LINEAR-TOPOLOGICAL CLASSIFICATION
OF MATROID C*-ALGEBRAS

JONATHAN ARAZY

Abstract.

We classify, up to a linear-topological isomorphism, all matroid C*-algebras
(i.e. direct limits of a sequence of finite dimensional matrix algebras). There are
two isomorphism classes: one is represented by LC(l_2), the C*-algebra of all
compact operators on the Hilbert space l_2, and the other – by the Fermion
algebra F = \bigotimes_{n=1}^{\infty} M_2. In particular, any UHF algebra is isomorphic to F as a
Banach space. We also show that LC(l_2) is isometric to a 1-complemented
subspace of F, but F is not isomorphic to a subspace of a quotient space of
LC(l_2).

1. Introduction.

Let M_n denote the C*-algebra of all complex n \times n-matrices with the usual
algebraic operations and norms. A C*-algebra A is called a matroid C*-algebra
(or, briefly, a matroid) if there exists a sequence \{A_k\}_{k=1}^{\infty} of C*-subalgebras of
A, possibly with different units, so that:

(i) A_k \supseteq A_{k+1}; \quad k = 1, 2, 3, \ldots

(ii) A_k is C*-isomorphic to M_{n(k)} for some positive integer n(k);
 \quad k = 1, 2, 3, \ldots

(iii) \bigcup_{k=1}^{\infty} A_k is dense in A in the norm topology.

If, moreover,

(iv) A has a unit e and e \in A_k, \quad k = 1, 2, \ldots

then A is called a UHF algebra (i.e., uniformly hyper-finite algebra or, a Glimm
algebra, see [6, Chapter 6]). We call the sequence \{A_k\}_{k=1}^{\infty} an admissible
sequence for the matroid A.

The classification of matroids up to a C*-isomorphism is due to Glimm [2]
in the UHF case) and Dixmier [1] (in the general case). Glimm proved that if
\{A_k\}_{k=1}^{\infty} and \{B_k\}_{k=1}^{\infty} are admissible sequences for the UHF algebras A and B

Received November 4, 1981.
respectively, with A_k C*-isomorphic to $M_{n(k)}$ and B_k C*-isomorphic to $M_{m(k)}$, then A is C*-isomorphic to B if and only if
\[
\sup \{ j ; \exists k \left(p^j \mid n(k) \right) \} = \sup \{ j ; \exists k \left(p^j \mid m(k) \right) \}
\]
for every prime number p. In particular, there exist uncountably many non-C*-isomorphic UHF algebras. Dixmier constructed a "dimension function" d_A on the set E_A of projections of a general matroid A, and showed that two matroids A and B are C*-isomorphic if and only if $d_A(E_A) = d_B(E_B)$. He also showed how to compute $d_A(E_A)$ in terms of the dimensions $\{ n(k) \}_{k=1}^{\infty}$ of an arbitrary admissible sequence $\{ A_k \}_{k=1}^{\infty}$ for A. Another (easy) remark of Dixmier is that a unital matroid is, in fact, a UHF algebra (see [1, 1.2]).

Using the fact that two C*-algebra are linearly isometric if and only if they are Jordan-*-isomorphic (see [3] and [5]) one obtains easily that the isometric classification of matroids coincides with the Glimm-Dixmier classification as C*-algebras.

We are interested here in the linear-topological classification of matroids, i.e., in the classification up to a Banach-space isomorphism. Our main result is the following theorem, which shows a completely different phenomenon.

Theorem 1.1. (a) Every matroid C*-algebra is isomorphic either to LC(l_2), the C*-algebra of all compact operators on l_2, or to the Fermion algebra $F = \bigotimes_{n=1}^{\infty} M_2$.

(b) LC(l_2) is isometric to a subspace of F which is the range of a contractive projection from F.

(c) F is not isomorphic to a subspace of a quotient space of LC(l_2).

The representation of LC(l_2) as a matroid is quite obvious. Let $\{ a_k \}_{k=1}^{\infty}$ be an increasing sequence of finite-rank projections on l_2 tending strongly to I, the identity operator. Let $A_k = a_k \cdot LC(l_2) \cdot a_k$ and $n(k) = \text{rank} (a_k)$. Then A_k is C*-isomorphic to $M_{n(k)}$, $A_k \supseteq A_{k+1}$, and $\bigcup_{k=1}^{\infty} A_k$ is norm-dense in LC(l_2).

Assuming the notion of infinite tensor product of C*-algebras (see [7, Section 1.23], [8], and section 2 below) the representation of $F = \bigotimes_{n=1}^{\infty} M_2$ as a UHF algebra is also obvious. For $k=1,2,\ldots$ let
\[
A_k = \underbrace{M_2 \otimes M_2 \otimes \ldots \otimes M_2}_{k\text{-factors}}
\]
then $\{ A_k \}_{k=1}^{\infty}$ is (identified with) a strictly increasing sequence of unital C*-subalgebras of F, A_k is C*-isomorphic to M_{2^k}, and $\bigcup_{k=1}^{\infty} A_k$ is norm-dense in F.

Theorem 1.1 answers questions raised by A. Lazar, and may be helpful in the
linear-topological classification of general AF-algebras. We thank Professor Lazar for valuable discussions.

Our methods are elementary and straightforward, and are independent of the delicate analysis of [1] and [2]. After replacing the above definition of matroids by the (equivalent) definition as a direct limit of matrix algebras, we analyze in a greater detail commutative diagrams of the form

$$
\begin{array}{ccc}
M_{n(1)} & \xrightarrow{f} & M_{m(2)} \\
\gamma_1 \downarrow & & \downarrow \gamma_2 \\
M_{m(1)} & \xrightarrow{g} & M_{m(2)}
\end{array}
$$

where f and g are C*-monomorphisms and γ_1 and γ_2 are linear isometries of a special kind. This analysis enables us to show that if A, B are matroids with $B \cong LC(l_2)$, then A is isometric to a 1-complemented subspace of B. Then we show that every matroid A is isomorphic to $c_0(A)$. These two facts together easily imply parts (a) and (b) of Theorem 1.1. In order to prove part (c) we introduce the notion of the “diagonal” of a matroid which is always a 1-complemented, commutative C*-subalgebra, and show that the diagonal of F is $C(\Delta)$, the algebra of all continuous function on the cantor set Δ. A simple duality argument, together with the fact that $LC(l_2)^* = C_1$ (= the trace class) is separable, imply (c).

A word of caution about our terminology is necessary. Throughout the entire work we shall stay in the category of Banach spaces; so by “operator”, “isomorphism”, “isometry”, “projection”, etc. we shall always mean linear, continuous maps with the specified properties. The prefix “C*” will switch us to the category of C*-algebras, so “C*-homomorphism” “C*-monomorphism”, “C*-isomorphism”, etc. will mean linear, multiplicative, *-preserving, continuous maps. We do not require, however, that a C*-homomorphism from one unital C*-algebra into another preserves the unit element (also, a C*-subalgebra B of a unital C*-algebra A need not have a unit, and if it does — the units of A and B need not be the same). Except for this — our notation and terminology are quite standard, and we refer to [4] for Banach space theory and to [6] and [7] for C*-algebras.

