LINEAR-TOPOLOGICAL CLASSIFICATION OF MATROID C*-ALGEBRAS

JONATHAN ARAZY

Abstract.

We classify, up to a linear-topological isomorphism, all matroid C*-algebras (i.e. direct limits of a sequence of finite dimensional matrix algebras). There are two isomorphism classes: one is represented by $LC(l_2)$, the C*-algebra of all compact operators on the Hilbert space l_2 , and the other – by the Fermion algebra $F = \bigotimes_{n=1}^{\infty} M_2$. In particular, any UHF algebra is isomorphic to F as a Banach space. We also show that $LC(l_2)$ is isometric to a 1-complemented subspace of F, but F is not isomorphic to a subspace of a quotient space of $LC(l_2)$.

1. Introduction.

Let M_n denote the C*-algebra of all complex $n \times n$ -matrices with the usual algebraic operations and norms. A C*-algebra A is called a *matroid* C*-algebra (or, briefly, a matroid) if there exists a sequence $\{A_k\}_{k=1}^{\infty}$ of C*-subalgebras of A, possibly with different units, so that:

- (i) $A_k \subseteq A_{k+1}$; k = 1, 2, 3, ...
- (ii) A_k is C*-isomorphic to $M_{n(k)}$ for some positive integer n(k); $k=1,2,3,\ldots$
- (iii) $\bigcup_{k=1}^{\infty} A_k$ is dense in A in the norm topology.

If, moreover,

(iv) A has a unit e and $e \in A_k$, k = 1, 2, ...

then A is called a UHF algebra (i.e., uniformly hyper-finite algebra or, a Glim algebra, see [6, Chapter 6]). We call the sequence $\{A_k\}_{k=1}^{\infty}$ an admissible sequence for the matroid A.

The classification of matroids up to a C*-isomorphism is due to Glimm [2] (in the UHF case) and Dixmier [1] (in the general case). Glimm proved that if $\{A_k\}_{k=1}^{\infty}$ and $\{B_k\}_{k=1}^{\infty}$ are admissible sequences for the UHF algebras A and B

Received November 4, 1981.

respectively, with A_k C*-isomorphic to $M_{n(k)}$ and B_k C*-isomorphic to $M_{m(k)}$, then A is C*-isomorphic to B if and only if

$$\sup \{j; \exists k (p^j | n(k))\} = \sup \{j; \exists k (p^j | m(k))\}\$$

for every prime number p. In particular, there exist uncountably many non-C*-isomorphic UHF algebras. Dixmier constructed a "dimension function" d_A on the set E_A of projections of a general matroid A, and showed that two matroids A and B are C*-isomorphic if and only if $d_A(E_A) = d_B(E_B)$. He also showed how to compute $d_A(E_A)$ in terms of the dimensions $\{n(k)\}_{k=1}^{\infty}$ of an arbitrary admissible sequence $\{A_k\}_{k=1}^{\infty}$ for A. Another (easy) remark of Dixmier is that a unital matroid is, in fact, a UHF algebra (see [1, 1.2]).

Using the fact that two C*-algebra are linearly isometric if and only if they are Jordan-*-isomorphic (see [3] and [5]) one obtains easily that the isometric classification of matroids coincides with the Glimm-Dixmier classification as C*-algebras.

We are interested here in the linear-topological classification of matroids, i.e., in the classification up to a Banach-space isomorphism. Our main result is the following theorem, which shows a completely different phenomenon.

THEOREM 1.1. (a) Every matroid C*-algebra is isomorphic either to $LC(l_2)$, the C*-algebra of all compact operators on l_2 , or to the Fermion algebra $F = \bigotimes_{n=1}^{\infty} M_2$;

- (b) $LC(l_2)$ is isometric to a subspace of F which is the range of a contractive projection from F.
 - (c) F is not isomorphic to a subspace of a quotient space of $LC(l_2)$.

The representation of $LC(l_2)$ as a matroid is quite obvious. Let $\{a_k\}_{k=1}^{\infty}$ be an increasing sequence of finite-rank projections on l_2 tending strongly to I, the identity operator. Let $A_k = a_k \cdot LC(l_2) \cdot a_k$ and $n(k) = \text{rank } (a_k)$. Then A_k is C^* -isomorphic to $M_{n(k)}$, $A_k \subseteq A_{k+1}$, and $\bigcup_{k=1}^{\infty} A_k$ is norm-dense in $LC(l_2)$.

Assuming the notion of infinite tensor product of C*-algebras (see [7, Section 1.23], [8], and section 2 below) the representation of $F = \bigotimes_{n=1}^{\infty} M_2$ as a UHF algebra is also obvious. For $k = 1, 2, \ldots$ let

$$A_k = \overbrace{M_2 \otimes M_2 \otimes \ldots \otimes M_2}^{k\text{-factors}}$$

then $[A_k]_{k=1}^{\infty}$ is (identified with) a strictly increasing sequence of unital C*-subalgebras of F, A_k is C*-isomorphic to M_{2^k} , and $\bigcup_{k=1}^{\infty} A_k$ is norm-dense in F. Theorem 1.1 answers questions raised by A. Lazar, and may be helpful in the

linear-topological classification of general AF-algebras. We thank Professor Lazar for valuable discussions.

Our methods are elementary and straightforward, and are independent of the delicate analysis of [1] and [2]. After replacing the above definition of matroids by the (equivalent) definition as a direct limit of matrix algebras, we analyze in a greater detail commutative diagrams of the form

$$\begin{array}{ccc} M_{n(1)} & \xrightarrow{f} & M_{n(2)} \\ \gamma_1 \downarrow & & \downarrow \gamma_2 \\ M_{m(1)} & \xrightarrow{g} & M_{m(2)} \end{array}$$

where f and g are C*-monomorphisms and γ_1 and γ_2 are linear isometries of a special kind. This analysis enables us to show that if A, B are matroids with $B \neq LC(l_2)$, then A is isometric to a 1-complemented subspace of B. Then we show that every matroid A is isomorphic to $c_0(A)$. These two facts together easily imply parts (a) and (b) of Theorem 1.1. In order to prove part (c) we introduce the notion of the "diagonal" of a matroid which is always a 1-complemented, commutative C*-subalgebra, and show that the diagonal of F is $C(\Delta)$, the algebra of all continuous function on the cantor set Δ . A simple duality argument, together with the fact that $LC(l_2)^* = C_1$ (= the trace class) is separable, imply (c).

A word of caution about our terminology is necessary. Throughout the entire work we shall stay in the category of Banach spaces; so by "operator", "isomorphism", "isometry", "projection", etc. we shall always mean linear, continuous maps with the specified properties. The prefix "C*" will switch us to the category of C*-algebras, so "C*-homomorphism" "C*-monomorphism", "C*-isomorphism", etc. will mean linear, multiplicative, *-preserving, continuous maps. We do not require, however, that a C*-homomorphism from one unital C*-algebra into another preserves the unit element (also, a C*-subalgebra B of a unital C*-algebra A need not have a unit, and if it does — the units of A and B need not be the same). Except for this — our notation and terminology are quite standard, and we refer to [4] for Banach space theory and to [6] and [7] for C*-algebras.

