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M-T TOPOLOGICALLY STABLE MAPPINGS
ARE UNIFORMLY STABLE

HANS BRODERSEN

0. Introduction.

In [3] Mather proves that the topologically stable mappings from a compact
source are open and dense in the space of mappings. This can be done by
constructing a stratification of the jetspace, and showing that the mappings
which are multitransverse to the stratification are topologically stable. In fact if
f is multitransverse and g is sufficiently close to f, there exists a curve f,
t € [0,1] such that f,=f, f;=g, and f, are topologically equivalent to f.
Inspecting Mather’s proof more closely, one finds that the homeomorphisms
conjugating f, to f depends continuously on t.

A stronger continuity statement can be made; there exists a neighbourhood
of fsuch that all mappings in this neighbourhood are topologically equivalent
to f via a continuous mapping from the neighbourhood to the space of
homeomorphisms in the source and the target. (The mapping spaces are given
the Whitney C* or C° topology.) This shows that the multitransverse (m-t)
topologically stable mappings have the same continuity property as proper
smoothly stable mappings (see [2, Theorem 2]). Quite likely it is known by the
experts that m-t topologically stable mappings have this property, but I have
never seen an explicit proof of this fact and the purpose of the article is to give
such a proof.

1. Definitions and the Theorem.

This article deals with topologically stable mappings. A general reference for
definitions and technical details is Mather’s article [3].

Consider C* mappings f: N — P, where N and P are C* manifolds of
dimension n and p, respectively, and N is compact. Let C*(N, P) denote the
space of such mappings. Let (N), 8(P), and 0(f) denote vector fields on N, P,
and along f, respectively, and let tf: 6(N) — 0(f) be as described in [2]. Now
let f: (N,x) — (P, f(x)) be a germ of a C* mapping, and let 6(N),, 0(P) ), and
6(f), denote the sets of the corresponding germs of vector fields. Define
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. 0(f)x
KU = A G0+ Ty 00,
As explained in [3] whether K(f,x)<k depends only on the jet j**1f(x).

In the jetspace J*(n, p), let Z, denote the set of jets z such that K(f,0)<k—1
for one, hence for every, representative f: (R",0) — (R?,0) of z.

In [3] Mather defines a canonical stratification of J*(n, p) — Z, called S77®,
If N, P are C* manifolds as above, we can construct the subbundle X, (N, P)
and the corresponding stratification S™»®(N,P) of the space J*(N,P)
— 2N, P).

Let f e C*(N, P) and assume that for some k, j*f (N)N Z, (N, P)= ¢ and that
j*f is multitransverse to ST7®(N,P). Then it is proven in [3] that f is
topologically stable. We call mappings satisfying these two conditions m-t
topologically stable mappings.

DEFINITION. Let f € C*(N, P) and assume that we can find a neighbourhood
W of fin C®(N, P) in the Whitney C*® topology, and continuous mappings
H: W— Hom (N,N), K: W— Hom (P, P) such that H(f)=idy, K(f)=idp
and

g = K(g)ofeH(g) .

We will call mappings satisfying this continuity condition uniformly
topologically stable (here Hom (N, N) and Hom (P, P) are given the Whitney
C° topology).

We have

THEOREM. Let f € C®(N, P). If f is m-t topologically stable, then f is uniformly
topologically stable.

REMARK. Since the property to be a m-t topologically stable mapping is
generic (it is satisfied for a residual set of mappings in C*(N, P)), Theorem 1
shows that there is a dense set in C*(N, P) consisting of topologically stable
mappings with this continuity property.

2. Proof of the Theorem.
Let fe C*(N, P) be a m-t topologically stable mapping. Since
Ff(N)N Z(N,P) = & for some k,

it follows that f is of finite singularity type, so that we can find a stable
unfolding of f. Following [3] the unfolding can be chosen to be of the form
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N-H5 N = NxU
0 F
P-is P =PxU

where U is an open neighbourhood of the origin in R! (where
I=dimc=p 8(f)/tf0(N)), i and j are the canonical injections N — N x {0},
P — Px {0}, and F is of the form

F(x,f) = (fi(x,t),t)e PxU for (x,t) e NxU.
In the proof of the theorem we will need the following proposition:

PrOPOSITION. Let f: N — P be a mapping of finite singularity type. Let
N -5 N’
L F]
P-Ls P
be a stable unfolding of f. Then there is a neighbourhood W of f in C*(N, P) and

continuous mappings H: W— C*(N,N’), K: W— C*(P,P’) with H(f)=i,
K(f)=j, such that the diagram

N H(g) N’

gl Fl

P K(g) P

is a stable unfolding of g.

