assuming the notion of infinite tensor product of C*-algebras (see [7,
Section 1.23], [8], and section 2 below) the representation of F=® ., M, asa
UHF algebra is also obvious. For k=1,2,... let

k-factors

A, =M, M, ® ... M,

then [A,}32, is (identified with) a strictly increasing sequence of unital C*-
subalgebras of F, 4, is C*-isomorphic to M, and U2, A, is norm-dense in F.
Theorem 1.1 answers questions raised by A. Lazar, and may be helpful in the



LINEAR-TOPOLOGICAL CLASSIFICATION OF MATROID C*-ALGEBRAS 91

linear-topological classification of general AF-algebras. We thank Professor
Lazar for valuable discussions.

Our methods are elementary and straightforward, and are independent of
the delicate analysis of [1] and [2]. After replacing the above definition of
matroids by the (equivalent) definition as a direct limit of matrix algebras, we
analyze in a greater detail commutative diagrams of the form

Mn(l) AL‘) Mn(2)
Yll l)’z

Mm(l) g MM(Z)

where fand g are C*-monomorphisms and y, and y, are linear isometries of a
special kind. This analysis enables us to show that if 4, B are matroids with B
+LC(l,), then A4 is isometric to a 1-complemented subspace of B. Then we
show that every matroid A is isomorphic to cy(A4). These two facts together
easily imply parts (a) and (b) of Theorem 1.1. In order to prove part (c) we
introduce the notion of the “diagonal” of a matroid which is always a 1-
complemented, commutative C*-subalgebra, and show that the diagonal of F
is C(4), the algebra of all continuous function on the cantor set 4. A simple
duality argument, together with the fact that LC(l,)* = C, (=the trace class) is
separable, imply (c).

A word of caution about our terminology is necessary. Throughout the
entire work we shall stay in the category of Banach spaces; so by “operator”,
“isomorphism”, “isometry”, “projection”, etc. we shall always mean linear,
continuous maps with the specified properties. The prefix “C*” will switch
us to the category of C*-algebras, so “C*-homomorphism” “C*-
monomorphism”, “C*-isomorphism”, etc. will mean linear, multiplicative,
*-preserving, continuous maps. We do not require, however, that a C*-
homomorphism from one unital C*-algebra into another preserves the unit
element (also, a C*-subalgebra B of a unital C*-algebra 4 need not have a
unit, and if it does — the units of A and B need not be the same). Except for
this — our notation and terminology are quite standard, and we refer to [4] for
Banach space theory and to [6] and [7] for C*-algebras.

2. Technical preparation

Let us start with some information on direct (or, inductive) limits of
sequences of C*-algebras and infinite tensor products of matrix algebras. Our
presentation is a variant of [7, Section 1.23] and [8]. Let {4}, be a
sequence of C*-algebras so that for every k there exists a C*-monomorphism
(ie., an injective C*-homomorphism) f,:A4, — A,,,. We call {4, fi}iz, a
direct sequence. Let A be the *-subalgebra of []¢, A, consisting of all
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a= (a5, so that a, ,, =fi(a,) for all k=k,, normed by ||a| =sup, |a|, and let
A be the completion of A. A is called the direct limit of the direct
sequence{ 4y, fy}i% 1, in notation A=lim{4,, fi}i<,. For every n=1,2,.. .the
map A, — lim{4,, fi}i%, defined by

n—1 terms

a (0,0,...,0,a, f,(a), fo+1(fn(a),...)

is a C*-monomorphism which identifies A4, with a C*-subalgebra of
lim{A,, fi} % - For simplicity, we shall regard A, itself as being a C*-algebra of
h_r,n {Ak’.ﬁc};o= 1

Suppose now that {v(j)}$2, is some sequence of positive integers. Let

Ak = Mv(l)® MV(2)® PR ® MV(‘() N
with the norm of B3 ® 1P ® ... @ }¥). Clearly, A4, is C*-isomorphic to
M), where n(k)=v(1):v(2) ... v(k). Let f;: A, = A, ., be defined by
filxi@x,@...0%) = x;®%,® ... %, 441

Then {A,, f,}>, is direct sequence and its direct limit is called the infinite
tensor product of {M ;}5%,, in notation

00 k
1@1 M,; = lim {J@ M, ), fk}

Next, let us show that the notion of a matroid coincides with the notion of a
direct limit of matrix algebras. Let {4,}>, be an admissible sequence for a
matroid A. Let ¢,: 4, — M, be a C*-isomorphism of 4, onto M, and let
Je: Mgy = Mgy, be defined by fy=0,,,°@; . Then {M, ;. fi} i, is a direct
sequence and A is C*-isomorphic to lim {M, fi}i% ;- Using this identification
one can easily prove the following.