2. Technical preparation

Let us start with some information on direct (or, inductive) limits of sequences of C*-algebras and infinite tensor products of matrix algebras. Our presentation is a variant of [7, Section 1.23] and [8]. Let $\{A_k\}_{k=1}^\infty$ be a sequence of C*-algebras so that for every k there exists a C*-monomorphism (i.e., an injective C*-homomorphism) $f_k: A_k \to A_{k+1}$. We call $\{A_k, f_k\}_{k=1}^\infty$ a direct sequence. Let \tilde{A} be the *-subalgebra of $\prod_{k=1}^\infty A_k$ consisting of all
\[a = (a_k)_{k=1}^\infty \] so that \(a_{k+1} = f_k(a_k) \) for all \(k \geq k_0 \), normed by \(\| a \| = \sup_k \| a_k \| \), and let \(A \) be the completion of \(\bar{A} \).\(A \) is called the direct limit of the direct sequence \(\{ A_k, f_k \}_{k=1}^\infty \), in notation \(A = \lim_{\to} (A_k, f_k)_{k=1}^\infty \). For every \(n = 1, 2, \ldots \) the map \(A_n \to \lim_{\to} (A_k, f_k)_{k=1}^\infty \) defined by

\[a \mapsto (0, 0, \ldots, 0, a, f_n(a), f_{n+1}(f_n(a)), \ldots) \]

is a C*-monomorphism which identifies \(A_n \) with a C*-subalgebra of \(\lim_{\to} (A_k, f_k)_{k=1}^\infty \). For simplicity, we shall regard \(A_n \) itself as being a C*-algebra of \(\lim_{\to} (A_k, f_k)_{k=1}^\infty \).

Suppose now that \(\{ v(j) \}_{j=1}^\infty \) is some sequence of positive integers. Let

\[A_k = M_{v(1)} \otimes M_{v(2)} \otimes \cdots \otimes M_{v(k)}, \]

with the norm of \(B(l_2^{(1)} \otimes l_2^{(2)} \otimes \cdots \otimes l_2^{(k)}) \). Clearly, \(A_k \) is C*-isomorphic to \(M_{n(k)} \), where \(n(k) = v(1) \cdot v(2) \cdots v(k) \). Let \(f_k : A_k \to A_{k+1} \) be defined by

\[f_k(x_1 \otimes x_2 \otimes \cdots \otimes x_k) = x_1 \otimes x_2 \otimes \cdots \otimes x_k \otimes I_{v(k+1)} \]

Then \(\{ A_k, f_k \}_{k=1}^\infty \) is direct sequence and its direct limit is called the infinite tensor product of \(\{ M_{v(j)} \}_{j=1}^\infty \), in notation

\[\bigotimes_{j=1}^\infty M_{v(j)} = \lim_{\to} \left\{ \bigotimes_{j=1}^k M_{v(j)}, f_k \right\}_{k=1}^\infty. \]

Next, let us show that the notion of a matroid coincides with the notion of a direct limit of matrix algebras. Let \(\{ A_k \}_{k=1}^\infty \) be an admissible sequence for a matroid \(A \). Let \(\varphi_k : A_k \to M_{n(k)} \) be a C*-isomorphism of \(A_k \) onto \(M_{n(k)} \), and let \(f_k : M_{n(k)} \to M_{n(k+1)} \) be defined by \(f_k = \varphi_{k+1} \circ \varphi_k^{-1} \). Then \(\{ M_{n(k)}, f_k \}_{k=1}^\infty \) is a direct sequence and \(A \) is C*-isomorphic to \(\lim_{\to} \{ M_{n(k)}, f_k \}_{k=1}^\infty \). Using this identification one can easily prove the following.

Proposition 2.1. Let \(\{ M_{n(k)}, f_k \}_{k=1}^\infty \) and \(\{ M_{m(k)}, g_k \}_{k=1}^\infty \) be two direct sequences of matrix algebras. Suppose that for every \(k \) there exists an operator \(h_k : M_{n(k)} \to M_{m(k)} \), so that \(g_k \cdot h_k = h_{k+1} \cdot f_k \) for all \(k \), i.e., the following diagram commutes:

\[
\begin{array}{ccc}
M_{n(k)} & \xrightarrow{f_k} & M_{n(k+1)} \\
\downarrow{h_k} & & \downarrow{h_{k+1}} \\
M_{m(k)} & \xrightarrow{g_k} & M_{m(k+1)}
\end{array}
\]

Suppose also that \(\sup_k \| h_k \| < \infty \). Then there exists a unique operator

\[h : \lim_{\to} \{ M_{n(k)}, f_k \}_{k=1}^\infty \to \lim_{\to} \{ M_{m(k)}, g_k \}_{k=1}^\infty \]

satisfying \(h(M_{n(k)}) = h_k \) for all \(k \) and \(\| h \| = \sup_k \| h_k \| \). Moreover, if all the \(h_k \) are
isometries (or, C*-homomorphisms) then h is an isometry (respectively, a C*-homomorphism).

The operator h whose existence is ensured by Proposition 2.1 is called the direct limit of the sequence \(\{ h_k \}_{k=1}^{\infty} \), and is denoted by \(h = \lim_{\rightarrow} h_k \). One can easily verify the following composition formula:

\[
\lim_{\rightarrow} (h_k \circ h'_k) = (\lim_{\rightarrow} h_k) \circ (\lim_{\rightarrow} h'_k).
\]

As a consequence, we have the following.

Proposition 2.2. Let \(\{ M_{n(k)} \}, \{ f_k \}_{k=1}^{\infty} \) and \(\{ M_{m(k)} \}, \{ g_k \}_{k=1}^{\infty} \) be two direct sequences. Suppose that for every k there exists an isometry \(h_k \) of \(M_{n(k)} \) into \(M_{m(k)} \) and a contraction \(p_k \) from \(M_{m(k)} \) into \(M_{n(k)} \) so that

(i) \(g_k \circ h_k = h_{k+1} \circ f_k \)

(ii) \(p_k \circ h_k = id_{M_{n(k)}} \), the identity operator on \(M_{n(k)} \)

and

(iii) \(f_k \circ p_k = p_{k+1} \circ g_k \)

that is, the following diagram commutes

\[
\begin{array}{ccc}
M_{n(k)} & \xrightarrow{id} & M_{n(k)} \\
p_k \downarrow & & \downarrow h_k \\
M_{m(k)} & \xrightarrow{g_k} & M_{m(k+1)} \\
h_{k+1} & & \downarrow p_{k+1} \\
M_{m(k)} & \xrightarrow{id} & M_{m(k+1)} \\
p_k \downarrow & & \downarrow h_{k+1} \\
M_{n(k)} & \xrightarrow{f_k} & M_{n(k+1)}
\end{array}
\]

Then

\[
A = \lim_{\rightarrow} \{ M_{n(k)} \}, \{ f_k \}_{k=1}^{\infty}
\]

is isometric to a subspace \(X \) of

\[
B = \lim_{\rightarrow} \{ M_{m(k)} \}, \{ g_k \}_{k=1}^{\infty},
\]

and there exists a contractive projection from \(B \) onto \(X \).

Indeed, \(h = \lim_{\rightarrow} k_k \) is an isometry from \(A \) into \(B \), \(p = \lim_{\rightarrow} p_k \) is a contraction from \(B \) into \(A \), and

\[
p \circ h = \lim_{\rightarrow} (p_k \circ h_k) = id_A,
\]

so \(h \circ p \) is a contractive projection from \(B \) onto \(X = h(A) \).
Definition 2.3. Let \(n, m, r \) be positive integers with \(rn \leq m \). We define a map \(\varphi_{n,m,r} : M_n \to M_m \) by

\[
(2.1) \quad \varphi_{n,m,r}(a) = \left(\bigoplus_{j=1}^{r} a \right) \oplus 0_l = \begin{bmatrix} a & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0_l \end{bmatrix}
\]

where \(l = m - nr \) and \(0_l \) denotes the zero matrix of order \(l \times l \).

Clearly, \(\varphi_{n,m,r} \) is a \(C^* \)-monomorphism of \(M_n \) into \(M_m \).