ProoF. Let k: P — R" be a closed embedding into Euclidean space and let
(U, m) be a tubular neighbourhood of k(P’). Using i we will consider N as a
submanifold of N’, and using j and k we will consider P as a submanifold of R".
Since N = N’ is compact, there are a finite number of charts (U, y hi=1...m
inN'withNeU™, U jsuch that in the chart (U, ;) we have coordinates (x, ),
where (x,0) are coordinates in U; N N. Further we will choose U compact. Let
V be an open set in N’ with V=U7_, U, and NcV. Let U,,,, =N'—V. Then
{U;}72! is an open covering of N'. Let {¢;}7}' be a partition of unity
subordinate to {U;}. Let g € C*(N, P), and define G;: U; — R", j=1,...,m by

G(x,1) = ¢;(x,0(g(x,0)—f(x,0)) .

Since supp ¢;< U, we can extend G j(x,1) to N’ setting G =0 outside U  Hence
we get a mappingg — G » C*(N,P) —» C®(N’,R"). Since the partial derivatives
of @; are bounded on the compact set supp ¢; and vanish outside supp ¢, it is
clear that this mapping is continuous in the Whitney C* topology. Define
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G = Y G;+F.
j=1

By Proposition 2 and Corollary 1, § 2 of [2], g — G(g) is a continuous
mapping C*(N,P) - C*(N’,R"). From the definition of G(g) follows that
G(g)| N =g. By continuity, G(g)(N')< U for g sufficiently close to f. Hence in a
neighbourhood W of f we can define G(g)=noG(g). By Proposition 2, § 2 of [2]
this defines a continuous mapping G: W— C*(N’, P’). Notice that G(g)|[N=g
and that G(f)=F. From the continuity of the mapping follows that
G(g) M j(P), if g is sufficiently close to f. Since F is stable, it also follows that
G(g) is smoothly equivalent to F. Then by [2, Theorem 2, § 3], it is possible to
find A (g) e Diff N', K(g) € Diff P’ depending continuously on g, such that

G(g) = K(g)oFoH(g),

where H(f)=idy, K(f)=idp. Hence in a sufficiently small neighbourhood W
of fin C*(N,P), we can define

H(g) = A(gei and K(g) = K(g) 'oj.

H(g), K(g) are continuously dependent on g by Proposition 1 and Proposition
S, § 2 of [2], and by construction H(f)=i, K(f)=j. Since

G(gloi = jog and  G(g) = K(g)eFoA(g),
the diagram

N 2, N

8l Fl

pXe, p
commutes. Since G(g) M j(P) and F=K(g) 'G(g)H(g)~!, F MK(g) 'oj(P)
=K (g)(P). Since i and j are closed embeddings H(g) and K(g) are also closed
embeddings for W chosen sufficiently small.

At last since F~!(K(g)(P))= (K (g)oF)~*(j(P)) and K(g)oF is close to F, it
follows that F~!(K(g)(P)) and F~'(j(P))=i(N) are diffeomorphic. Since these
manifolds then are diffeomorphic with H(g)(N) and H(g)(N)<F~*(K(g)(P)),
we have F~!(K(g)(P))=H (g)(N). This completes the proof of the proposition.

Let us now return to the proof of the theorem. Let f be a m-t topologi-
cally stable mapping and let
N-5 N = NxU
L F
P— P =PxU

be a stable unfolding as described above. Since j*f is multitransverse to the
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stratification S77® for some k, we get as explained in [3], Whitney
stratifications S7*"?*!(F), §5*4P*(F) of N’ and S3*“?*!(F) of P’ such that
(83+hPHY(F), S5 EPT(F)) will be a Thom stratification of F in the sense of [1].
As Mather explains in [3], i will be transverse to S7*"?*!(F) and S$5*"?*!(F)
and j will be transverse to S3""P*!(F). -

Consider the two mappings
NxU-E pxu 29, y,

From the fact that j(P)=P x {0} is transverse to §3*"?*!(F), it follows that the
restriction of the projection PxU — U to the strata of S3*"?*(F) is a
submersion in a neighbourhood of Px{0}. Now give U the trivial
stratification, and let N', P’ be stratified by S5*"?*!(F), $5*"?*!(F). Shrinking
U if necessary, the diagram

NxU-Lfs pxu-P9, y

is a diagram of Thom stratified mappings in the sense of [1], hence the
stratified mapping is trivial over U. (Note that when P is not compact, we have
to modify the stratifications of N' and P’ slightly the same way as done in [1,
chapter IV (3.5)] to have control at infinity.)