00

k=1

PROPOSITION 2.1. Let {M 4, fi}izy and {M ), 8} %, be two direct sequences
of matrix algebras. Suppose that for every k there exists an operator h: M,
— M, SO that g,-hy=hy ., f, for all k, ie., the following diagram commutes:

Je
Mn(k) ? Mn(k+1)

h) Ve

8k
Mm(k) 3 Mm(k+1)

Suppose also that sup, ||h,|| <oo. Then there exists a unique operator:
hilim {M, fi} i1 = Hm { M, 8} 5=
satisfying hjy,, =h, for all k and |\h| = sup,||h|l. Moreover, if all the h, are
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isometries (or, C*-homomorphisms) then h is an isometry (respectively, a C*-
homomorphism).

The operator h whose existence is ensured by Proposition 2.1 is called the
direct limit of the sequence {h,};~,, and is denoted by h=lim h,. One can easily
verify the following composition formula:

lim (heohy) = (limhy)o (limhy) .
As a consequence, we have the following.
PROPOSITION 2.2. Let { M, fi} =1 and {M . 8} i, be two direct sequences.

Suppose that for every k there exists an isometry h, of M, into M, and a
contraction py from M, into M, so that

() grohe=his10fi
(i) pyohy = idy,,, the identity operator on M,
and
(i) foPy=pi+1°8k
that is, the following diagram commutes
M, < 4 M, Sy 1 s Mg+ 1)

Pk hkl his s Pr+1

Mm(k) [ Mm(k+l)

Then

= liin {Mn(k)’ fidie=a
is isometric to a subspace X of

= li_m{Mmik)’gk}l(::l )

and there exists a contractive projection from B onto X.

Indeed, h=limk, is an isometry from A into B, p=limp, is a contraction
from B into A, “and
poh = lim (pyohy) = id,,

so hop is a contractive projection from B onto X = h(A).
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DEFINITION 2.3. Let n,m, r be positive integers with rn <m. We define a map

Pnym,r Mn - Mm

by
r-terms
. a, 0
21 9 m,la) = (@ a>@01 = ‘a
=1 0 0,

where |=m—nr and 0, denotes the zero matrix of order I/ x [
Clearly, ¢, ., is a C*-monomorphism of M, into M,

PRroPOSITION 2.4. Let n=m and let ¢:M, —» M, be a C*-monomorphism.
Then there exists a unitary matrix v € M,, so that

@@ = v* (Pym(a) v, aeM,
where r=rank ¢(e; ,).
This is well-known (any C*-monomorphism maps elements with orthogonal

ranges (or, orthogonal cokernels) into elements with the same properties. Now
apply this to the system of matrix-units {e; ;}7 -, of M,).

DEFINITION 2.5. Let ¢: M, —» M,, (n=m) be a C*-monomorphism. We put

r(¢) = rank ¢(ey,y) .

It is clear that r(p)=rank ¢(e) for every rank-one projection e € M,. The
functional “r” is multiplicative: if M,-%> M, and M, %> M, are C*-
monomorphisms, then r(Yop)=r(y) r(¢).

We state without proof the following elementary proposition.
PROPOSITION 2.6. Let {A,, fi}i>, be a direct sequence and let {k;}5 be any
increasing sequence of positive integers. Let for j=1,2,. ..
8 = Ji 10 ofirrofit Ay, o Ay, -
Then lim {4,, fi}i%, is C*-isomorphic to lim {A4;,g;}i% .
In particular, if {M,u,fi}3%, is any direct sequence of matrix algebras with
r(fd=1 for kzko, then lim {M,), fi} 3%, is C*-isomorphic to

LC() = li_{n{Mka(pk,kJrl,l}?;l .