2. Technical preparation

Let us start with some information on direct (or, inductive) limits of sequences of C*-algebras and infinite tensor products of matrix algebras. Our presentation is a variant of [7, Section 1.23] and [8]. Let $\{A_k\}_{k=1}^{\infty}$ be a sequence of C*-algebras so that for every k there exists a C*-monomorphism (i.e., an injective C*-homomorphism) $f_k: A_k \to A_{k+1}$. We call $\{A_k, f_k\}_{k=1}^{\infty}$ a direct sequence. Let \tilde{A} be the *-subalgebra of $\prod_{k=1}^{\infty} A_k$ consisting of all

 $a = (a_k)_{k=1}^{\infty}$ so that $a_{k+1} = f_k(a_k)$ for all $k \ge k_a$, normed by $||a|| = \sup_k ||a_k||$, and let A be the completion of \widetilde{A} . A is called the *direct limit* of the direct sequence $\{A_k, f_k\}_{k=1}^{\infty}$, in notation $A = \lim_{n \to \infty} \{A_k, f_k\}_{k=1}^{\infty}$. For every $n = 1, 2, \ldots$ the map $A_n \to \lim_{n \to \infty} \{A_k, f_k\}_{k=1}^{\infty}$ defined by

$$n-1$$
 terms

$$a \mapsto (0, 0, \dots, 0, a, f_n(a), f_{n+1}(f_n(a)), \dots)$$

is a C*-monomorphism which identifies A_n with a C*-subalgebra of $\lim_{n \to \infty} \{A_k, f_k\}_{k=1}^{\infty}$. For simplicity, we shall regard A_n itself as being a C*-algebra of $\lim_{n \to \infty} \{A_k, f_k\}_{k=1}^{\infty}$.

Suppose now that $\{v(j)\}_{j=1}^{\infty}$ is some sequence of positive integers. Let

$$A_k = M_{\nu(1)} \otimes M_{\nu(2)} \otimes \ldots \otimes M_{\nu(k)},$$

with the norm of $B(l_2^{\nu(1)} \otimes l_2^{\nu(2)} \otimes \ldots \otimes l_2^{\nu(k)})$. Clearly, A_k is C*-isomorphic to $M_{n(k)}$, where $n(k) = \nu(1) \cdot \nu(2) \ldots \nu(k)$. Let $f_k : A_k \to A_{k+1}$ be defined by

$$f_k(x_1 \otimes x_2 \otimes \ldots \otimes x_k) = x_1 \otimes x_2 \otimes \ldots \otimes x_k \otimes I_{\nu(k+1)}$$

Then $\{A_k, f_k\}_{k=1}^{\infty}$ is direct sequence and its direct limit is called the *infinite* tensor product of $\{M_{\nu(j)}\}_{j=1}^{\infty}$, in notation

$$\bigotimes_{j=1}^{\infty} \ M_{v(j)} = \lim_{\rightarrow} \left\{ \bigotimes_{j=1}^{k} \ M_{v(j)}, f_{k} \right\}_{k=1}^{\infty}.$$

Next, let us show that the notion of a matroid coincides with the notion of a direct limit of matrix algebras. Let $\{A_k\}_{k=1}^{\infty}$ be an admissible sequence for a matroid A. Let $\varphi_k \colon A_k \to M_{n(k)}$ be a C*-isomorphism of A_k onto $M_{n(k)}$, and let $f_k \colon M_{n(k)} \to M_{n(k+1)}$ be defined by $f_k = \varphi_{k+1} \circ \varphi_k^{-1}$. Then $\{M_{n(k)}, f_k\}_{k=1}^{\infty}$ is a direct sequence and A is C*-isomorphic to $\lim_{k \to \infty} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$. Using this identification one can easily prove the following.

PROPOSITION 2.1. Let $\{M_{n(k)}, f_k\}_{k=1}^{\infty}$ and $\{M_{m(k)}, g_k\}_{k=1}^{\infty}$ be two direct sequences of matrix algebras. Suppose that for every k there exists an operator h_k : $M_{n(k)} \rightarrow M_{m(k)}$, so that $g_k \cdot h_k = h_{k+1} \cdot f_k$ for all k, i.e., the following diagram commutes:

$$\begin{array}{ccc}
M_{n(k)} & \xrightarrow{f_k} & M_{n(k+1)} \\
\downarrow^{h_k} & & \downarrow^{h_{k+1}} \\
M_{m(k)} & \xrightarrow{g_k} & M_{m(k+1)}
\end{array}$$

Suppose also that $\sup_{k} ||h_{k}|| < \infty$. Then there exists a unique operator

$$h: \lim_{\longrightarrow} \{M_{n(k)}, f_k\}_{k=1}^{\infty} \longrightarrow \lim_{\longrightarrow} \{M_{m(k)}, g_k\}_{k=1}^{\infty}$$

satisfying $h_{|M_{n(k)}} = h_k$ for all k and $||h|| = \sup_k ||h_k||$. Moreover, if all the h_k are

isometries (or, C^* -homomorphisms) then h is an isometry (respectively, a C^* -homomorphism).

The operator h whose existence is ensured by Proposition 2.1 is called the direct limit of the sequence $\{h_k\}_{k=1}^{\infty}$, and is denoted by $h = \lim_{n \to \infty} h_k$. One can easily verify the following composition formula:

$$\lim (h_k \circ h'_k) = (\lim h_k) \circ (\lim h'_k) .$$

As a consequence, we have the following.

PROPOSITION 2.2. Let $\{M_{n(k)}, f_k\}_{k=1}^{\infty}$ and $\{M_{m(k)}, g_k\}_{k=1}^{\infty}$ be two direct sequences. Suppose that for every k there exists an isometry h_k of $M_{n(k)}$ into $M_{m(k)}$ and a contraction p_k from $M_{m(k)}$ into $M_{n(k)}$ so that

- (i) $g_k \circ h_k = h_{k+1} \circ f_k$
- (ii) $p_k \circ h_k = id_{M_{n(k)}}$, the identity operator on $M_{n(k)}$

and

(iii)
$$f_k \circ p_k = p_{k+1} \circ g_k$$

that is, the following diagram commutes

Then

$$A = \lim_{\rightarrow} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$$

is isometric to a subspace X of

$$B = \lim_{\longrightarrow} \{M_{m(k)}, g_k\}_{k=1}^{\infty},$$

and there exists a contractive projection from B onto X.

Indeed, $h = \lim_{k \to \infty} k_k$ is an isometry from A into B, $p = \lim_{k \to \infty} p_k$ is a contraction from B into A, and

$$p \circ h = \lim (p_k \circ h_k) = \mathrm{id}_A$$
,

so $h \circ p$ is a contractive projection from B onto X = h(A).

Definition 2.3. Let n, m, r be positive integers with $rn \leq m$. We define a map

$$\varphi_{n,m,r}:M_n\to M_m$$

by

(2.1)
$$\varphi_{n,m,r}(a) = \left(\bigoplus_{j=1}^{r} a \right) \oplus 0_{l} = \begin{bmatrix} \overbrace{a} & 0 \\ \vdots & a \\ 0 & 0_{l} \end{bmatrix}$$

where l = m - nr and 0_l denotes the zero matrix of order $l \times l$.

Clearly, $\varphi_{n,m,r}$ is a C*-monomorphism of M_n into M_m .

Proposition 2.4. Let $n \le m$ and let $\varphi: M_n \to M_m$ be a C*-monomorphism. Then there exists a unitary matrix $v \in M_m$ so that

$$\varphi(a) = v^* \cdot (\varphi_{n,m,r}(a)) \cdot v, \quad a \in M_n$$

where $r = \operatorname{rank} \varphi(e_{1,1})$.

This is well-known (any C*-monomorphism maps elements with orthogonal ranges (or, orthogonal cokernels) into elements with the same properties. Now apply this to the system of matrix-units $\{e_{i,.}\}_{i,j=1}^{n}$ of M_n).