Let d/0t,,...,0/0t, be the coordinate vector fields on U. Since we have a
diagram of stratified mappings we use the results of [ 1, chapter II] to lift these
vectorfield to controlled vector fields &,,. .., & on P x U, and these vector fields
can be lifted further to controlled vector fields #,,...,n7, on N x U. Again using
the results from [ 1], we can integrate these vector fields to get continuous flows
0, of &, and w; of ,, i=1,...,L

After shrinking U if necessary, we use the proposition to find a
neighbourhood W of f in C*(N,P) and continuous mappings H:
W— C*®(N,N’), K: W— C*(P, P such that

NP8, N = NxU

gl Fl

pXe, p = pPxU
is a stable unfolding of g.

Let us consider the two mappings H(g), K(g) and for x € N, y € P write
these mappings as

H(g)(x) = (hg(x), hy(x)
K(®0) = (k0), k)
where h (x) € N, k,(y) € P, and h,(x), k,(y) € U.
h,, k, will be close to the identity mappings idy and idp respectively so that, if
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W is chosen small enough, we can assume that they are diffeomorphisms of N
and P respectively.
Now let us define two other mappings.

H( = H(goh;': N> N = NxU
K(g) = K(g)ok;': P> P = PxU.

The mapping H (g) will associate to each point x in N the point in im H(g)
having x as component in the N direction. (There is only one such point since
h, is a diffeomorphism.) K(g) has the similar property with respect to K(g).

Note that H(g), K(g) are mappings continuously dependent on g by [2,
Proposition 1 and 5, § 2], since h,; ', k; ' are diffeomorphisms and hence are
proper mappings.

Define a mapping g: N — P by

g = K(g) 'oFoH(g) .
This makes sense since F(H(g)(N))< K (g)(P), im H(g)=im H(g), and im K(g)
=im K (g).

We can illustrate the mapping g by Figure 1. A direct computation shows
that g=k, 'ogoh,.

U

A
H(g)(x)

/‘\//——\- im H (g)

(x,0)

Y

lF

U F(H(g)(x))
im K (g)

> -

g0 P

Figure 1.
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Now we will construct homeomorphisms h; and k; of N and P respectively
such that

kgog = fohg .

To construct these homeomorphisms look at the mapping fgoh,': N — U
which is the U component of H(g). Let the different components of this
mapping be h},. .., k. Given a point x in N associate the point

w(x) = o (—hy(x), 0,(. . ., 0 (—h 1 (x), (= hy(x), Hy(x) . . .) .

Note that since the mapping F is of the form F(x,t)= (f,(x,?),t) and the w;’s
are lifts of the coordinate flows t;’s in U, w; will be the standard linear flow in
the t; direction. Since H(g)(x) has U component (h}(x),.. .,k (x)), it follows
that w(x) is a point in N x {0}.

Now define hy by hg(x)=i""ow(x).

If g=f we will have h;(x)=x. Inspecting the formula for h, it follows from
Proposition 2, § 2 of [2] that h; is continuously dependent on g. Hence if the
neighbourhood W is chosen small enough, h; will be close to idy, and we can
assume that h; is a homeomorphism of N.

We define k; in exactly the same way in terms of K(g), the 6;s and the
embedding j.

Since F commutes with the flows it follows that kzog=/foh,.

To prove this: first suppose [(=dim U)=1.

From the fact that F commutes with the flow it follows that

F(wy (s, (x,1)) = 0,(s, F(x,1)) .

Substituting (x,t)=H(g)(x), s= -—h; (x), and identifying w(x) with hg(x) and
F|N x {0} with f, we get

0,(=hy(x), F(H(®)(x))) = fohg(x) .
Now identifying k; with jokg we get
kgog(x) = 0;(—k;(@(x) K()(8()) -

Put g=K(g) 'oFoH(g). Since F is U-level-preserving, the U component of
F(H(g)(x)) is h}(x). Since k} is the U component of K(g) it follows that.

—kg(8(0) = —hg ().
Hence we get
kgog(x) = 0;(—hi(x), FoH (g)(x)) = fohy(x) .

When I>1 the computations are similar.
Hence
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g = k;logohx ok ofo

Since k, !, k; ', hg h, are continuously dependent on g and are proper
mappings (they are either difffomorphisms or homeomorphisms), it follows
that the homeomorphisms conjugating f to g depend continuously on g. This
proves that fis a uniformly topologically stable mapping, completing the proof
of the theorem.
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