LINEAR-TOPOLOGICAL CLASSIFICATION OF MATROID C*-ALGEBRAS 95

DEFINITION 2.7. Let n <m. We define p,, , : M,, = M, by (P, .(@))(i,)) =a(i,)),
1<i,jsn,ae M,

Clearly, p,, , is a contraction and p,, ,o®, . ,=idy for all positive integers
n,m,r with nr<m.

DEeFINITION 2.8. Two maps f,g: M, — M,, are said to be equivalent if there
exist unitary matrices u,u, € M, and v, V, € M, so that

f(a) = UZ(g(ulaul))vl’ ae Mn .

DerFINITION 2.9. For positive integers n<m let I, , be the set of all linear
maps y: M, — M,, that are equivalent to a map y: M, — M,, of the form

(22) }7(11) = a®pn,n1(a)®pn,nz(a)® R ®pn,n,(a)®01
where 1=n;<n, 11, 0<s, and n+3 5 n;+1l=m.

Notice that, up to a permutation, the sequence {n;}5-, depends only on y (not
on j). Also, j(a*)=7(a)* for all a € M,, and § is multiplicative if and only if
s=0, i.e., J(a)=a®O0,.

ProposITION 2.10. Let n<m. Then everyy € I, ,, is an isometry and there is a
contractive (i.e., norm-one) projection from M,, onto y(M,).

PRrooOF. It is clearly enough to prove this in the case where y =7 is given by
(2.2). Now, for any matrices a, b

la®bl = max {|al, |bll} .
So, using the fact that p, n, are contractions, we get
Iy @l = max {{|all, |ppn, @), - ... IPnn @I} = lal .
Since p,, ,oy = idy, we get that yop,, , is a contractive projection from M,,

onto y(M,).

The following Lemma is the heart of the proof of Theorem 1.1.

Lemma 211. Let f:M,, — M,, and g:M,, — M,, be C*-
monomorphism. Let v=r(f), u=r(g) and o=n(2)—n(l)v, and suppose that
p=T152} u(j), where p(j) are positive integers satisfying u(1)2v and pu(j)=3 for
all j. Assume also that m(1)=n(1)+1 and let y, € I',y) m)- Then there exists
a7y, € ') me) S0 that y,of=goy,, ie., the following diagram commutes
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S
M,y — Mn(2)

)’11 l)’z
Mm(l) £ Mm(Z)

Proor. By Proposition 2.4, there is no loss of generality in assuming that

f= Pn1),n2),vs 8= Pm(1),m2),u
and that for all a e M),
(23) yi(a) = A® Pty k) (@D . .. @Pnu),k(s)(a)@oz )

where 1=<k(j)<n(l1), 0<s, and 1 </. Next, let us factor fas f=f,0...0f 0f,,
where
fo = Puc1),n(1)v, v

and

fj = Qntyv+j—1,n(1)v+j, 15 lsjso.
By our assumption on p=r(g) there is also a factorization g=g,,,0...0g,08,,
where for 0<j<o,

8 = Pmu()l m(uG+ VL uG+1)
(here u(j)! =TT, n(i), with the understanding that u(0)!=1) and
8s+1 = Pmiyu,m2),1 -
It is therefore enough to prove the existence of maps
e Loy j mow+ny  J=01,...,0

satisfying

goyU D = yUof,  j=0,1,...,0,
(where y, =y~ 1), Indeed, using these y we define y,=g,, 07" It is clear

that y, € I'y3) m2) @and that y,of=goy,.

The following commutative diagram describes the factorizations of fand g
and the maps y (the broken lines describes the maps to be constructed):

Je /i /; J; A
Mn(l) 2 Mn(l)v — Mn(l)\-+l — Mn(l)v+2 L “‘“’M,.(z)

(0)

%1 LY
. ! 1 l ! N
M 1) 734 Mm(l)um 2 Mmu)n(?-)! 23 Mmmu(s)! [ZRIE M1y Zort M.,z

Y Ty YO T
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Thus, it is enough to prove the lemma in the following special cases:
Case 1. n(2)=n(l)y, m@2)=m(l)p, v=p, and
= @y 8= Oy, min -
Cast 2. n(2)=n(1)+1, m@2)=m(l)p, p=3, and
f = Gnynn+ 1 & = Coutymiypon -