Proposition 2.4. Let \(n \leq m \) and let \(\varphi : M_n \to M_m \) be a \(C^* \)-monomorphism. Then there exists a unitary matrix \(v \in M_m \) so that

\[
\varphi(a) = v^* \cdot (\varphi_{n,m,r}(a)) \cdot v, \quad a \in M_n
\]

where \(r = \text{rank } \varphi(e_{1,1}) \).

This is well-known (any \(C^* \)-monomorphism maps elements with orthogonal ranges (or, orthogonal cokernels) into elements with the same properties. Now apply this to the system of matrix-units \(\{e_{i,j}\}_{i,j=1}^n \) of \(M_n \).

Definition 2.5. Let \(\varphi : M_n \to M_m \) (\(n \leq m \)) be a \(C^* \)-monomorphism. We put

\[
r(\varphi) = \text{rank } \varphi(e_{1,1})
\]

It is clear that \(r(\varphi) = \text{rank } \varphi(e) \) for every rank-one projection \(e \in M_n \). The functional "\(r \)" is multiplicative: if \(M_n \xrightarrow{\varphi} M_m \) and \(M_m \xrightarrow{\psi} M_k \) are \(C^* \)-monomorphisms, then \(r(\psi \circ \varphi) = r(\psi) \cdot r(\varphi) \).

We state without proof the following elementary proposition.

Proposition 2.6. Let \(\{A_{k_j}, f_{k_j}\}_{k=1}^\infty \) be a direct sequence and let \(\{k_j\}_{j=1}^\infty \) be any increasing sequence of positive integers. Let for \(j = 1, 2, \ldots \)

\[
g_j = f_{k_{j+1}} \circ \cdots \circ f_{k_{j+1}} \circ f_{k_j} : A_{k_j} \to A_{k_{j+1}}
\]

Then \(\lim \{A_{k_j}, g_j\}_{j=1}^\infty \) is \(C^* \)-isomorphic to \(\lim \{A_{k_j}, f_{k_j}\}_{j=1}^\infty \).

In particular, if \(\{M_{n(k)}, f_{k_j}\}_{k=1}^\infty \) is any direct sequence of matrix algebras with \(r(f_k) = 1 \) for \(k \geq k_0 \), then \(\lim \{M_{n(k)}, f_{k_j}\}_{j=1}^\infty \) is \(C^* \)-isomorphic to

\[
\text{LC}(l_2) = \lim \{M_{k_j}, \varphi_{k,j+1,1}\}_{j=1}^\infty
\]
DEFINITION 2.7. Let $n \leq m$. We define $p_{m,n} : M_m \rightarrow M_n$ by $(p_{m,n}(a))(i,j) = a(i,j)$, $1 \leq i,j \leq n$, $a \in M_m$.

Clearly, $p_{m,n}$ is a contraction and $p_{m,n} \circ \varphi_{n,m,r} = \text{id}_{M_n}$ for all positive integers n,m,r with $nr \leq m$.

DEFINITION 2.8. Two maps $f,g : M_n \rightarrow M_m$ are said to be equivalent if there exist unitary matrices $u_1,u_2 \in M_n$ and $v_1,V_2 \in M_m$ so that

$$f(a) = v_2(g(u_2au_1))v_1, \quad a \in M_n.$$

DEFINITION 2.9. For positive integers $n \leq m$ let $\Gamma_{n,m}$ be the set of all linear maps $\gamma : M_n \rightarrow M_m$ that are equivalent to a map $\tilde{\gamma} : M_n \rightarrow M_m$ of the form

$$(2.2) \quad \tilde{\gamma}(a) = a \oplus p_{n,n_1}(a) \oplus p_{n,n_2}(a) \oplus \ldots \oplus p_{n,n_s}(a) \oplus 0_l$$

where $1 \leq n_j < n$, $1 \leq l$, $0 \leq s$, and $n + \sum_{j=1}^{s} n_j + l = m$.

Notice that, up to a permutation, the sequence $\{n_j\}_{j=1}^{s}$ depends only on γ (not on $\tilde{\gamma}$). Also, $\tilde{\gamma}(a^*) = \tilde{\gamma}(a)^*$ for all $a \in M_m$, and $\tilde{\gamma}$ is multiplicative if and only if $s = 0$, i.e., $\tilde{\gamma}(a) = a \oplus 0_l$.

PROPOSITION 2.10. Let $n \leq m$. Then every $\gamma \in \Gamma_{n,m}$ is an isometry and there is a contractive (i.e., norm-one) projection from M_m onto $\gamma(M_n)$.

PROOF. It is clearly enough to prove this in the case where $\gamma = \tilde{\gamma}$ is given by (2.2). Now, for any matrices a,b

$$\|a \oplus b\| = \max \{\|a\|,\|b\|\}.$$

So, using the fact that p_{n,n_j} are contractions, we get

$$\|\tilde{\gamma}(a)\| = \max \{\|a\|,\|p_{n,n_1}(a)\|,\ldots,\|p_{n,n_s}(a)\|\} = \|a\|.$$

Since $p_{m,n} \circ \gamma = \text{id}_{M_m}$, we get that $\gamma \circ p_{m,n}$ is a contractive projection from M_m onto $\gamma(M_n)$.

The following Lemma is the heart of the proof of Theorem 1.1.

LEMMA 2.11. Let $f : M_{m(1)} \rightarrow M_{m(2)}$ and $g : M_{m(1)} \rightarrow M_{m(2)}$ be C*-monomorphism. Let $\nu = r(f)$, $\mu = r(g)$ and $\sigma = n(2) - n(1)\nu$, and suppose that $\mu = \prod_{j=1}^{\nu+1} \mu(j)$, where $\mu(j)$ are positive integers satisfying $\mu(1) \geq \nu$ and $\mu(j) \geq 3$ for all j. Assume also that $m(1) \geq n(1) + 1$ and let $\gamma_1 \in \Gamma_{n(1),m(1)}$. Then there exists a $\gamma_2 \in \Gamma_{n(2),m(2)}$ so that $\gamma_2 \circ f = g \circ \gamma_1$, i.e., the following diagram commutes.
\[
M_{n(1)} \xrightarrow{f} M_{n(2)} \\
\gamma_1 \downarrow \quad \downarrow \gamma_2 \\
M_{m(1)} \xrightarrow{g} M_{m(2)}
\]

Proof. By Proposition 2.4, there is no loss of generality in assuming that

\[f = \varphi_{n(1), n(2), \nu}, \quad g = \varphi_{m(1), m(2), \mu} \]

and that for all \(a \in M_{n(1)} \nu \),

\[\gamma_1(a) = a \oplus p_{n(1), k(1)}(a) \oplus \ldots \oplus p_{n(1), k(s)}(a) \oplus 0 \],

where \(1 \leq k(j) < n(1) \), \(0 \leq s \), and \(1 \leq l \). Next, let us factor \(f \) as

\[f = f_0 \circ \ldots \circ f_1 \circ f_0, \]

where

\[f_0 = \varphi_{n(1), n(1) \nu, \nu} \]

and

\[f_j = \varphi_{n(1) \nu + j - 1, n(1) \nu + j, 1}, \quad 1 \leq j \leq \sigma. \]

By our assumption on \(\mu = r(g) \) there is also a factorization \(g = g_{\sigma + 1} \circ \ldots \circ g_1 \circ g_0 \), where for \(0 \leq j \leq \sigma \),

\[g_j = \varphi_{m(1) \mu(j)!, \mu(1) \mu(j + 1)!, \mu(j + 1)} \]

(here \(\mu(j)! = \prod_{i=1}^{j} \mu(i) \), with the understanding that \(\mu(0)! = 1 \)) and

\[g_{\sigma + 1} = \varphi_{m(1) \mu, m(2), 1}. \]

It is therefore enough to prove the existence of maps

\[\gamma^{(j)} \in \Gamma_{n(1) \nu + j, m(1) \mu(j + 1)!}, \quad j = 0, 1, \ldots, \sigma \]

satisfying

\[g_j \circ \gamma^{(j-1)} = \gamma^{(j)} \circ f_j, \quad j = 0, 1, \ldots, \sigma, \]

(where \(\gamma_1 = \gamma^{(-1)} \)). Indeed, using these \(\gamma^{(j)} \) we define \(\gamma_2 = g_{\sigma + 1} \circ \gamma^{(\sigma)} \). It is clear that \(\gamma_2 \in \Gamma_{n(2), m(2)} \) and that \(\gamma_2 \circ f = g \circ \gamma_1 \).

