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ON BROOKS’ THEOREM AND
SOME RELATED RESULTS

H. TVERBERG

1. Brooks’ theorem.

Let G be a simple, connected and finite graph, and let k=3 be the maximal
degree of the vertices. Assume, too, that G is not K, , ;, the complete graph on k
+ 1 vertices. Brooks’ theorem [ 1] says that the chromatic number of G is then
at most k. Its form strongly suggests a proof procedure: Show that for some set
B of independent vertices, each component of the induced subgraph on V(G)
— B satisfies Brooks’ conditions with k replaced by k—1 if k>3, and has
chromatic number at most 2 if k=3.

The procedure suggested has been used by Catlin [2] and Gerenczér [5], but
they do not arrive at simple proofs. The proof that follows is quite simple.
Another simple proof is the one by Lovasz [6].

The proof needs the concept of a k-tree, which was introduced by Gallai [4],
but occurs implicitly already in Dirac [3]. One of the results in [3], which was
expressed in terms of k-trees and reproved in [4], will get yet another proof
here. The possibility of such a proof was pointed out by the referee, who also
made me aware of [3] and [4]. For this, as well as for some other useful
suggestions, I'm very grateful to him/her. Catlin also uses k-trees and there’ll be
a new proof of one of his results, too. But let’s start with Brooks’ theorem and
the definition of k-trees.

If k>3, K, is the only k-tree on k vertices, and a k-tree on kr vertices is any
graph which can be obtained from a k-tree on k(r — 1) vertices and a disjoint K
by adding an edge between a vertex of the former, of degree k—1, and a vertex
of the latter. A 3-tree is either an odd cycle, or a graph built up from odd cycles
(of maybe varying lengths) in the same way as a k-tree is built up from K,’s. We
shall misuse the language and let K, denote an odd cycle. Note that if a k-tree
is not just a single K,, then it has at least two K,’s with only one vertex of
degree k. Note also that any k-tree has chromatic number k. In view of this,
Brook’s theorem is an immediate consequence of the following

LemMA. If H satisfies Brooks conditions, but is not a k-tree, then there is a
vertex b of degree k such that no component of H—b is a k-tree.
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For applying the lemma to a graph G, then to components of G —b, etc. one
arrives finally at a graph G—b, ... —b,, with no vertex of degree k. Each
component of this graph satisfies Brooks’ conditions, with k replaced by k— 1,
if k>3, and is an even cycle or a path if k=3. The set B={b,,. .. b,} is clearly
independent and so is what we want.

Proor ofF THE LEMMA. If H does not contain an induced K, there is nothing
to prove, so let K be one. If K has only one vertex, b, of degree k, then the
components of H—bis a K, _, (or a path if k=3) and a graph which cannot be
a k-tree, as then H would be one, too. We may thus assume that each induced
K, in H has at least two vertices, b, b',. . . of degree k and we choose if possible
one, K, which has also a vertex c of degree k—1. If k>3, b and c are adjacent,
and if k=3, they may be assumed to be.

In the component of H —b which contains K —b, ¢ has degree k—2, so we
are through, unless the component of H — b which contains the one neighbour
of b outside K is different from the former. But if the latter is a k-tree, it clearly
contains a K, with only one vertex of degree k (in H), against assumption.

Finally, if each vertex of each induced K, has degree k, let b be any vertex of
degree k, and L a component of H—b. If L is a K,, each vertex of L must be
adjacent to b, but this gives a K, ., in H. If L is a larger k-tree, then at least two
of its K,’s have only one vertex of degree k (in L), so that at least 2(k — 1) of its
vertices are adjacent to b (in H). But 2(k—1)>k, as k=3.

In the case k>3 it is possible to avoid the use of the Lemma as follows:
Consider, for the given k, a counter example G with minimal number of edges.
Choose an edge which is in no K, (easy), delete it and colour the new graph.
Let B’ be all the vertices of some fixed colour not used on the endpoints of the
chosen edge. Then B’ is an independent set meeting each K, and extending it to
a maximal independent set B we get what we need for a reduction from the
case k to the case k—1.

The lemma is, however, not much more difficult to prove in the general form
and, moreover, we need it below. .

2. The Dirac-Gallai theorem.

This theorem (theorems 4 and 10 of [3], theorem 3.3 of [4]) can be expressed
as follows. Let x be a vertex of a simple, connected and finite graph G. Assume
that each vertex of G, except possibly x, has degree <k (k=3) and that no
component of G—x is a k-tree. Then G is k-colourable.

The theorem follows easily from our proof of Brooks’ theorem. For let the
components of G—x be G,,...,G, As they are not k-trees our Lemma
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produces independent vertex sets By,...,B, so that B,cV(G) and G;—B; is
(k—1)-colourable, i=1,...r. Thus G —x can be k-coloured with, say, the blue
set being B=B; U ... UB,. But each vertex in B has degree k in G —x and so is
not adjacent to x in G. Thus x can be coloured blue, too.

3. Catlin’s result.

In [2] Catlin studies Brooks’ theorem in some detail, proving for instance
that among the colourings of G, there is at least one in which the number of,
say, blue vertices equals the maximal number of independent vertices in G. The
most difficult part of [2] is the proof that (essentially), if G satisfies the
conditions of our Lemma, then there is a superstable set S such that y(G—S)
<k—1. (Let V, be the set of vertices of G of degree k, and let s be the maximal
number of independent vertices in V,. Then the superstable sets for G are the
sets of s independent vertices in V).

Let a super vertex be one which belongs to at least one superstable set. To
get the result above it will clearly be enough to show that the vertex b,
occurring in the Lemma, can be taken to be super. Now any induced K,, K, in
H has at least one super vertex. For let S be a superstable set, containing no
vertex of K, and let ¢ be a vertex of K, of degree k. Then ¢ has k — 1 neighbours
in K, and hence outside S, and one, d, in S. The set S—d+c will then be
superstable.

Using this observation one finds, examining the proof of the Lemma, that
the vertex b can always be taken to be super, except possibly, in the case k =3, if
no K, has only one vertex of degree 3, but some K3, K, has at least one vertex
of degree 2. Picking a super vertex from K, we shall be all right unless both its
neighbours in K are of degree 3. Thus we shall be all right unless each induced
K has at least 3 vertices of degree 3. But in the latter case it is easy to see that,
whenever b is a super vertex, no component of H—b is a 3-tree.

Note that in Catlin’s definition of Brook’s trees (as he calls the k-trees), the
condition 4(T)<h should be omitted in the case h=3.
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