PROOF OF THE LEMMA IN CASE 1. Write (2.3) as

a 0 O
2.4) y,@) = a®p@)®0, =[0 pa) 0 |, ae M, .
0 0 0
By our assumption,
—a (T v-terms
flag=| . |=a®a®...®a, aeM,,
0 4
and
—b b 0 -terms
(2.5) g(b) :L =b®b®...®b, beM,,,.
0 b]

Define y,: M, = M, by

ay,, ... a,
Y2 |: : =
av‘l ... a,

Math. Scand. 52 — 7
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a, 0 Ola,, O 0 a, 0 0
0 pla,,) 0J0 0 0 o 0 o 0 0
0 0 010 O 0 0 O 0
a, 0 0las, O 0 a, 0 0
0 0 0]0 pla, O 0 0o 0 0 0
0 0 olo0 O 0 0 0 0
a, 0 a,, 0 0 a,, O 0
o o ofo o of. . 0 pla,y) O 0 0
0 0 ol o 0 0 0 0 0

ay,, O 0
0 pla, ) O].
0 0 0

ag, O
0 pla,,)
0 0

0
0
0

where the large blocks belong to M, ), a; ; € M,y and p(a,,,) € Ma)—p)-r-
It is clear that y, is unitarily equivalent to the map y: M,,, = M,,,, defined

y-terms

(u— v)-terms

@ (al.l® ce - @al,l)@ (P(al,l)@ N @P(al.1))

So ¥, € I'pz) my Also, for a € M,
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a 0
72(f(@) =7, a .
0 a
u-terms
a 0 0 a 0 O a 0 O
= 1|0 pa O0|® |0 pla O] ®...® |0 pa O
0O 0 O 0 0 0 0O 0 0O
=g())l(a)).

This completes the proof of the lemma in Case 1.
PROOF OF THE LEMMA IN CASE 2. In this case f: M, , = M+ =M,q, is
given by

ayy -Gy 0

a1 - A

)1 -+ Antynty O

An(1),1 + + - An(1),n(1)
.0 0,

while y, and g are given by (2.4) and (2.5) respectively. Let every

x=(x(i, ))i?L, € M, be written as

()

where
[x(1,1) ... x(1,n(1)
a= |: = P2y n1)(X) € My,
| x(n(1),1) ... x(n(1),n(1))
x(1L,n(2)
b= 1: € M,
_x(n(l),n(Z))
c=(x(n@2)1),...,x(nQ2),n1)) € My .,
and

d = x(n(2,n(2) e M, ,
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Using the fact that y=3 we define a map y,: M,,, — M,,,, by

V2 = v:(Z

)-

a 0 0 0 0 b
0 pl@ 0 0 0 o 0 0
0 0 0 0o 0 0
0 0 0la 0 010 0 0
0 0 ofo pw ofo o o 0 0
¢ 0 010 0 010 0 d
a 0 0
0 0 0 pla 0 0 0
0 0 0
a 0
O O 0 0 pla) 0
0 0
a 0
0 0 0 0 0 pla)
0 0

(u x pu block matrices from M,,,,). Clearly, v, € Iy m2)- Also, for a € M,

we have

(/@) =

a 0
00

a O

=10 p(a)
0 0

g(y:(a)

)

0

0
0

®...®

71@)®...Dyi(a)

a O
0 pla
0 0

0
0 (1 blocks)
0

(u blocks)
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This completes the proof of the Lemma in Case 2.

LEMMZ 2.12. Let n<m and let y =y be given by (2.2). Let f:M,, — M, be a
contraction satisfying foy =id . Then B=p,, ,.

Proor. Let {e; ;}7';-, denote the matrix units of M,,, and let k=max; ¢;<n;

where s and n; appear in (2.2). Let us write for short
V(@) = a®pla), aeM,

instead of (2.2). Then for (i,j) with k < max {i,j} <n we have p(e; ) =0 and so
e; = Blv(e)) = Bl .

If max {i,j} £k and a=f(e; ;) then for any (i,,j,) % (i,j) with max {i;"j,} <n we
have

les,j, +Aei Il < (L+1AR), AI<1
So, for all |A£1,
IL+Aa(iy,j)l < lle;, j, +4al
B (ei, )+ 2e;, )
Iy (e;,j,) + Aei
= llei,j, +4e; ;I < (1+142)*
and thus a(i; ]1) 0. It follows that fi(e; ) =4; je;  Now

LIJTL )"

”B( i,n@l’(ei,j))“ = "ei.n®p(ei,j)” =1.