The following commutative diagram describes the factorizations of \(f \) and \(g \) and the maps \(\gamma^{(j)} \) (the broken lines describes the maps to be constructed):

\[
\begin{array}{cccccccc}
M_{n(1)} & \xrightarrow{f_0} & M_{n(1) \nu} & \xrightarrow{f_1} & M_{n(1) \nu + 1} & \xrightarrow{f_2} & M_{n(1) \nu + 2} & \xrightarrow{f_3} & \ldots & \xrightarrow{f_{\sigma}} & M_{n(2)} \\
\gamma_1 & \downarrow & \gamma^{(0)} & \downarrow & \gamma^{(1)} & \downarrow & \gamma^{(2)} & \downarrow & \gamma^{(\sigma)} & \Downarrow & \gamma_2 \\
M_{m(1)} & \xrightarrow{g_0} & M_{m(1) \mu(1)} & \xrightarrow{g_1} & M_{m(1) \mu(2)} & \xrightarrow{g_2} & M_{m(1) \mu(3)} & \xrightarrow{g_3} & \ldots & \xrightarrow{g_{\sigma + 1}} & M_{m(2)}
\end{array}
\]
Thus, it is enough to prove the lemma in the following special cases:

CASE 1. \(n(2) = n(1) \nu, \quad m(2) = m(1) \mu, \quad \nu \leq \mu, \) and
\[
f = \varphi_{n(1), n(1) \nu, \nu}, \quad g = \varphi_{m(1), m(1) \mu, \mu}.
\]

CASE 2. \(n(2) = n(1) + 1, \quad m(2) = m(1) \mu, \quad \mu \geq 3, \) and
\[
f = \varphi_{n(1), n(1) + 1, 1}, \quad g = \varphi_{m(1), m(1) \mu, \mu}.
\]

PROOF OF THE LEMMA IN CASE 1. Write (2.3) as
\[
(2.4) \quad \gamma_1(a) = a \oplus p(a) \oplus 0_l = \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0_l \end{bmatrix}, \quad a \in M_{n(1)}.
\]

By our assumption,
\[
f(a) = \begin{bmatrix} a & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots \\ 0 & \cdots & a \end{bmatrix} = \underbrace{a \oplus a \oplus \cdots \oplus a}_{\nu \text{-terms}}, \quad a \in M_{n(1)}
\]

and
\[
g(b) = \begin{bmatrix} b & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots \\ 0 & \cdots & b \end{bmatrix} = \underbrace{b \oplus b \oplus \cdots \oplus b}_{\mu \text{-terms}}, \quad b \in M_{m(1)}.
\]

Define \(\gamma_2 : M_{n(2)} \to M_{m(2)} \) by
\[
\gamma_2 \begin{bmatrix} a_{1,1} & \cdots & a_{1, \nu} \\ \vdots & \ddots & \vdots \\ a_{v,1} & \cdots & a_{v, \nu} \end{bmatrix} =
\]
where the large blocks belong to $M_{m(1)}$, $a_{i,j} \in M_{n(1)}$ and $p(a_{1,1}) \in M_{m(1) - n(1) - 1}$.

It is clear that γ_2 is unitarily equivalent to the map $\tilde{\gamma} : M_{m(2)} \to M_{m(2)}$ defined by

$$
\gamma_2 \begin{bmatrix}
 a_{1,1} & \cdots & a_{1,v} \\
 \vdots & & \vdots \\
 a_{v,1} & \cdots & a_{v,v}
\end{bmatrix} = \begin{bmatrix}
 \bar{a}_{1,1} & \cdots & a_{1,v} \\
 \vdots & & \vdots \\
 a_{v,1} & \cdots & a_{v,v}
\end{bmatrix}
$$

$$
= \sum_{\mu \text{-terms}} \left(a_{1,1} \oplus \cdots \oplus a_{1,1} \right) \oplus \left(p(a_{1,1}) \oplus \cdots \oplus p(a_{1,1}) \right)
$$

So $\gamma_2 \in \Gamma_{m(2),m(2)}$. Also, for $a \in M_{m(1)}$
\[\gamma_2(f(a)) = \gamma_2 \begin{bmatrix} a & 0 \\ a & \cdot \\ 0 & \cdot \\ a & \end{bmatrix} \]

\[\text{\mu-terms} \]

\[= \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix} \oplus \ldots \oplus \begin{bmatrix} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{bmatrix} \]

\[= g(\gamma_1(a)). \]

This completes the proof of the lemma in Case 1.

Proof of the lemma in Case 2. In this case \(f: M_{n(1)} \rightarrow M_{n(1)+1} = M_{n(2)} \) is given by

\[f \begin{bmatrix} a_{1,1} & \ldots & a_{1,n(1)} \\ \vdots & \ddots & \vdots \\ a_{n(1),1} & \ldots & a_{n(1),n(1)} \end{bmatrix} = \begin{bmatrix} a_{1,1} & \ldots & a_{1,n(1)} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n(1),1} & \ldots & a_{n(1),n(1)} & 0 \\ 0 & \ldots & 0 & 0 \end{bmatrix} \]

while \(\gamma_1 \) and \(g \) are given by (2.4) and (2.5) respectively. Let every \(x = (x(i,j))_{i,j=1}^{n(2)} \in M_{n(2)} \) be written as

\[x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

where

\[a = \begin{bmatrix} x(1,1) & \ldots & x(1,n(1)) \\ \vdots & \ddots & \vdots \\ x(n(1),1) & \ldots & x(n(1),n(1)) \end{bmatrix} = P_{n(2),n(1)}(x) \in M_{n(1)} \]

\[b = \begin{bmatrix} x(1,n(2)) \\ \vdots \\ x(n(1),n(2)) \end{bmatrix} \in M_{n(1),1} \]

\[c = (x(n(2),1), \ldots, x(n(2),n(1))) \in M_{1,n(1)} \]

and

\[d = x(n(2),n(2)) \in M_{1,1} \]
Using the fact that $\mu \geq 3$ we define a map $\gamma_2 : M_{n(2)} \to M_{m(2)}$ by

$$\gamma_2(x) = \gamma_2 \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) =$$

\[
\begin{array}{cccc}
\sigma & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 \\
\end{array}
\]

$(\mu \times \mu$ block matrices from $M_{m(1)})$. Clearly, $\gamma_2 \in \Gamma_{n(2), m(2)}$. Also, for $a \in M_{n(1)}$ we have

$$\gamma_2(f(a)) = \gamma_2 \left(\begin{array}{c} a \\ 0 \\ 0 \end{array} \right)$$

$$= \left[\begin{array}{ccc} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{array} \right] \oplus \cdots \oplus \left[\begin{array}{ccc} a & 0 & 0 \\ 0 & p(a) & 0 \\ 0 & 0 & 0 \end{array} \right]$$

$(\mu$ blocks)

$$= \gamma_1(a) \oplus \cdots \oplus \gamma_1(a)$$

$(\mu$ blocks)

$$= g(\gamma_1(a))$$
This completes the proof of the Lemma in Case 2.