DEFINITION 2.5. Let $\varphi: M_n \to M_m \ (n \leq m)$ be a C*-monomorphism. We put

$$r(\varphi) = \operatorname{rank} \varphi(e_{1,1}).$$

It is clear that $r(\varphi) = \operatorname{rank} \varphi(e)$ for every rank-one projection $e \in M_n$. The functional "r" is multiplicative: if $M_n \xrightarrow{\varphi} M_m$ and $M_m \xrightarrow{\psi} M_k$ are C*-monomorphisms, then $r(\psi \circ \varphi) = r(\psi) \cdot r(\varphi)$.

We state without proof the following elementary proposition.

PROPOSITION 2.6. Let $\{A_k, f_k\}_{k=1}^{\infty}$ be a direct sequence and let $\{k_j\}_{j=1}^{\infty}$ be any increasing sequence of positive integers. Let for j=1,2,...

$$g_j = f_{k_{j+1}-1} \circ \dots \circ f_{k_j+1} \circ f_{k_j} \colon A_{k_j} \to A_{k_{j+1}}.$$

Then $\lim_{k \to \infty} \{A_k, f_k\}_{k=1}^{\infty}$ is C*-isomorphic to $\lim_{k \to \infty} \{A_k, g_j\}_{j=1}^{\infty}$.

In particular, if $\{M_{n(k)}, f_k\}_{k=1}^{\infty}$ is any direct sequence of matrix algebras with $r(f_k) = 1$ for $k \ge k_0$, then $\lim_{k \to \infty} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$ is C*-isomorphic to

$$LC(l_2) = \lim_{\to} \{M_k, \varphi_{k,k+1,1}\}_{k=1}^{\infty}.$$

DEFINITION 2.7. Let $n \le m$. We define $p_{m,n}: M_m \to M_n$ by $(p_{m,n}(a))(i,j) = a(i,j)$, $1 \le i,j \le n$, $a \in M_m$.

Clearly, $p_{m,n}$ is a contraction and $p_{m,n} \circ \varphi_{n,m,r} = \mathrm{id}_{M_n}$ for all positive integers n, m, r with $nr \leq m$.

DEFINITION 2.8. Two maps $f, g: M_n \to M_m$ are said to be equivalent if there exist unitary matrices $u_1, u_2 \in M_n$ and $v_1, V_2 \in M_m$ so that

$$f(a) = v_2(g(u_2au_1))v_1, \quad a \in M_n$$
.

Definition 2.9. For positive integers $n \le m$ let $\Gamma_{n,m}$ be the set of all linear maps $\gamma: M_n \to M_m$ that are equivalent to a map $\tilde{\gamma}: M_n \to M_m$ of the form

$$\tilde{\gamma}(a) = a \oplus p_{n,n_1}(a) \oplus p_{n,n_2}(a) \oplus \ldots \oplus p_{n,n_r}(a) \oplus 0_l$$

where $1 \le n_i < n$, $1 \le l$, $0 \le s$, and $n + \sum_{j=1}^s n_j + l = m$.

Notice that, up to a permutation, the sequence $\{n_j\}_{j=1}^s$ depends only on γ (not on $\tilde{\gamma}$). Also, $\tilde{\gamma}(a^*) = \tilde{\gamma}(a)^*$ for all $a \in M_n$, and $\tilde{\gamma}$ is multiplicative if and only if s = 0, i.e., $\tilde{\gamma}(a) = a \oplus 0_l$.

PROPOSITION 2.10. Let $n \leq m$. Then every $\gamma \in \Gamma_{n,m}$ is an isometry and there is a contractive (i.e., norm-one) projection from M_m onto $\gamma(M_n)$.

PROOF. It is clearly enough to prove this in the case where $\gamma = \tilde{\gamma}$ is given by (2.2). Now, for any matrices a, b

$$||a \oplus b|| = \max\{||a||, ||b||\}.$$

So, using the fact that $p_{n,n}$ are contractions, we get

$$\|\gamma(a)\| = \max\{\|a\|, \|p_{n,n_1}(a)\|, \ldots, \|p_{n,n_n}(a)\|\} = \|a\|.$$

Since $p_{m,n} \circ \gamma = \mathrm{id}_{M_n}$, we get that $\gamma \circ p_{m,n}$ is a contractive projection from M_m onto $\gamma(M_n)$.

The following Lemma is the heart of the proof of Theorem 1.1.

LEMMA 2.11. Let $f: M_{n(1)} \to M_{n(2)}$ and $g: M_{m(1)} \to M_{m(2)}$ be C*-monomorphism. Let v = r(f), $\mu = r(g)$ and $\sigma = n(2) - n(1)v$, and suppose that $\mu = \prod_{j=1}^{\sigma+1} \mu(j)$, where $\mu(j)$ are positive integers satisfying $\mu(1) \ge v$ and $\mu(j) \ge 3$ for all j. Assume also that $m(1) \ge n(1) + 1$ and let $\gamma_1 \in \Gamma_{n(1), m(1)}$. Then there exists a $\gamma_2 \in \Gamma_{n(2), m(2)}$ so that $\gamma_2 \circ f = g \circ \gamma_1$, i.e., the following diagram commutes

$$\begin{array}{ccc} M_{n(1)} & \xrightarrow{f} & M_{n(2)} \\ \gamma_1 \downarrow & & \downarrow \gamma_2 \\ M_{m(1)} & \xrightarrow{g} & M_{m(2)} \end{array}$$

PROOF. By Proposition 2.4, there is no loss of generality in assuming that

$$f = \varphi_{n(1), n(2), v}, \quad g = \varphi_{m(1), m(2), u}$$

and that for all $a \in M_{n(1)}$,

$$(2.3) \gamma_1(a) = a \oplus p_{n(1),k(1)}(a) \oplus \ldots \oplus p_{n(1),k(s)}(a) \oplus 0_t,$$

where $1 \le k(j) < n(1)$, $0 \le s$, and $1 \le l$. Next, let us factor f as $f = f_{\sigma} \circ \ldots \circ f_1 \circ f_0$, where

$$f_0 = \varphi_{n(1), n(1)v, v}$$

and

$$f_j = \varphi_{n(1)v+j-1,n(1)v+j,1}, \quad 1 \le j \le \sigma.$$

By our assumption on $\mu = r(g)$ there is also a factorization $g = g_{\sigma+1} \circ \ldots \circ g_1 \circ g_0$, where for $0 \le j \le \sigma$,

$$g_j = \varphi_{m(1)\mu(j)!, m(1)\mu(j+1)!, \mu(j+1)}$$

(here $\mu(j)! = \prod_{i=1}^{j} \mu(i)$, with the understanding that $\mu(0)! = 1$) and

$$g_{\sigma+1} = \varphi_{m(1)\mu, m(2), 1}$$
.

It is therefore enough to prove the existence of maps

$$\gamma^{(j)} \in \Gamma_{n(1)y+j, m(1)\mu(j+1)!}, \quad j=0,1,\ldots,\sigma$$

satisfying

$$g_i \circ \gamma^{(j-1)} = \gamma^{(j)} \circ f_i, \quad j = 0, 1, \dots, \sigma$$

(where $\gamma_1 = \gamma^{(-1)}$). Indeed, using these $\gamma^{(j)}$ we define $\gamma_2 = g_{\sigma+1} \circ \gamma^{(\sigma)}$. It is clear that $\gamma_2 \in \Gamma_{n(2), m(2)}$ and that $\gamma_2 \circ f = g \circ \gamma_1$.