I\

But also

”ﬁ(ei.n®l’(ei,j))” = “ei,n+ ( —Ai.j)ei.j” = (1 +[1 _Ai,j|2)% .

So 4 ;=1 and B(e; j)=e¢; ;.

Finally, let max {z,j}>n, let a=pf(e;;) and let max{i;,j;}<n. Then
“eihjl +A'ei,j“ S (141473, but

IB(ei j,+ e )l = lleij,+4all = |1+ 2a(iy,jy)l
for all A. This implies that a(i,,j,)=0 for all i,j, <n. So a=0. This proves that
Ble;, )=e; ; if max {i,j} <n and B(e; )=0 if max {i,j} >n. So f=p,, ,.

CoRrOLLARY 2.13. Any y € I, ,, (n=<m) has a unique contractive left inverse,
denoted y'*). So
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y(+): Mm - Mm ”y(+)" = 11 )’(+)°')’=id M,. *

COROLLARY 2.14. Under the assumptions of Lemma 2.11 we have foy{") =y{")og,
i.e., the following diagram commutes:

id S id
Mn(l) — Mnm - Mn(2) — Mnm

(+)

71 " Y2 7"

mt) &> Mme)

Proor. We present the proof in Case 1 of the Proof of Lemma 2.11; the
proof in Case 2 is essentially the same, but the (obvious) formula for y4*
happens to be more complicated. We have

)’(1+)(b) = pm(l).n(l)(b)? be Mm(l) >
and for b= (b; )} =, € M, with b j € My

Y49 (b) = y‘;)((b,-,j ;‘,j=l) = (“i,j).",,‘:l € M, ,

where
a;j = Pmu),nu)(bi,j) eM,, .

So, if b e M,,;, and a = p,,), n1)(b), then

b 0
yeb) =0 | b (u blocks)
0 b
a 0
= a . (v blocks)
0 ‘a

fla) = fG{T 1)

3. The main results.
Let us start with the following

LemMA 3.1. Let {M, ., 8}, be a direct sequence, and let the positive
integers r(g,), k=1,2,..., the defined by Definition 2.5. Assume that
limsup, ., r(g) 22, and let {M,,, fi}i%, be any other direct sequence. Then A
=li_(11{M"(k), Suli%y is isometric to a 1-complemented subspace of B
=li_l:n{Mm(k)’gk}:°=l~
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Proor. By the multiplicativity of the functiona “r”, we get

Koy~ 1
r(gk,,~1°---°8k+1°8) = [ r(@d,

j=L1,2,... for any increasing sequence {k;} of positive integers. Using
Proposition 2.6 we can assume without loss of generality that m(k) and r(g,)

are arbitrarily large. Precisely, if v, =r(f,), m=r(g), o, =n(k+1)—n(k)v,, then
we assume that

q+1

M = 1:11 ()

where p,(j) are positive integers satisfying p,(1)=v, and g, (j)=3 for all j. We
also assume that m(1)>n(1).

We define y, € I'y4y may BY 1= @n1y.may,1- Using Lemma 2.11 we construct
inductively a sequence 7, € I,y my SO that g0y, =7, 4 0fi, k=1,2,3,.... Let

(+).
Yk Mgy = Mo

be the (unique) contractive left inverse of v, (see Lemma 2.12 and Corollary
2.13), ie, y{"”|l=1 and

Wop = idy,,, k=1,2,....
By Corollary 2.13 we have also foyp{" =y{%) 0g, for all k. Let
vy =limy,: 4> B and Pt = li_r.ny}‘“:B — A.
By Proposition 2.2y is an isometry of 4 onto a subspace, say X, of B, =1
and yMoy =id 4. So p=y0y'*) is a contractive projection from B onto X =y (A).

Let us concentrate now on the Fermion algebra

0o

F = ® M(Z") = liy{Mza,wzk,2k+l,2}f=l ,

n—1

where MY" denotes the nth factor M, (for basic information see [5]). The
canonical, normalized trace of F is given by

t = lim {27* trace|pp} 52,

(see Proposition 2.1 and the discussion preceding it). The action of t on an
elementary tensor is

r(@ x,,) = [] 27" (tracex,), x,e M{ .
n=1 n=1
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Let also {e{"}! _, denote the standard matrix units of M{.