LEMMA 2.12. Let \(n \leq m \) and let \(\gamma = \tilde{\gamma} \) be given by (2.2). Let \(\beta : M_m \to M_n \) be a contraction satisfying \(\beta \circ \gamma = \text{id}_{M_n} \). Then \(\beta = p_{m,n} \).

Proof. Let \(\{e_{i,j}\}_{i,j=1}^m \) denote the matrix units of \(M_m \), and let \(k = \max_{1 \leq j \leq s} n_j \), where \(s \) and \(n_j \) appear in (2.2). Let us write for short
\[
\gamma(a) = a \oplus p(a), \quad a \in M_n
\]
instead of (2.2). Then for \((i,j) \) with \(k < \max \{i,j\} \leq n \) we have \(p(e_{i,j}) = 0 \) and so
\[
e_{i,j} = \beta(\gamma(e_{i,j})) = \beta(e_{i,j}).
\]
If \(\max \{i,j\} \leq k \) and \(a = \beta(e_{i,j}) \) then for any \((i_1,j_1) \neq (i,j) \) with \(\max \{i_1,j_1\} \leq n \) we have
\[
\|e_{i_1,j_1} + \lambda e_{i,j}\| \leq (1 + |\lambda|^2)^{\frac{1}{2}}, \quad |\lambda| \leq 1
\]
So, for all \(|\lambda| \leq 1 \),
\[
|1 + \lambda a(i_1,j_1)| \leq \|e_{i_1,j_1} + \lambda a\|
\]
\[
= \|\beta(\gamma(e_{i_1,j_1}) + \lambda e_{i,j})\|
\]
\[
\leq \|\gamma(e_{i_1,j_1}) + \lambda e_{i,j}\|
\]
\[
= \|e_{i_1,j_1} + \lambda e_{i,j}\| \leq (1 + |\lambda|^2)^{\frac{1}{2}}
\]
and thus \(a(i_1,j_1) = 0 \). It follows that \(\beta(e_{i,j}) = \lambda e_{i,j} \). Now
\[
\|\beta(e_{i,n} \oplus p(e_{i,j}))\| \leq \|e_{i,n} \oplus p(e_{i,j})\| = 1.
\]
But also
\[
\|\beta(e_{i,n} \oplus p(e_{i,j}))\| = \|e_{i,n} + (1 - \lambda_i,j) e_{i,j}\| = (1 + |1 - \lambda_i,j|^2)^{\frac{1}{2}}.
\]
So \(\lambda_i,j = 1 \) and \(\beta(e_{i,j}) = e_{i,j} \).

Finally, let \(\max \{i,j\} > n \), let \(a = \beta(e_{i,j}) \) and let \(\max \{i_1,j_1\} \leq n \). Then \(\|e_{i_1,j_1} + \lambda e_{i,j}\| \leq (1 + |\lambda|^2)^{\frac{1}{2}} \), but
\[
\|\beta(e_{i_1,j_1} + \lambda e_{i,j})\| = \|e_{i_1,j_1} + \lambda a\| \geq |1 + \lambda a(i_1,j_1)|
\]
for all \(\lambda \). This implies that \(a(i_1,j_1) = 0 \) for all \(i_1,j_1 \leq n \). So \(a = 0 \). This proves that \(\beta(e_{i,j}) = e_{i,j} \) if \(\max \{i,j\} \leq n \) and \(\beta(e_{i,j}) = 0 \) if \(\max \{i,j\} > n \). So \(\beta = p_{m,n} \).

COROLLARY 2.13. Any \(\gamma \in \Gamma_{n,m} \) \((n \leq m) \) has a unique contractive left inverse, denoted \(\gamma^{(+)}. \) So
\[\gamma^{(+)} : M_m \to M_n, \quad \|\gamma^{(+)}\| = 1, \quad \gamma^{(+)} \circ \gamma = \text{id}_{M_n}.\]

Corollary 2.14. Under the assumptions of Lemma 2.11 we have \(f \circ \gamma_1^{(+)} = \gamma_2^{(+)} \circ g\), i.e., the following diagram commutes:

\[
\begin{array}{c}
M_{n(1)} \xleftarrow{\text{id}} M_{n(1)} \xrightarrow{f} M_{n(2)} \xleftarrow{\text{id}} M_{n(2)} \\
\gamma_1^{(+)} \downarrow \quad \gamma_2 \downarrow \quad \gamma_2^{(+)} \\
M_{m(1)} \xrightarrow{g} M_{m(2)}
\end{array}
\]

Proof. We present the proof in Case 1 of the Proof of Lemma 2.11; the proof in Case 2 is essentially the same, but the (obvious) formula for \(\gamma_2^{(+)}\) happens to be more complicated. We have

\[\gamma_1^{(+)}(b) = p_{m(1), n(1)}(b), \quad b \in M_{m(1)},\]

and for \(b = (b_{i,j})_{i,j=1}^{\mu} \in M_{m(2)}\) with \(b_{i,j} \in M_{m(1)}\),

\[\gamma_2^{(+)}(b) = \gamma_2^{(+)}((b_{i,j})_{i,j=1}^{\mu}) = (a_{i,j})_{i,j=1}^{\nu} \in M_{n(2)},\]

where

\[a_{i,j} = p_{m(1), n(1)}(b_{i,j}) \in M_{m(1)}.\]

So, if \(b \in M_{m(1)}\) and \(a = p_{m(1), n(1)}(b)\), then

\[\gamma_2^{(+)}(g(b)) = \gamma_2^{(+)} \begin{bmatrix} b & 0 \\ b & \ddots \\ 0 & & b \end{bmatrix} = \begin{bmatrix} a & 0 \\ a & \ddots \\ 0 & \cdots & a \end{bmatrix} = f(a) = f(\gamma_1^{(+)}(b)).\]

3. The main results.

Let us start with the following

Lemma 3.1. Let \(\{M_{m(k)}, g_k\}_{k=1}^{\infty}\) be a direct sequence, and let the positive integers \(r(g_k), k = 1, 2, \ldots\), be defined by Definition 2.5. Assume that \(\lim_{k \to \infty} r(g_k) \geq 2\), and let \(\{M_{n(k)}, f_k\}_{k=1}^{\infty}\) be any other direct sequence. Then \(A = \lim_{k \to \infty} \{M_{m(k)}, f_k\}_{k=1}^{\infty}\) is isometric to a 1-complemented subspace of \(B = \lim_{k \to \infty} \{M_{m(k)}, g_k\}_{k=1}^{\infty}\).
PROOF. By the multiplicativity of the function r, we get

$$r(g_{k,j+1-1} \circ \ldots \circ g_{k,j+1} \circ g_{k,j}) = \prod_{k=k_j}^{k_{j+1}-1} r(g_k),$$

for any increasing sequence $\{k_j\}$ of positive integers. Using Proposition 2.6 we can assume without loss of generality that $m(k)$ and $r(g_k)$ are arbitrarily large. Precisely, if $v_k = r(f_k)$, $\mu_k = r(g_k)$, $\sigma_k = n(k+1) - n(k)v_k$, then we assume that

$$\mu_k = \prod_{j=1}^{q_k+1} \mu_k(j),$$

where $\mu_k(j)$ are positive integers satisfying $\mu_k(1) \geq v_k$ and $\mu_k(j) \geq 3$ for all j. We also assume that $m(1) > n(1)$.