The following commutative diagram describes the factorizations of f and g and the maps $\gamma^{(j)}$ (the broken lines describes the maps to be constructed):

Thus, it is enough to prove the lemma in the following special cases:

Case 1.
$$n(2) = n(1)v$$
, $m(2) = m(1)\mu$, $v \le \mu$, and
$$f = \varphi_{n(1), n(1)v, v}, \qquad g = \varphi_{m(1), m(1)\mu, \mu}.$$

Case 2.
$$n(2) = n(1) + 1$$
, $m(2) = m(1)\mu$, $\mu \ge 3$, and
$$f = \varphi_{n(1), n(1) + 1, 1}, \quad g = \varphi_{m(1), m(1)\mu, \mu}.$$

PROOF OF THE LEMMA IN CASE 1. Write (2.3) as

(2.4)
$$\gamma_1(a) = a \oplus p(a) \oplus 0_l = \begin{bmatrix} \overline{a} & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0_l \end{bmatrix}, \quad a \in M_{n(1)}.$$

By our assumption,

$$f(a) = \begin{bmatrix} a & & \overline{0} \\ a & & \\ 0 & & \cdot \\ & & a \end{bmatrix} = \underbrace{a \oplus a \oplus \ldots \oplus a}_{\nu\text{-terms}}, \quad a \in M_{n(1)}$$

and

(2.5)
$$g(b) = \begin{bmatrix} \overline{b} & & \overline{0} \\ b & \ddots \\ 0 & & b \end{bmatrix} = \underbrace{b \oplus b \oplus \ldots \oplus b}_{\mu\text{-terms}}, \quad b \in M_{m(1)}.$$

Define $\gamma_2: M_{n(2)} \to M_{m(2)}$ by

$$\gamma_2 \begin{bmatrix} \overline{a}_{1,1} & \dots & a_{1,\nu} \\ \vdots & & \vdots \\ a_{\nu,1} & \dots & a_{\nu,\nu} \end{bmatrix} =$$

a _{1,1} 0 p 0	$0 \\ o(a_{1,1}) \\ 0$			0 0 0	0 0 0		•	•	$a_{1.3} \\ 0 \\ 0$	0 0 0	0 0 0	0	•		•	0
a _{2.1} 0 0	0 0 0	0 0 0		$0 \\ o(a_{1,1}) \\ 0$				•	<i>a</i> _{2.} , 0 0	0 0 0	0 0 0	0	•	•		0
						•		•		•		· ·	•	•		
<i>a</i> _{1,1} 0 0	0 0 0	0 0 0	1	0 0 0	0 0 0		•	•	a,., 0 1	0 $p(a_{1,1})$ 0	0 0 0	0		•		0
	0			0		·	٠	•		0		$\begin{bmatrix} a_{1,1} & 0 & 0 \\ 0 & p(a_{1,1}) & 0 \\ 0 & 0 & 0 \end{bmatrix}$	•	•		0
						•	٠	•					•			
	0			0				•		0		0				$ \begin{array}{cccc} a_{1,1} & 0 & 0 \\ 0 & p(a_{1,1}) & 0 \\ 0 & 0 & 0 \end{array} $

where the large blocks belong to $M_{m(1)}$, $a_{i,j} \in M_{n(1)}$ and $p(a_{1,1}) \in M_{m(1)-n(1)-l}$. It is clear that γ_2 is unitarily equivalent to the map $\tilde{\gamma}: M_{n(2)} \to M_{m(2)}$ defined by

$$\gamma_2 \begin{bmatrix} \overline{a}_{1,1} & \dots & a_{1,\nu} \\ \vdots & & \vdots \\ a_{\nu,1} & \dots & a_{\nu,\nu} \end{bmatrix} = \begin{bmatrix} \overline{a}_{1,1} & \dots & a_{1,\nu} \\ \vdots & & \vdots \\ a_{\nu,1} & \dots & a_{\nu,\nu} \end{bmatrix}$$

$$\oplus (\overline{a_{1,1} \oplus \ldots \oplus a_{1,1}}) \oplus (\overline{p(a_{1,1}) \oplus \ldots \oplus p(a_{1,1})})$$

So $\gamma_2 \in \Gamma_{n(2), m(2)}$. Also, for $a \in M_{n(1)}$

$$\gamma_2(f(a)) = \gamma_2 \begin{bmatrix} a & 0 \\ a \\ 0 & a \end{bmatrix}$$

$$= \overbrace{\begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix}}^{\mu\text{-terms}} \oplus \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix} \oplus \dots \oplus \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$= g(\gamma_1(a)).$$

This completes the proof of the lemma in Case 1.

PROOF OF THE LEMMA IN CASE 2. In this case $f: M_{n(1)} \to M_{n(1)+1} = M_{n(2)}$ is given by

$$f\begin{bmatrix} a_{1,1} & \dots & a_{1,n(1)} \\ \vdots & & \vdots \\ a_{n(1),1} & \dots & a_{n(1),n(1)} \end{bmatrix} = \begin{bmatrix} a_{1,1} & \dots & a_{1,n(1)} & 0 \\ \vdots & & \vdots & & \vdots \\ a_{n(1),1} & \dots & a_{n(1),n(1)} & 0 \\ 0 & \dots & 0 & 0 \end{bmatrix}$$

while γ_1 and g are given by (2.4) and (2.5) respectively. Let every $x = (x(i,j))_{i,j=1}^{n(2)} \in M_{n(2)}$ be written as

$$x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

where

$$a = \begin{bmatrix} x(1,1) & \dots & x(1,n(1)) \\ \vdots & & \vdots \\ x(n(1),1) & \dots & x(n(1),n(1)) \end{bmatrix} = P_{n(2),n(1)}(x) \in M_{n(1)}$$

$$b = \begin{bmatrix} x(1,n(2)) \\ \vdots \\ x(n(1),n(2)) \end{bmatrix} \in M_{n(1),1}$$

$$c = (x(n(2),1), \dots, x(n(2),n(1))) \in M_{1,n(1)}$$

and

$$d = x(n(2), n(2)) \in M_{1,1}$$

Using the fact that $\mu \ge 3$ we define a map $\gamma_2: M_{n(2)} \to M_{m(2)}$ by

$$\gamma_2(x) = \gamma_2 \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

<i>u</i> 0 0	0 p(a) 0	0 0 0		0		0 0 0	0 0 0	<i>b</i> 0 0		0		•		•		0	
0 0 <i>c</i>	0 0 0	0 0	<i>a</i> 0 0	0 p(a) 0	0 0 0	0 0 0	0 0 0	0 0 d		0			•	•		0	
	0			0		<i>a</i> 0 0	0 p(a) 0	0 0 0		0		•	•	٠		0	
	0			0			0		<i>a</i> 0 0	0 p(a) 0	0 0 0	٠	•	•		0	
	•						•			•		•	•				
	0			0			0			0				•	<i>a</i> 0 0	0 p(a) 0	0 0 0

 $(\mu \times \mu \text{ block matrices from } M_{m(1)})$. Clearly, $\gamma_2 \in \Gamma_{n(2), m(2)}$. Also, for $a \in M_{n(1)}$ we have

$$\gamma_{2}(f(a)) = \gamma_{2} \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \\
= \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix} \oplus \ldots \oplus \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad (\mu \text{ blocks}) \\
= \gamma_{1}(a) \oplus \ldots \oplus \gamma_{1}(a) \qquad (\mu \text{ blocks}) \\
= g(\gamma_{1}(a))$$

This completes the proof of the Lemma in Case 2.