ProposITION 3.2. Let v,,=®%_, e{";. Then for all x € F
0a,1)(%) = lim t(2™v,,x)
m=00
exists. 0y,1) a norm-one linear functional on F.
ProOF. Let x be an elementary tensor from ®%_, M,
k
x=Q X» x,€MP.
n=1

Then for m=k,

k m
1Q2",x) = 2™ [] 27 '(tracee{”;x,): [] 27'-tracee(,
n=1 n=k+1

k
24 T 27 !trace (e{”x,) = 1(2*v,x) .

n=1

This clearly implies that §, ;,(x)=lim,,_,, ©(2"v,x) exists for every x in the
dense *-subalgebra U, ®*_, M{" of F. Since each functional x — t(2™v,,x)
has norm one,

0q,1)(x) = lim 7(2"v,x)

exists for every x € F, and [|§, ;)| £1. Finally, if 1 denotes the unit of F, then

S, (1) = lim t(2",l) = lim 1(2",) = 1.

m =00 m-— oo

So |64, = L.

REMARK. d; ;, correspond to “point-evaluation at (1,1)”. If 0<s, t<1 are
given by

s = .Zl 527" and t= Y 27F
= i=1

(where s;,t; € {0,1} and Y2, 5,=Y2, t,-='oo), we define
s = of 21( @ et )x |
i=1

Os.n(x) = lim &) (x)

Then
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exists for all x € F. § , is a norm-one functional which corresponds to “point-
evaluation at (s,t)”. This exhibits F as a space of functions on the unit square
[0,1]x[0,1] (which, however, is very different from the classical function
spaces).

For any Banach space X we denote by cy(X) the space of all sequences
X =(Xy,X,,...) with x; € X and |x;| — 0, normed by ||x| =sup ||x;||. If X is
a C*-algebra, then c,(X) is also C*-algebra.

LeEMMA 3.3 The Fermion algebra F = @3, M has a C*-subalgebra A which
is C*-isomorphic to cy(F), and there is a projection P from F onto A with ||P||
<2

Proor. Let d, ;, and v,, have the same meaning as in Proposition 3.2. Let F,
=kerd ,, and let Q:F — F, be given by Qx=x—0 )(x)1. Then Q is a
projection of norm 2. Define for j=1,2,...

Jj—1
- i ()
a; = (@)1 e(l'?1>®eoj.o-
hS

Then {a;} are mutually orthogonal projections. Also

a;Fa; = a;F,a; = aj®< @ M‘{”), j=12....

n=j+1

So a;Fa; is C*-isomorphic in the natural way to F. Let A= span {a;Fa;} .
Then A is a C*-subalgebra of F which is C*-isomorphic to c,(F). We now
claim that AcF, and that

P(x) = Y ajxa;
j=1

defines a contractive projection from F, onto A. Proving this, we complete the
proof of the lemma by letting P= PQ.

Indeed, for all j and m
(3.1) Umaj = ajvm E-J {

This implies that for all x € F,

0a,1y(a;xa;) = lim t1(2"v,axa) = 0

m-— oo

and so A = Fy=kerd; ,, Next, let us define
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P.(x) = Y axaj+t(2™v,x)v,, x€F, m=12, ...
ji=1

By (3.1), P2=P, and |P,|=1. If x e ®*_, M{, then for all m=>k,
a,xa, = t12*v,x)a,, TQ2",x) = 1(2*0,x)

and also

m

Y aj+v, =,
j=k+1

(the last formula follows by an easy induction on m=k). So

P,(x) = a;xa;+t(2"0,,X)v,,
ji-1

k m
'21 axa;i+ Y t(2%vx)a;+ 12 X)),
i<

j=k+1

k
axa;+1(2*0x)v,
=1

= P, (x).

This clearly implies that P(x)=lim,,. P,(x) exists for all x € F, and that P
is a contractive projection. If x € F, then 7(2"v,x) — 9 ,(x)=0, and so

P(x) = lim Y axa; = Y axa, xeF,.
m—oo j=1 j=1
So P(F,) < A. Finally, P, (a;xa)=a;xa; for m2j, so P|,=id ,.