We define $\gamma_1 \in \Gamma(n(1), m(1), 1)$ by $\gamma_1 = \varphi_{m(1)}\varphi_{m(1)}^{-1}$. Using Lemma 2.11 we construct inductively a sequence $\gamma_k \in \Gamma(n(k), m(k))$ so that $g_k \circ \gamma_k = \gamma_{k+1} \circ f_k$, $k = 1, 2, 3, \ldots$. Let

$$\gamma_k^{(+)} : M_{m(k)} \to M_{n(k)}$$

be the (unique) contractive left inverse of γ_k (see Lemma 2.12 and Corollary 2.13), i.e., $\|\gamma_k^{(+)}\| = 1$ and

$$\gamma_k^{(+)} \circ \gamma_k = \text{id}_{M_{n(k)}}, \quad k = 1, 2, \ldots .$$

By Corollary 2.13 we have also $f_k \circ \gamma_k^{(+)} = \gamma_{k+1}^{(+)} \circ g_k$ for all k. Let

$$\gamma = \lim_{\gamma_k} : A \to B \quad \text{and} \quad \gamma^{(+)} = \lim_{\gamma_k^{(+)}} : B \to A.$$

By Proposition 2.2 γ is an isometry of A onto a subspace, say X, of B, $\|\gamma^{(+)}\| = 1$ and $\gamma^{(+)} \circ \gamma = \text{id}_A$. So $p = \gamma \circ \gamma^{(+)}$ is a contractive projection from B onto $X = \gamma(A)$.

Let us concentrate now on the Fermion algebra

$$F = \bigotimes_{n=1}^{\infty} M_2^{(n)} = \lim_{\gamma} \{M_2^{(k)}, \varphi_{2^k}, 2^{k+1}, 2^{k+1}\}_{k=1}^{\infty},$$

where $M_2^{(n)}$ denotes the nth factor M_2 (for basic information see [5]). The canonical, normalized trace of F is given by

$$\tau = \lim_{\gamma} \{2^{-k}, \text{trace}|_{M_k}\}_{k=1}^{\infty},$$

(see Proposition 2.1 and the discussion preceding it). The action of τ on an elementary tensor is

$$\tau \left(\bigotimes_{n=1}^{m} x_n \right) = \prod_{n=1}^{m} 2^{-1} \cdot (\text{trace} x_n), \quad x_n \in M_2^{(n)}.$$
Let also \(\{ e^{(n)}_{i,j} \}_{i,j=0}^1 \) denote the standard matrix units of \(M_2^{(n)} \).

Proposition 3.2. Let \(v_m = \bigotimes_{n=1}^m e^{(n)}_{1,1} \). Then for all \(x \in F \)

\[
\delta_{(1,1)}(x) = \lim_{m \to \infty} \tau(2^m v_m x)
\]

exists. \(\delta_{(1,1)} \) a norm-one linear functional on \(F \).

Proof. Let \(x \) be an elementary tensor from \(\bigotimes_{n=1}^k M_2^{(n)} \),

\[
x = \bigotimes_{n=1}^k x_n, \quad x_n \in M_2^{(n)}.
\]

Then for \(m \geq k \),

\[
\begin{align*}
\tau(2^m v_m x) &= \tau(2^m v_m x) \\
&= \prod_{n=1}^k 2^{m-1} \tau(e^{(n)}_{1,1} x_n) \\
&= 2^k \prod_{n=1}^k 2^{m-1} \tau(e^{(n)}_{1,1} x_n) = \tau(2^k v_k x).
\end{align*}
\]

This clearly implies that \(\delta_{(1,1)}(x) = \lim_{m \to \infty} \tau(2^m v_m x) \) exists for every \(x \) in the dense \(*\)-subalgebra \(\bigcup_{k=1}^\infty \bigotimes_{n=1}^k M_2^{(n)} \) of \(F \). Since each functional \(x \mapsto \tau(2^m v_m x) \) has norm one,

\[
\delta_{(1,1)}(x) = \lim_{m \to \infty} \tau(2^m v_m x)
\]

exists for every \(x \in F \), and \(\| \delta_{(1,1)} \| \leq 1 \). Finally, if \(1 \) denotes the unit of \(F \), then

\[
\delta_{(1,1)}(1) = \lim_{m \to \infty} \tau(2^m v_m 1) = \lim_{m \to \infty} \tau(2^m v_m) = 1.
\]

So \(\| \delta_{(1,1)} \| = 1 \).

Remark. \(\delta_{(1,1)} \) correspond to "point-evaluation at \((1,1)\)". If \(0 \leq s, t \leq 1 \) are given by

\[
s = \sum_{i=1}^\infty s_i 2^{-i} \quad \text{and} \quad t = \sum_{i=1}^\infty t_i 2^{-i}
\]

(where \(s_i, t_i \in \{0, 1\} \) and \(\sum_{i=1}^\infty s_i = \sum_{i=1}^\infty t_i = \infty \), we define

\[
\delta_{(s,t)}^{(m)}(x) = \tau \left[2^m \left(\bigotimes_{i=1}^m e^{(i)}_{s_i,t_i} \right) x \right].
\]

Then

\[
\delta_{(s,t)}(x) = \lim_{m \to \infty} \delta_{(s,t)}^{(m)}(x)
\]

.
exists for all \(x \in F \). \(\delta_{(n,i)} \) is a norm-one functional which corresponds to "point-evaluation at \((s,t)\)". This exhibits \(F \) as a space of functions on the unit square \([0,1] \times [0,1]\) (which, however, is very different from the classical function spaces).

For any Banach space \(X \) we denote by \(c_0(X) \) the space of all sequences \(x = (x_1, x_2, \ldots) \) with \(x_j \in X \) and \(\|x_j\| \to 0 \), normed by \(\|x\| = \sup \|x_j\| \). If \(X \) is a C*-algebra, then \(c_0(X) \) is also C*-algebra.

Lemma 3.3 The Fermion algebra \(F = \bigotimes_{n=1}^{\infty} M_2^{(n)} \) has a C*-subalgebra \(A \) which is C*-isomorphic to \(c_0(F) \), and there is a projection \(P \) from \(F \) onto \(A \) with \(\|P\| \leq 2 \).

Proof. Let \(\delta_{(1,1)} \) and \(v_m \) have the same meaning as in Proposition 3.2. Let \(F_0 = \ker \delta_{(1,1)} \) and let \(Q : F \to F_0 \) be given by \(Qx = x - \delta_{(1,1)}(x)1 \). Then \(Q \) is a projection of norm 2. Define for \(j = 1, 2, \ldots \)

\[
a_j = \left(\bigotimes_{i=1}^{j-1} e_{i,1}^{(i)} \right) \otimes e_{0,0}^{(j)}.
\]

Then \(\{a_j\} \) are mutually orthogonal projections. Also

\[
a_j F a_j = a_j F_0 a_j = a_j \bigotimes_{n=j+1}^{\infty} M_2^{(n)}, \quad j = 1, 2, \ldots .
\]

So \(a_j F a_j \) is C*-isomorphic in the natural way to \(F \). Let \(A = \overline{\text{span} \{a_j F a_j\}_{j=1}^{\infty}} \). Then \(A \) is a C*-subalgebra of \(F \) which is C*-isomorphic to \(c_0(F) \). We now claim that \(A \subset F_0 \) and that

\[
\tilde{P}(x) = \sum_{j=1}^{\infty} a_j x a_j
\]

defines a contractive projection from \(F_0 \) onto \(A \). Proving this, we complete the proof of the lemma by letting \(P = \tilde{P} Q \).