LEMMZ 2.12. Let $n \le m$ and let $\gamma = \tilde{\gamma}$ be given by (2.2). Let $\beta: M_m \to M_n$ be a contraction satisfying $\beta \circ \gamma = \mathrm{id}_{M_n}$. Then $\beta = p_{m,n}$.

PROOF. Let $\{e_{i,j}\}_{i,j=1}^m$ denote the matrix units of M_m , and let $k = \max_{1 \le j \le s} n_j$,

where s and n_i appear in (2.2). Let us write for short

$$\gamma(a) = a \oplus p(a), \quad a \in M_n$$

instead of (2.2). Then for (i,j) with $k < \max\{i,j\} \le n$ we have $p(e_{i,j}) = 0$ and so

$$e_{i,j} = \beta(\gamma(e_{i,j})) = \beta(e_{i,j}).$$

If $\max\{i,j\} \le k$ and $a = \beta(e_{i,j})$ then for any $(i_1,j_1) \ne (i,j)$ with $\max\{i_1,j_1\} \le n$ we have

$$||e_{i,j} + \lambda e_{i,j}|| \le (1 + |\lambda|^2)^{\frac{1}{2}}, \quad |\lambda| \le 1$$

So, for all $|\lambda| \leq 1$,

$$\begin{aligned} |1 + \lambda a(i_1, j_1)| &\leq \|e_{i_1, j_1} + \lambda a\| \\ &= \|\beta (\gamma(e_{i_1, j_1}) + \lambda e_{i, j})\| \\ &\leq \|\gamma(e_{i_1, j_1}) + \lambda e_{i, j}\| \\ &= \|e_{i_1, j_1} + \lambda e_{i, j}\| \leq (1 + |\lambda|^2)^{\frac{1}{2}} \end{aligned}$$

and thus $a(i_1 j_1) = 0$. It follows that $\beta(e_{i,j}) = \lambda_{i,j} e_{i,j}$. Now

$$\|\beta(e_{i,n} \oplus p(e_{i,j}))\| \le \|e_{i,n} \oplus p(e_{i,j})\| = 1$$
.

But also

$$\|\beta(e_{i,n} \oplus p(e_{i,j}))\| = \|e_{i,n} + (1-\lambda_{i,j})e_{i,j}\| = (1+|1-\lambda_{i,j}|^2)^{\frac{1}{2}}.$$

So $\lambda_{i,j} = 1$ and $\beta(e_{i,j}) = e_{i,j}$.

Finally, let $\max\{i,j\} > n$, let $a = \beta(e_{i,j})$ and let $\max\{i_1, j_1\} \le n$. Then $\|e_{i_1, j_1} + \lambda e_{i,j}\| \le (1 + |\lambda|^2)^{\frac{1}{2}}$, but

$$\|\beta(e_{i_1,j_1} + \lambda e_{i_1,j})\| = \|e_{i_1,j_1} + \lambda a\| \ge |1 + \lambda a(i_1,j_1)|$$

for all λ . This implies that $a(i_1, j_1) = 0$ for all $i_1, j_1 \le n$. So a = 0. This proves that $\beta(e_{i,j}) = e_{i,j}$ if $\max\{i,j\} \le n$ and $\beta(e_{i,j}) = 0$ if $\max\{i,j\} > n$. So $\beta = p_{m,n}$.

COROLLARY 2.13. Any $\gamma \in \Gamma_{n,m}$ $(n \leq m)$ has a unique contractive left inverse, denoted $\gamma^{(+)}$. So

$$\gamma^{(+)}: M_m \to M_n, \quad \|\gamma^{(+)}\| = 1, \quad \gamma^{(+)} \circ \gamma = \mathrm{id}_{M_n}.$$

COROLLARY 2.14. Under the assumptions of Lemma 2.11 we have $f \circ \gamma_1^{(+)} = \gamma_2^{(+)} \circ g$, i.e., the following diagram commutes:

PROOF. We present the proof in Case 1 of the Proof of Lemma 2.11; the proof in Case 2 is essentially the same, but the (obvious) formula for $\gamma_2^{(+)}$ happens to be more complicated. We have

$$\gamma_1^{(+)}(b) = p_{m(1), n(1)}(b), \quad b \in M_{m(1)},$$

and for $b = (b_{i,j})_{i,j=1}^{\mu} \in M_{m(2)}$ with $b_{i,j} \in M_{m(1)}$,

$$\gamma_2^{(+)}(b) = \gamma_2^{(+)}((b_{i,j})_{i,j=1}^{\mu}) = (a_{i,j})_{i,j=1}^{\nu} \in M_{n(2)},$$

where

$$a_{i,j} = p_{m(1),n(1)}(b_{i,j}) \in M_{n(1)}$$
.

So, if $b \in M_{m(1)}$ and $a = p_{m(1), n(1)}(b)$, then

$$\gamma_2^{(+)}(g(b)) = \gamma_2^{(+)} \begin{bmatrix} \overline{b} & 0 \\ b \\ 0 & b \end{bmatrix} \qquad (\mu \text{ blocks})$$

$$= \begin{bmatrix} a & 0 \\ a \\ 0 & a \end{bmatrix} \qquad (v \text{ blocks})$$

$$= f(a) = f(\gamma_1^{(+)}(b)).$$

3. The main results.

Let us start with the following

LEMMA 3.1. Let $\{M_{m(k)}, g_k\}_{k=1}^{\infty}$ be a direct sequence, and let the positive integers $r(g_k)$, $k=1,2,\ldots$, the defined by Definition 2.5. Assume that $\limsup_{k\to\infty} r(g_k) \ge 2$, and let $\{M_{n(k)}, f_k\}_{k=1}^{\infty}$ be any other direct sequence. Then $A = \lim_{k\to\infty} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$ is isometric to a 1-complemented subspace of $B = \lim_{k\to\infty} \{M_{m(k)}, g_k\}_{k=1}^{\infty}$.

PROOF. By the multiplicativity of the functiona "r", we get

$$r(g_{k_{j+1}-1}\circ\ldots\circ g_{k_{j}+1}\circ g_{k_{j}}) = \prod_{k=k_{j}}^{k_{j+1}-1} r(g_{k}),$$

 $j=1,2,\ldots$ for any increasing sequence $\{k_j\}$ of positive integers. Using Proposition 2.6 we can assume without loss of generality that m(k) and $r(g_k)$ are arbitrarily large. Precisely, if $v_k = r(f_k)$, $\mu_k = r(g_k)$, $\sigma_k = n(k+1) - n(k)v_k$, then we assume that

$$\mu_k = \prod_{j=1}^{q_k+1} \mu_k(j) ,$$

where $\mu_k(j)$ are positive integers satisfying $\mu_k(1) \ge v_k$ and $\mu_k(j) \ge 3$ for all j. We also assume that m(1) > n(1).

We define $\gamma_1 \in \Gamma_{n(1), m(1)}$ by $\gamma_1 = \varphi_{n(1), m(1), 1}$. Using Lemma 2.11 we construct inductively a sequence $\gamma_k \in \Gamma_{n(k), m(k)}$ so that $g_k \circ \gamma_k = \gamma_{k+1} \circ f_k$, $k = 1, 2, 3, \ldots$ Let

$$\gamma_k^{(+)}: M_{m(k)} \to M_{n(k)}$$

be the (unique) contractive left inverse of γ_k (see Lemma 2.12 and Corollary 2.13), i.e., $\|\gamma_k^{(+)}\| = 1$ and

$$\gamma_k^{(+)} \circ \gamma_k = \mathrm{id}_{M_{n(k)}}, \quad k = 1, 2, \dots$$

By Corollary 2.13 we have also $f_k \circ \gamma_k^{(+)} = \gamma_{k+1}^{(+)} \circ g_k$ for all k. Let

$$\gamma = \lim \gamma_k : A \to B$$
 and $\gamma^{(+)} = \lim \gamma_k^{(+)} : B \to A$.