For Banach spaces X, Y let X =Y (respectively, X = Y) denotes that X is
isomorphic to Y (respectively, to a complemented subspace of Y).

LEmMMA 3.4. Let A be any matroid C*-algebra. Then A =cy(A).

Proor. It is enough to prove that c,(A) is isometric to a complemented
subspace of 4. Indeed, proving this, we get for some Banach space X that

Co(A)D X Co(A)Dco(A) DX
= c(A)DA = cy(A) .

A

1R

I

If A=LC(l,), let {a;}52, be a sequence of mutually orthogonal infinite-rank
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projections on l,. Then Px=3., a;xa; defines a contractive projection in A
and P(A) is isometric to c,(A), since a;4a; is C*-isomorphic to A.

If A+LC(l,) and A= liIn{M,,,(,‘,, 2.} 22, is some representation of A as a
direct limit of matrix algebras, then by Proposition 2.6, lim sup, _, , r(g,) = 2. So,
by Lemma 3.1, F = A. It follows by Lemma 3.3 that

o) = ¢o(F) s> F <> 4,
where the isomorphisms are actually isometries. It follows that c,(A) is

isometric to a 2-complemented subspace of A.

PROOF OF PART (a) OF THEOREM 1.1. Let 4 be any matroid C*-algebra, and let
A=li_r’n{M,,(k),f,(},‘i‘)=1 be any representation of A as a direct limit of matrix
algebras. If limsup,_, . (fi)=1, then by Proposition 2.6, 4 is C*-isomorphic
(and therefore linearly isometric) to LC(l,). If limsup,. . r(f,)=2, then by
Lemma 3.1, AxF® X and FxA® Y for some Banach spaces X and Y. Also,
by Lemma 3.4, AA® A and FF®F. Thus

Ax2F®X 2 FOF®X =~ FpA
and similarly FxA®F. So Ax~F.

This proof shows, in fact, that the isomorphism type of a matroid C*-algebra
can be decided by the asymptotic behavior of the numbers {r(f)}s%, (see
Definition 2.5) in the representations A4 =lim {M 4y fi} i1 Precisely, we have
the following:

CoOROLLARY 3.5. Let A be a matroid C*-algebra,

(i) Iflimsup,_, r(fi)=1 for some representation A=lim{M,q,fi}it
then this is the case for all other representations;
(i) A = LC(l,) if and only if limsup,_, , r(fi)=1;
(i) A = F if and only if limsup,_ . r(fi)=2.
ProoF OF PART (b) oF THEOREM 1.1. Let us apply Lemma 3.1 in the special

case where m(k)=2% n(k)=k, g,= @ p+1, and fy=0, .+, ;. We have

A = lim{M,, ¢, x+1,1} = LC()

and

B = lim{My, @y y+io5ity = F.

So LC(l,) is isometric to a 1-complemented subspace of F.
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For the proof of part (c) of Theorem 1.1 we need the following Lemma. Here
4={0, 1}N° is the Cantor set and C(4) denotes the C*-algebra of all complex-
valued continuous functions on 4 with the supremum norm.

LemMMA 3.6. C(4) is C*-isomorphic to a 1-complemented C*-subalgebra of the
Fermion algebra F.

Proor. Write F=Ilim{May, fi}i%, Wwith fy=qu p+1 5. Let D, denote the
diagonal projection in My (i.., (D,a)(i, j)=0; ;a(i,i)). Then fioD, =D, , of;. So
D =lim D, exists and is a contractive projection from F onto its C*-subalgebra
A=lim{D,My, fi}3%,. Let

vie: C{0,1}5 — C({0,1}**h
be the natural map:

Wi (tr- - stirr) = 8ty ., t);  t;€{0,1} .

Then there exist C*-isomorphisms h, from C({0,1}*) onto DM 4, k=1,2,. ..,
so that fyoh,=h, ., oy, for all k. It follows by Proposition 2.2 that h=1lim h, is a
C*-isomorphism from

B = lim {C({0,1}"), ¥} 2=

onto A. Finally, B is C*-isomorphic to C(4). Indeed, if u= (), u, € C({0,1}*),
is so that ¥, (u,)=u,,, for k>k,, let p(u)=v be defined on 4 by

V(ty,. . oty ) = w(ty,. ., t);  t;€{0,1},

where k=k, Clearly, v is well defined and ¢ extends to a unital C*-
isomorphism of B onto C(4).