Indeed, for all \(j \) and \(m \)

\[
(3.1) \quad v_m a_j = a_j v_m = \begin{cases} 0 & ; \ j \leq m \\ a_j & ; \ j > m \end{cases}.
\]

This implies that for all \(x \in F \),

\[
\delta_{(1,1)}(a_j x a_j) = \lim_{m \to \infty} \tau(2^m v_m a_j x a_j) = 0
\]

and so \(A \subset F_0 = \ker \delta_{(1,1)} \). Next, let us define
\[P_m(x) = \sum_{j=1}^{m} a_j x a_j + \tau(2^m v_m x) v_m, \quad x \in F, \quad m = 1, 2, \ldots. \]

By (3.1), \(P_m^2 = P_m \) and \(\|P_m\| = 1 \). If \(x \in \bigotimes_{k=1}^{k} M_2^{(n)} \), then for all \(m \geq k \),

\[a_m x a_m = \tau(2^k v_k x) a_m, \quad \tau(2^m v_m x) = \tau(2^k v_k x) \]

and also

\[\sum_{j=k+1}^{m} a_j + v_m = v_k \]

(the last formula follows by an easy induction on \(m \geq k \)). So

\[
P_m(x) = \sum_{j=1}^{m} a_j x a_j + \tau(2^m v_m x) v_m \\
= \sum_{j=1}^{k} a_j x a_j + \sum_{j=k+1}^{m} \tau(2^k v_k x) a_j + \tau(2^k v_k x) v_m \\
= \sum_{j=1}^{k} a_j x a_j + \tau(2^k v_k x) v_k \\
= P_k(x).
\]

This clearly implies that \(\bar{P}(x) = \lim_{m \to \infty} P_m(x) \) exists for all \(x \in F \), and that \(\bar{P} \) is a contractive projection. If \(x \in F_0 \) then \(\tau(2^m v_m x) \to \delta_{(1,1)}(x) = 0 \), and so

\[\bar{P}(x) = \lim_{m \to \infty} \sum_{j=1}^{m} a_j x a_j = \sum_{j=1}^{\infty} a_j x a_j, \quad x \in F_0. \]

So \(\bar{P}(F_0) \subset A \). Finally, \(P_m(a_j x a_j) = a_j x a_j \) for \(m \geq j \), so \(\bar{P} |_A = \text{id}_A \).

For Banach spaces \(X, Y \) let \(X \cong Y \) (respectively, \(X \hookrightarrow Y \)) denotes that \(X \) is isomorphic to \(Y \) (respectively, to a complemented subspace of \(Y \)).

Lemma 3.4. Let \(A \) be any matroid C*-algebra. Then \(A \cong c_0(A) \).

Proof. It is enough to prove that \(c_0(A) \) is isometric to a complemented subspace of \(A \). Indeed, proving this, we get for some Banach space \(X \) that

\[A \cong c_0(A) \oplus X \cong c_0(A) \oplus c_0(A) \oplus X \cong c_0(A) \oplus A \cong c_0(A). \]

If \(A = \text{LC}(l_2) \), let \(\{a_{jj}\}_{j=1}^{\infty} \) be a sequence of mutually orthogonal infinite-rank
projections on l_2. Then $P x = \sum_{j=1}^{\infty} a_j x a_j$ defines a contractive projection in A and $P(A)$ is isometric to $c_0(A)$, since $a_j A a_j$ is C*-isomorphic to A.

If $A \neq LC(l_2)$ and $A = \varinjlim \{ M_{m(k), n(k)} g_k \}_{k=1}^{\infty}$ is some representation of A as a direct limit of matrix algebras, then by Proposition 2.6, $\limsup_{k \to \infty} r(g_k) \geq 2$. So, by Lemma 3.1, $F \hookrightarrow A$. It follows by Lemma 3.3 that

$$c_0(A) \hookrightarrow c_0(F) \hookrightarrow F \hookrightarrow A,$$

where the isomorphisms are actually isometries. It follows that $c_0(A)$ is isometric to a 2-complemented subspace of A.

Proof of part (a) of Theorem 1.1. Let A be any matroid C*-algebra, and let $A = \varinjlim \{ M_{m(k), n(k)} f_k \}_{k=1}^{\infty}$ be any representation of A as a direct limit of matrix algebras. If $\limsup_{k \to \infty} r(f_k) = 1$, then by Proposition 2.6, A is C*-isomorphic (and therefore linearly isometric) to $LC(l_2)$. If $\limsup_{k \to \infty} r(f_k) \geq 2$, then by Lemma 3.1, $A \cong F \oplus X$ and $F \cong A \oplus Y$ for some Banach spaces X and Y. Also, by Lemma 3.4, $A \cong A \oplus A$ and $F \cong F \oplus F$. Thus

$$A \cong F \oplus X \cong F \oplus F \oplus X \cong F \oplus A$$

and similarly $F \cong A \oplus F$. So $A \cong F$.

This proof shows, in fact, that the isomorphism type of a matroid C*-algebra can be decided by the asymptotic behavior of the numbers $\{ r(f_k) \}_{k=1}^{\infty}$ (see Definition 2.5) in the representations $A = \varinjlim \{ M_{m(k), n(k)} f_k \}_{k=1}^{\infty}$. Precisely, we have the following:

Corollary 3.5. Let A be a matroid C*-algebra,

(i) *If $\limsup_{k \to \infty} r(f_k) = 1$ for some representation $A = \varinjlim \{ M_{m(k), n(k)} f_k \}_{k=1}^{\infty}$, then this is the case for all other representations;*

(ii) *$A \cong LC(l_2)$ if and only if $\limsup_{k \to \infty} r(f_k) = 1$;

(iii) *$A \cong F$ if and only if $\limsup_{k \to \infty} r(f_k) \geq 2$.*

Proof of part (b) of Theorem 1.1. Let us apply Lemma 3.1 in the special case where $m(k) = 2^k$, $n(k) = k$, $g_k = \varphi_{2^k, 2^{k+1}, 2}$, and $f_k = \varphi_{k, k+1, 1}$. We have

$$A = \varinjlim \{ M_{k, \varphi_{k, k+1, 1}} \} = LC(l_2)$$

and

$$B = \varinjlim \{ M_{2^k, \varphi_{2^k, 2^{k+1}, 2}} \}_{k=1}^{\infty} = F.$$

So $LC(l_2)$ is isometric to a 1-complemented subspace of F.
For the proof of part (c) of Theorem 1.1 we need the following Lemma. Here \(\Delta = \{0, 1\}^{\mathbb{N}_0} \) is the Cantor set and \(C(\Delta) \) denotes the C*-algebra of all complex-valued continuous functions on \(\Delta \) with the supremum norm.

Lemma 3.6. \(C(\Delta) \) is C*-isomorphic to a 1-complemented C*-subalgebra of the Fermion algebra \(F \).

Proof. Write \(F = \lim \{ M_{2^n}, f_k \}_{k=1}^\infty \) with \(f_k = \varphi_{2^{2k}, 2^{2k+1}, 2} \). Let \(D_k \) denote the diagonal projection in \(M_{2^n} \) (i.e., \((D_k a)(i, j) = \delta_{i,j} a(i, i) \)). Then \(f_k \circ D_k = D_{k+1} \circ f_k \). So \(D = \lim D_k \) exists and is a contractive projection from \(F \) onto its C*-subalgebra \(A = \lim \{ D_k M_{2^n}, f_k \}_{k=1}^\infty \). Let

\[
\psi_k : C(\{0, 1\}^k) \to C(\{0, 1\}^{k+1})
\]

be the natural map:

\[
(\psi_k g)(t_1, \ldots, t_{k+1}) = g(t_1, \ldots, t_k); \quad t_j \in \{0, 1\}.
\]

Then there exist C*-isomorphisms \(h_k \) from \(C(\{0, 1\}^k) \) onto \(D_k M_{2^n}, k = 1, 2, \ldots \), so that \(f_k \circ h_k = h_{k+1} \circ \psi_k \) for all \(k \). It follows by Proposition 2.2 that \(h = \lim h_k \) is a C*-isomorphism from

\[
B = \lim \{ C(\{0, 1\}^k), \psi_k \}_{k=1}^\infty
\]

onto \(A \). Finally, \(B \) is C*-isomorphic to \(C(\Delta) \). Indeed, if \(u = (u_k), u_k \in C(\{0, 1\}^k) \), is so that \(\psi_k(u_k) = u_{k+1} \) for \(k > k_u \), let \(\varphi(u) = v \) be defined on \(\Delta \) by

\[
v(t_1, \ldots, t_j, \ldots) = u_k(t_1, \ldots, t_k); \quad t_j \in \{0, 1\},
\]

where \(k \geq k_u \). Clearly, \(v \) is well defined and \(\varphi \) extends to a unital C*-isomorphism of \(B \) onto \(C(\Delta) \).