By Proposition 2.2 γ is an isometry of A onto a subspace, say X, of B, $\|\gamma^{(+)}\| = 1$ and $\gamma^{(+)} \circ \gamma = \mathrm{id}_A$. So $p = \gamma \circ \gamma^{(+)}$ is a contractive projection from B onto $X = \gamma(A)$.

Let us concentrate now on the Fermion algebra

$$F = \bigotimes_{n=1}^{\infty} M_2^{(n)} = \lim_{n \to \infty} \{M_{2^k}, \varphi_{2^k, 2^{k+1}, 2}\}_{k=1}^{\infty},$$

where $M_2^{(n)}$ denotes the *n*th factor M_2 (for basic information see [5]). The canonical, normalized trace of F is given by

$$\tau = \lim \left\{ 2^{-k} \cdot \operatorname{trace}_{M^k} \right\}_{k=1}^{\infty}$$

(see Proposition 2.1 and the discussion preceding it). The action of τ on an elementary tensor is

$$\tau\left(\bigotimes_{n=1}^{m} x_{n}\right) = \prod_{n=1}^{m} 2^{-1} \cdot (\operatorname{trace} x_{n}), \quad x_{n} \in M_{2}^{(n)}.$$

Let also $\{e_{i,j}^{(n)}\}_{i,j=0}^1$ denote the standard matrix units of $M_2^{(n)}$.

Proposition 3.2. Let $v_m = \bigotimes_{n=1}^m e_{1,1}^{(n)}$. Then for all $x \in F$

$$\delta_{(1,1)}(x) = \lim_{m \to \infty} \tau(2^m v_m x)$$

exists. $\delta_{(1,1)}$ a norm-one linear functional on F.

PROOF. Let x be an elementary tensor from $\bigotimes_{n=1}^{k} M_2^{(n)}$,

$$x = \bigotimes_{n=1}^k x_n, \quad x_n \in M_2^{(n)}.$$

Then for $m \ge k$,

$$\begin{split} \tau(2^m v_m x) &= 2^m \prod_{n=1}^k \ 2^{-1}(\operatorname{trace} e_{1,1}^{(n)} x_n) \cdot \prod_{n=k+1}^m \ 2^{-1} \cdot \operatorname{trace} e_{1,1}^{(n)} \\ &= 2^k \prod_{n=1}^k \ 2^{-1} \operatorname{trace} \left(e_{1,1}^{(n)} x_n \right) = \tau(2^k v_k x) \ . \end{split}$$

This clearly implies that $\delta_{(1,1)}(x) = \lim_{m \to \infty} \tau(2^m v_m x)$ exists for every x in the dense *-subalgebra $\bigcup_{k=1}^{\infty} \bigotimes_{n=1}^{k} M_2^{(n)}$ of F. Since each functional $x \mapsto \tau(2^m v_m x)$ has norm one,

$$\delta_{(1,1)}(x) = \lim_{m \to \infty} \tau(2^m v_m x)$$

exists for every $x \in F$, and $\|\delta_{(1,1)}\| \le 1$. Finally, if 1 denotes the unit of F, then

$$\delta_{(1,1)}(1) = \lim_{m \to \infty} \tau(2^m v_m 1) = \lim_{m \to \infty} \tau(2^m v_m) = 1.$$

So $\|\delta_{(1,)}\| = 1$.

REMARK. $\delta_{(1,1)}$ correspond to "point-evaluation at (1,1)". If $0 \le s$, $t \le 1$ are given by

$$s = \sum_{i=1}^{\infty} s_i 2^{-i}$$
 and $t = \sum_{i=1}^{\infty} t_i 2^{-i}$

(where $s_i, t_i \in \{0, 1\}$ and $\sum_{i=1}^{\infty} s_i = \sum_{i=1}^{\infty} t_i = \infty$), we define

$$\delta_{(s,t)}^{(m)}(x) = \tau \left[2^m \left(\bigotimes_{i=1}^m e_{s_i,t_i}^{(i)} \right) x \right].$$

Then

$$\delta_{(s,t)}(x) = \lim_{m \to \infty} \delta_{(s,t)}^{(m)}(x)$$

exists for all $x \in F$. $\delta_{(s,t)}$ is a norm-one functional which corresponds to "point-evaluation at (s,t)". This exhibits F as a space of functions on the unit square $[0,1] \times [0,1]$ (which, however, is very different from the classical function spaces).

For any Banach space X we denote by $c_0(X)$ the space of all sequences $x = (x_1, x_2, \ldots)$ with $x_j \in X$ and $||x_j|| \to 0$, normed by $||x|| = \sup ||x_j||$. If X is a C*-algebra, then $c_0(X)$ is also C*-algebra.

Lemma 3.3 The Fermion algebra $F = \bigotimes_{n=1}^{\infty} M_2^{(n)}$ has a C*-subalgebra A which is C*-isomorphic to $c_0(F)$, and there is a projection P from F onto A with $||P|| \le 2$.

PROOF. Let $\delta_{(1,1)}$ and v_m have the same meaning as in Proposition 3.2. Let F_0 = ker $\delta_{(1,1)}$ and let $Q: F \to F_0$ be given by $Qx = x - \delta_{(1,1)}(x)1$. Then Q is a projection of norm 2. Define for $j = 1, 2, \ldots$

$$a_j = \left(\bigotimes_{i=1}^{j-1} e_{1,1}^{(i)}\right) \otimes e_{0,0}^{(j)}.$$

Then $\{a_i\}$ are mutually orthogonal projections. Also

$$a_j F a_j = a_j F_0 a_j = a_j \otimes \left(\bigotimes_{n=j+1}^{\infty} M_2^{(n)} \right), \quad j=1,2...$$

So a_jFa_j is C*-isomorphic in the natural way to F. Let $A = \overline{\text{span}} \{a_jFa_j\}_{j=1}^{\infty}$. Then A is a C*-subalgebra of F which is C*-isomorphic to $c_0(F)$. We now claim that $A \subset F_0$ and that

$$\tilde{P}(x) = \sum_{j=1}^{\infty} a_j x a_j$$

defines a contractive projection from F_0 onto A. Proving this, we complete the proof of the lemma by letting $P = \tilde{P}Q$.