PROOF OF PART (c) OF THEOREM 1.1. Assume the converse, ie., that F is
isomorphic to a subquotient (that is, a subspace of a quotient space) of LC(l,).
By Lemma 3.6, C(4) is also isomorphic to a subquotient of LC(l,). By standard
arguments, this implies that C(4)* is isomorphic to a subquotient of LC(/,)*
=C, (=the trace class), which is separable. This contradicts the well-known
fact that C(4)* is not separable.

The construction in Lemma 3.6 can be generalized to an arbitrary matroid
C*-algebra A, as follows. Let

A= liln{M,,U),fj};?‘;l, Ji = ®uiionii+ 1).r0p (r(.])=r(fj)) ,

be any representation of 4 as a direct limit of matrix algebras. Then
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_ 3 oG
B = Lim {D,,M,, filp,,m,,} 51

is a commutative C*-subalgebra of 4, and D=limD,; is a contractive
projection from 4 onto B. We call B “the” diagonal of A and denote it by DA.

We now establish the properties of DA, and in particular its independence of
the particular representation A=liln{M,,(j,, fi}52.- Let K;={1,2,...,n} be
regarded as a discrete topological space and let

a;: C(K)) = D, )M,
be defined by
o(u) = diag (u(1),u(2),.. ., u(n(j))), ueC(K).

Then DA is C*-isomorphic to lim {C(K)), g;}5% 1, where g;=0;}}yofjo0;. In the
UHF (i.e., unital) case there exist quotient maps g : K;,; — K; so that

u(gr@) = (g, wueCK), ieK;,,.
The inverse limit of the sequence
. <—Kj<—gi*—Kj+l — ...
namely

K = lim {K, g},

= {x = (x()) ﬁ K;;  x()=gF(x(+1), j=1,2,...}
j=1

is homeomorphic to [TjZ K+ /K, and thus to 4. So lim {C(K ), g;} 52, is C*-
isomorphic to C(K) and thus to C(4).
In the non-unital case we let K=K ;U{0}={0,1,2,...,n(j)}, and we identify
C(K ) with
COK) = {ueC(K); u(0)=0}.
The inverse system of quotient maps is now
. ‘_KI‘—g“*—'KJ+1 L.y,

where g*(0)=0 and u(g}(i))=(g;(w)() for all i € K;,, and u € C?(K)). Let
0=10,0,..)e ] K; and K =Ilim{K;g}%,.

Then
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li_[n {C(K),g;}3%1 li_rp {C(O)(Kj), 8171

= COR) = {ue C(R); u@®=0}.

If A=~LC(l,), ie., limsup,_ . r(f,)=1, then K is homeomorphic to a sequence
converging to 0. So DA is C*-isomorphic to c,, the space of all numerical
sequences converging to zero with the “sup” norm. If lim sup,_, ., 7( f,‘)gZ‘then
K does not have isolated points. Thus, being zero-dimensional, compact and
metrizable (as a closed subspace of [T52, K i), K is homeomorphic to 4. Thus,
DA is C*-isomorphic to

CO) = {ue C4); u@)=0} = Co(4\{0}).
It follows that DA is (linearly) isomorphic to C(4).

Let us summarize this discussion formally:

THEOREM 3.7. Let A be a matroid C*-algebra.

(1) Up to a C*-isomorphism, the above definition of the diagonal DA of A is
independent of the particular representation

A= liin{M,.U,,f,»}j-";, ;

(i) If A is a UHF algebra, then DA is C*-isomorphic to C(4);

(iii) If A is non-unital and A + LC(l,), that is limsup;_ ., r(f}) =2, then DA is
C*-isomorphic to Co(A\ {0}), and thus linearly isomorphic to C(4);

(iv) Iflimsup;, ., r(f)=1, that is A=LC (l,), then DA is C*-isomorphic to c,;

(v) In all cases, DA is a 1-complemented C*-subalgebra of A.
We conclude the paper by suggesting the following problem:

ProBLEM. Characterize, up to a linear-topological isomorphism, all AF-
algebras (i.e., direct limits of finite dimensional C*-algebras).

Our methods and results might be helpful in studying this general problem,
since every finite-dimensional C*-algebra is the finite direct sum of matrix
algebras.
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