Proof of part (c) of Theorem 1.1. Assume the converse, i.e., that \(F \) is isomorphic to a subquotient (that is, a subspace of a quotient space) of \(LC(l_2) \). By Lemma 3.6, \(C(\Delta) \) is also isomorphic to a subquotient of \(LC(l_2) \). By standard arguments, this implies that \(C(\Delta)^* \) is isomorphic to a subquotient of \(LC(l_2)^* = C_1 \) (= the trace class), which is separable. This contradicts the well-known fact that \(C(\Delta)^* \) is not separable.

The construction in Lemma 3.6 can be generalized to an arbitrary matroid C*-algebra \(A \), as follows. Let

\[
A = \lim \{ M_{n(j)}, f_j \}_{j=1}^\infty, \quad f_j = \varphi_{n(j), n(j+1), r(j)}, \quad (r(j) = r(f_j))
\]

be any representation of \(A \) as a direct limit of matrix algebras. Then
\[B = \lim_{\rightarrow} \{ D_{n(j)} M_{n(j)} : f_j | D_{n(j)} M_{n(j)} \}_{j=1}^{\infty} \]

is a commutative C*-subalgebra of \(A \), and \(D = \lim_{\rightarrow} D_{n(j)} \) is a contractive projection from \(A \) onto \(B \). We call \(B \) "the" diagonal of \(A \) and denote it by \(DA \).

We now establish the properties of \(DA \), and in particular its independence of the particular representation \(A = \lim_{\rightarrow} \{ M_{n(j)} : f_j \}_{j=1}^{\infty} \). Let \(K_j = \{ 1, 2, \ldots, n(j) \} \) be regarded as a discrete topological space and let

\[\alpha_j : C(K_j) \to D_{n(j)} M_{n(j)} \]

be defined by

\[\alpha_j(u) = \text{diag}(u(1), u(2), \ldots, u(n(j))), \quad u \in C(K_j). \]

Then \(DA \) is C*-isomorphic to \(\lim_{\rightarrow} \{ C(K_j), g_j \}_{j=1}^{\infty} \), where \(g_j = \alpha_{j+1}^{-1} f_j \circ \alpha_j \). In the UHF (i.e., unital) case there exist quotient maps \(g_j^* : K_{j+1} \to K_j \) so that

\[u(g_j^*(i)) = (g_j(u))(i), \quad u \in C(K_j), \quad i \in K_{j+1}. \]

The inverse limit of the sequence

\[\ldots \leftarrow K_j \xleftarrow{g_j^*} K_{j+1} \leftarrow \ldots, \]

namely

\[K = \lim_{\leftarrow} \{ K_j, g_j^* \}_{j=1}^{\infty} \]

is homeomorphic to \(\prod_{j=1}^{\infty} K_{j+1}/K_j \), and thus to \(\Delta \). So \(\lim_{\rightarrow} \{ C(K_j), g_j \}_{j=1}^{\infty} \) is C*-isomorphic to \(C(K) \) and thus to \(C(\Delta) \).

In the non-unital case we let \(\tilde{K} = K_j \cup \{0\} = \{0, 1, 2, \ldots, n(j)\} \), and we identify \(C(K_j) \) with

\[C^{(0)}(\tilde{K}_j) = \{ u \in C(\tilde{K}_j); \quad u(0) = 0 \}. \]

The inverse system of quotient maps is now

\[\ldots \leftarrow \tilde{K}_j \xleftarrow{g_j^*} \tilde{K}_{j+1} \leftarrow \ldots, \]

where \(g_j^*(0) = 0 \) and \(u(g_j^*(i)) = (g_j(u))(i) \) for all \(i \in \tilde{K}_{j+1} \) and \(u \in C^{(0)}(\tilde{K}_j) \). Let

\[\tilde{\Delta} = (0, 0, \ldots) \in \prod_{j=1}^{\infty} \tilde{K}_j \quad \text{and} \quad \tilde{K} = \lim_{\leftarrow} \{ K_j, g_j \}_{j=1}^{\infty}. \]

Then
\[\lim_{\nu} \{ C(K_j), g_{jj} \}_{j=1}^\infty = \lim_{\nu} \{ C^{(0)}(\tilde{K}), g_{jj} \}_{j=1}^\infty = C^{(0)}(\tilde{K}) = \{ u \in C(\tilde{K}); u(\bar{0}) = 0 \} . \]

If \(A \cong \text{LC}(l_2) \), i.e., \(\lim \sup_{k \to \infty} r(f_k) = 1 \), then \(\tilde{K} \) is homeomorphic to a sequence converging to \(\bar{0} \). So \(DA \) is \(C^* \)-isomorphic to \(c_0 \), the space of all numerical sequences converging to zero with the "sup" norm. If \(\lim \sup_{k \to \infty} r(f_k) \geq 2 \) then \(\tilde{K} \) does not have isolated points. Thus, being zero-dimensional, compact and metrizable (as a closed subspace of \(\prod_{j=1}^\infty \tilde{K}_j \)), \(\tilde{K} \) is homeomorphic to \(A \). Thus, \(DA \) is \(C^* \)-isomorphic to
\[C^{(0)}(A) = \{ u \in C(A); u(\bar{0}) = 0 \} = C_0(A \setminus \{ \bar{0} \}) . \]

It follows that \(DA \) is (linearly) isomorphic to \(C(A) \).

Let us summarize this discussion formally:

Theorem 3.7. Let \(A \) be a matroid \(C^* \)-algebra.

1. *Up to a \(C^* \)-isomorphism, the above definition of the diagonal \(DA \) of \(A \) is independent of the particular representation
 \[A = \lim_{\nu} \{ M_{n(j)} f_{jj} \}_{j=1}^\infty ; \]

2. *If \(A \) is a UHF algebra, then \(DA \) is \(C^* \)-isomorphic to \(C(A) \);*

3. *If \(A \) is non-unital and \(A \cong \text{LC}(l_2) \), that is \(\lim \sup_{j \to \infty} r(f_j) \geq 2 \), then \(DA \) is \(C^* \)-isomorphic to \(C_0(A \setminus \{ \bar{0} \}) \), and thus linearly isomorphic to \(C(A) \);*

4. *If \(\lim \sup_{j \to \infty} r(f_j) = 1 \), that is \(A \cong \text{LC}(l_2) \), then \(DA \) is \(C^* \)-isomorphic to \(c_0 \);*

5. *In all cases, \(DA \) is a 1-complemented \(C^* \)-subalgebra of \(A \).*

We conclude the paper by suggesting the following problem:

Problem. Characterize, up to a linear-topological isomorphism, all AF-algebras (i.e., direct limits of finite dimensional \(C^* \)-algebras).

Our methods and results might be helpful in studying this general problem, since every finite-dimensional \(C^* \)-algebra is the finite direct sum of matrix algebras.
REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF HAIFA
MOUNT CARMEL, HAIFA, ISRAEL