Indeed, for all j and m

$$(3.1) v_m a_j = a_j v_m = \begin{cases} 0 & ; & j \leq m \\ a_j & ; & j > m \end{cases}.$$

This implies that for all $x \in F$,

$$\delta_{(1,1)}(a_j x a_j) = \lim_{m \to \infty} \tau(2^m v_m a_j x a_j) = 0$$

and so $A \subset F_0 = \ker \delta_{(1,1)}$. Next, let us define

$$P_m(x) = \sum_{j=1}^m a_j x a_j + \tau(2^m v_m x) v_m, \quad x \in F, \ m = 1, 2, \dots$$

By (3.1), $P_m^2 = P_m$ and $||P_m|| = 1$. If $x \in \bigotimes_{n=1}^k M_2^{(n)}$, then for all $m \ge k$,

$$a_m x a_m = \tau(2^k v_k x) a_m, \quad \tau(2^m v_m x) = \tau(2^k v_k x)$$

and also

$$\sum_{j=k+1}^{m} a_j + v_m = v_k$$

(the last formula follows by an easy induction on $m \ge k$). So

$$P_{m}(x) = \sum_{j=1}^{m} a_{j}xa_{j} + \tau(2^{m}v_{m}x)v_{m}$$

$$= \sum_{j=1}^{k} a_{j}xa_{j} + \sum_{j=k+1}^{m} \tau(2^{k}v_{k}x)a_{j} + \tau(2^{k}v_{k}x)v_{m}$$

$$= \sum_{j=1}^{k} a_{j}xa_{j} + \tau(2^{k}v_{k}x)v_{k}$$

$$= P_{k}(x).$$

This clearly implies that $\tilde{P}(x) = \lim_{m \to \infty} P_m(x)$ exists for all $x \in F$, and that \tilde{P} is a contractive projection. If $x \in F_0$ then $\tau(2^m v_m x) \to \delta_{(1,1)}(x) = 0$, and so

$$\tilde{P}(x) = \lim_{m \to \infty} \sum_{j=1}^{m} a_j x a_j = \sum_{j=1}^{\infty} a_j x a_j, \quad x \in F_0.$$

So $\tilde{P}(F_0) \subset A$. Finally, $P_m(a_i x a_i) = a_i x a_i$ for $m \ge j$, so $\tilde{P}|_A = \mathrm{id}_A$.

For Banach spaces X, Y let $X \cong Y$ (respectively, $X \hookrightarrow Y$) denotes that X is isomorphic to Y (respectively, to a complemented subspace of Y).

LEMMA 3.4. Let A be any matroid C*-algebra. Then $A \cong c_0(A)$.

PROOF. It is enough to prove that $c_0(A)$ is isometric to a complemented subspace of A. Indeed, proving this, we get for some Banach space X that

$$A \cong c_0(A) \oplus X \cong c_0(A) \oplus c_0(A) \oplus X$$
$$\cong c_0(A) \oplus A \cong c_0(A).$$

If $A = LC(l_2)$, let $\{a_j\}_{j=1}^{\infty}$ be a sequence of mutually orthogonal infinite-rank

projections on l_2 . Then $Px = \sum_{j=1}^{\infty} a_j x a_j$ defines a contractive projection in A and P(A) is isometric to $c_0(A)$, since $a_j A a_j$ is C*-isomorphic to A.

If $A \neq LC(l_2)$ and $A = \lim_{k \to \infty} \{M_{m(k)}, g_k\}_{k=1}^{\infty}$ is some representation of A as a direct limit of matrix algebras, then by Proposition 2.6, $\limsup_{k \to \infty} r(g_k) \geq 2$. So, by Lemma 3.1, $F \hookrightarrow A$. It follows by Lemma 3.3 that

$$c_0(A) \hookrightarrow c_0(F) \hookrightarrow F \hookrightarrow A$$
,

where the isomorphisms are actually isometries. It follows that $c_0(A)$ is isometric to a 2-complemented subspace of A.

PROOF OF PART (a) OF THEOREM 1.1. Let A be any matroid C^* -algebra, and let $A = \lim_{k \to \infty} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$ be any representation of A as a direct limit of matrix algebras. If $\limsup_{k \to \infty} r(f_k) = 1$, then by Proposition 2.6, A is C^* -isomorphic (and therefore linearly isometric) to $LC(l_2)$. If $\limsup_{k \to \infty} r(f_k) \ge 2$, then by Lemma 3.1, $A \cong F \oplus X$ and $F \cong A \oplus Y$ for some Banach spaces X and Y. Also, by Lemma 3.4, $A \cong A \oplus A$ and $F \cong F \oplus F$. Thus

$$A \cong F \oplus X \cong F \oplus F \oplus X \cong F \oplus A$$

and similarly $F \cong A \oplus F$. So $A \cong F$.

This proof shows, in fact, that the isomorphism type of a matroid C*-algebra can be decided by the asymptotic behavior of the numbers $\{r(f_k)\}_{k=1}^{\infty}$ (see Definition 2.5) in the representations $A = \lim_{n \to \infty} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$. Precisely, we have the following:

COROLLARY 3.5. Let A be a matroid C*-algebra,

- (i) If $\limsup_{k\to\infty} r(f_k) = 1$ for some representation $A = \lim_{n\to\infty} \{M_{n(k)}, f_k\}_{k=1}^{\infty}$, then this is the case for all other representations;
- (ii) $A \cong LC(l_2)$ if and only if $\limsup_{k\to\infty} r(f_k) = 1$;
- (iii) $A \cong F$ if and only if $\limsup_{k\to\infty} r(f_k) \ge 2$.

PROOF OF PART (b) OF THEOREM 1.1. Let us apply Lemma 3.1 in the special case where $m(k)=2^k$, n(k)=k, $g_k=\varphi_{2^k,2^{k+1},2}$, and $f_k=\varphi_{k,k+1,1}$. We have

$$A = \lim_{k \to \infty} \{M_k, \varphi_{k,k+1,1}\} = LC(l_2)$$

and

$$B = \lim_{k \to \infty} \{ M_{2^k}, \varphi_{2^k, 2^{k+1}, 2} \}_{k=1}^{\infty} = F.$$

So $LC(l_2)$ is isometric to a 1-complemented subspace of F.

For the proof of part (c) of Theorem 1.1 we need the following Lemma. Here $\Delta = \{0,1\}^{\aleph_0}$ is the Cantor set and $C(\Delta)$ denotes the C*-algebra of all complex-valued continuous functions on Δ with the supremum norm.

LEMMA 3.6. $C(\Delta)$ is C*-isomorphic to a 1-complemented C*-subalgebra of the Fermion algebra F.

PROOF. Write $F = \lim_{k \to \infty} \{M_{2^k}, f_k\}_{k=1}^{\infty}$ with $f_k = \varphi_{2^k, 2^{k+1}, 2}$. Let D_k denote the diagonal projection in M_{2^k} (i.e., $(D_k a)(i, j) = \delta_{i, j} a(i, i)$). Then $f_k \circ D_k = D_{k+1} \circ f_k$. So $D = \lim_{k \to \infty} D_k$ exists and is a contractive projection from F onto its C^* -subalgebra $A = \lim_{k \to \infty} \{D_k M_{2^k}, f_k\}_{k=1}^{\infty}$. Let

$$\psi_k: C(\{0,1\}^k) \to C(\{0,1\}^{k+1})$$

be the natural map:

$$(\psi_k g)(t_1,\ldots,t_{k+1}) = g(t_1,\ldots,t_k); \quad t_i \in \{0,1\}.$$

Then there exist C*-isomorphisms h_k from $C(\{0,1\}^k)$ onto $D_k M_{2k}$, $k=1,2,\ldots$, so that $f_k \circ h_k = h_{k+1} \circ \psi_k$ for all k. It follows by Proposition 2.2 that $h = \lim_{\longrightarrow} h_k$ is a C*-isomorphism from

$$B = \lim_{k \to \infty} \{C(\{0,1\}^k), \psi_k\}_{k=1}^{\infty}$$

onto A. Finally, B is C*-isomorphic to $C(\Delta)$. Indeed, if $u = (u_k)$, $u_k \in C(\{0,1\}^k)$, is so that $\psi_k(u_k) = u_{k+1}$ for $k > k_u$, let $\varphi(u) = v$ be defined on Δ by

$$v(t_1,...,t_j,...) = u_k(t_1,...,t_k); t_j \in \{0,1\},$$

where $k \ge k_u$. Clearly, v is well defined and φ extends to a unital C*-isomorphism of B onto $C(\Delta)$.

PROOF OF PART (c) OF THEOREM 1.1. Assume the converse, i.e., that F is isomorphic to a subquotient (that is, a subspace of a quotient space) of $LC(l_2)$. By Lemma 3.6, $C(\Delta)$ is also isomorphic to a subquotient of $LC(l_2)$. By standard arguments, this implies that $C(\Delta)^*$ is isomorphic to a subquotient of $LC(l_2)^* = C_1$ (= the trace class), which is separable. This contradicts the well-known fact that $C(\Delta)^*$ is not separable.

The construction in Lemma 3.6 can be generalized to an arbitrary matroid C^* -algebra A, as follows. Let

$$A = \lim_{n \to \infty} \{M_{n(j)}, f_j\}_{j=1}^{\infty}, \quad f_j = \varphi_{n(j), n(j+1), r(j)}, \ (r(j) = r(f_j)),$$

be any representation of A as a direct limit of matrix algebras. Then

$$B = \lim_{\to} \{D_{n(j)}M_{n(j)}, f_j|_{D_{n(j)}M_{n(j)}}\}_{j=1}^{\infty}$$

is a commutative C*-subalgebra of A, and $D = \lim_{n \to \infty} D_{n(j)}$ is a contractive projection from A onto B. We call B "the" diagonal of A and denote it by DA.

We now establish the properties of DA, and in particular its independence of the particular representation $A = \lim_{n \to \infty} \{M_{n(j)}, f_j\}_{j=1}^{\infty}$. Let $K_j = \{1, 2, \dots, n_{(j)}\}$ be regarded as a discrete topological space and let

$$\alpha_i: C(K_i) \to D_{n(i)}M_{n(i)}$$

be defined by

$$\alpha_i(u) = \operatorname{diag}(u(1), u(2), \ldots, u(n(j))), \quad u \in C(K_i).$$

Then DA is C*-isomorphic to $\lim_{j \to \infty} \{C(K_j), g_j\}_{j=1}^{\infty}$, where $g_j = \alpha_{j+1}^{-1} \circ f_j \circ \alpha_j$. In the UHF (i.e., unital) case there exist quotient maps $g_j^* : K_{j+1} \to K_j$ so that

$$u(g_i^*(i)) = (g_i(u))(i), \quad u \in C(K_i), \quad i \in K_{i+1}.$$

The inverse limit of the sequence

$$\ldots \leftarrow K_i \stackrel{g_i^*}{\longleftarrow} K_{i+1} \leftarrow \ldots,$$

namely

$$K = \lim_{\leftarrow} \{K_j, g_j^*\}_{j=1}^{\infty}$$

$$= \left\{ x = (x(j)) \in \prod_{j=1}^{\infty} K_j; \quad x(j) = g_j^*(x(j+1)), \quad j = 1, 2, \dots \right\}$$

is homeomorphic to $\prod_{j=1}^{\infty} K_{j+1}/K_j$, and thus to Δ . So $\lim_{\longrightarrow} \{C(K_j), g_j\}_{j=1}^{\infty}$ is C*-isomorphic to C(K) and thus to $C(\Delta)$.

In the non-unital case we let $\tilde{K} = K_j \cup \{0\} = \{0, 1, 2, \dots, n(j)\}$, and we identify $C(K_j)$ with

$$C^{(0)}(\tilde{K}_j) = \{ u \in C(\tilde{K}_j); u(0) = 0 \}.$$

The inverse system of quotient maps is now

$$\ldots \leftarrow \tilde{K}_j \xleftarrow{g_j^*} \tilde{K}_{j+1} \leftarrow \ldots,$$

where $g_j^*(0) = 0$ and $u(g_j^*(i)) = (g_j(u))(i)$ for all $i \in \tilde{K}_{j+1}$ and $u \in C^{(0)}(\tilde{K}_j)$. Let

$$\vec{0} = (0,0,\ldots) \in \prod_{j=1}^{\infty} \widetilde{K}_j$$
 and $\widetilde{K} = \lim_{\leftarrow} \{K_j,g_j\}_{j=1}^{\infty}$.

Then

$$\lim_{\vec{j}} \{C(K_j), g_j\}_{j=1}^{\infty} = \lim_{\vec{j}} \{C^{(0)}(\tilde{K}_j), g_j\}_{j=1}^{\infty}$$
$$= C^{(\vec{0})}(\tilde{K}) = \{u \in C(\tilde{K}); \ u(\vec{0}) = 0\} \ .$$

If $A \cong LC(l_2)$, i.e., $\limsup_{k \to \infty} r(f_k) = 1$, then \tilde{K} is homeomorphic to a sequence converging to $\vec{0}$. So DA is C^* -isomorphic to c_0 , the space of all numerical sequences converging to zero with the "sup" norm. If $\limsup_{k \to \infty} r(f_k) \ge 2$ then \tilde{K} does not have isolated points. Thus, being zero-dimensional, compact and metrizable (as a closed subspace of $\prod_{j=1}^{\infty} \tilde{K}_j$), \tilde{K} is homeomorphic to Δ . Thus, DA is C^* -isomorphic to

$$C^{(\vec{0})}(\Delta) = \{ u \in C(\Delta) ; u(\vec{0}) = 0 \} = C_0(\Delta \setminus \{\vec{0}\}) .$$

It follows that DA is (linearly) isomorphic to $C(\Delta)$.

Let us summarize this discussion formally:

THEOREM 3.7. Let A be a matroid C*-algebra.

(1) Up to a C*-isomorphism, the above definition of the diagonal DA of A is independent of the particular representation

$$A = \lim_{\rightarrow} \{M_{n(j)}, f_j\}_{j=1}^{\infty} ;$$

- (ii) If A is a UHF algebra, then DA is C*-isomorphic to $C(\Delta)$;
- (iii) If A is non-unital and $A \neq LC(l_2)$, that is $\limsup_{j\to\infty} r(f_j) \geq 2$, then DA is C^* -isomorphic to $C_0(A \setminus \{\vec{0}\})$, and thus linearly isomorphic to $C(\Delta)$;
- (iv) If $\limsup_{j\to\infty} r(f_j) = 1$, that is $A \cong LC(l_2)$, then DA is C*-isomorphic to c_0 ;
- (v) In all cases, DA is a 1-complemented C*-subalgebra of A.

We conclude the paper by suggesting the following problem:

PROBLEM. Characterize, up to a linear-topological isomorphism, all AF-algebras (i.e., direct limits of finite dimensional C*-algebras).

Our methods and results might be helpful in studying this general problem, since every finite-dimensional C*-algebra is the finite direct sum of matrix algebras.

REFERENCES

- 1. J. Dixmier, On some C*-algebra considered by Glimm, J. Funct. Anal. 1 (1967), 182-203.
- J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318–340.
- 3. R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
- J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Sequence Spaces (Ergebnisse der Mathematik und Ihrer Grenzgebiete 92), Springer-Verlag, Berlin - Heidelberg - New York, 1977.
- A. L. T. Paterson and A. M. Sinclair, Characterization of isometries between C*-algebras, J. London Math. Soc. (5), 2(1972), 755-761.
- G. K. Pedersen, C*-algebras and their automorphism groups (London Mathematical Society Monographs 14), Academic Press, London, New York, San Francisco, 1979.
- S. Sakai, C*-algebras and W*-algebras, (Ergebnisse der Mathematik und Ihrer Grenzgebiete 60), Springer-Verlag, Berlin - Heidelberg - New York, 1971.
- 8. Z. Takeda, Inductive limits and infinite direct product of operator algebras, Tôhoku Math. J. 7 (1955), 67-86.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA MOUNT CARMEL, HAIFA, ISRAEL