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ON THE DIOPHANTINE EQUATION
ax® +bx'y +cy*=d AND PURE POWERS
IN RECURRENCE SEQUENCES

T. N. SHOREY AND C. L. STEWART*

1. Introduction.

Let a, b, c, and d be integers with d non-zero and b? — 4ac positive and not a
perfect square. Gauss proved that if the equation

(1) ax*+bxy+cy* = d,

has one solution in integers x and y then the equation has infinitely many
solutions in integers x and y. If in (1) we replace x by x* with ¢ an integer larger
than one then the situation changes. In this case we are able to prove:

THEOREM 1. Let a, b, ¢, and d be integers with b> — dac and acd non-zero. If x, y
and t are integers with |x| and t larger than one satisfying

ax®+bx'y+cy* = d,

then the maximum of |x|, |y| and t is less than C, a number which is effectively
computable in terms of a, b, ¢ and d.

Our next theorem asserts that any non-degenerate binary recurrence
sequence contains only finitely many terms which are pure powers; a result of
this character is required for the proof of Theorem 1. Shorey and Tijdeman
[12] proved that there are only finitely many pure powers in the Lucas
sequence defined by u,=0, u, =1, and u,= (x+ )u,_, + xu, _, for n=2, where
x is a fixed integer larger than one. In the special case of the Fibonacci
sequence defined by u,=0, 4, =1, and u,=u,_, +u,_, for n=2, Cohn [4] and
Wyler [14] proved that the nth term is a square only when n=0, 1, 2 or 12.
Cohn [6] applied this result and a related result [5] to determine all solutions
of several Diophantine equations.
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Let r, and r, be integers with r} +4r, non-zero. Let u, and u, be integers and
put

U, = Fy_+ru,_, forn=23,....
Then for n=0 we have
@ u, = ao"+bp",
where o and B are the two roots of x*—r;x—r, and

uf —u, Uy — Ul
p—o’ p—o

The sequence of integers (u,)2% is a binary recurrence sequence. It is said to be
non-degenerate if ab+0, off+0 and o/f is not a root of unity.

THEOREM 2. Let d be a non-zero integer and let u,, defined as in (2), be the n-th
term of a non-degenerate binary recurrence sequence. If

dx? = u,,

for integers x and q larger than one, then the maximum of x, q and n is less than
C, a number which is effectively computable in terms of a, o, b, § and d.

Since (u,)%, is a non-degenerate sequence it follows, see Lemma 5, that
|u,| — 00 as n — oo and so, from Theorem 2, u, is a pure power for only
finitely many integers n.

We are able to show that u,, the nth term of a non-degenerate general
recurrence sequence, cannot be a gth power for q sufficiently large, if the
characteristic polynomial of u, has a unique root of largest absolute value. Let
Fista,. .1 and ug,. .., u,_, be integers with r,+0. Put

Uy = Py +...+ru,_,, for n=kk+1,....

Let a,,. .., 0, be the distinct roots of the characteristic polynomial x* —r,x*~*

—...—r, of the recurrence sequence. If o; has multiplicity one then for n=0
we have

(3) u, = a0t + Py(no+ ...+ P,(n)or,

where P,(n) is a polynomial with degree less than the multiplicity of o; in the
characteristic polynomial of u,, and where a, and the coefficients of
P,(n),. .., P,(n) are numbers from the field Q(,,. . .,0,). (Here Q denotes the
field of rational numbers.)
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THEOREM 3. Let d be a non-zero integer and let u, satisfy (3). If |oy| > |o;| for
j=2,...,t,a, and u,—a,0] are non-zero and

dx? = u

n°

for integers and x and q larger than one, then q is less than C, a number which is

effectively computable in terms of d,o.,. . .,u,a, and the coefficients and degrees
of P,,...,P,

We are able to show that certain ternary recurrence sequences can be pure
powers only finitely many times. In- proving our final theorem concerning
simultaneous solutions of quadratic equations we are led to consider the
equation

4 7% = a;0®"+ a0 " +a,,

where o is a real quadratic irrational number and a,, a,, and a; are non-zero
numbers from the field Q (o). We show that equation (4) has only finitely many
solutions in integers z, ¢ and n all larger than one provided that a2 #+4a,a;.

THEOREM 4. Let a, b, ¢, d, a,, by, ¢,, and d, be integers with a, c, d, a,, ¢, and
d, non-zero. Assume the simultaneous equations

(%) alx2+b,xy+c,y2 =d,,
(6) ax?+bxy+cy? = dz?,

have solutions in integers x, y, z, and q with |z| and q larger than one. Let o, and
a, be the roots of a;x*>+b,x+c,. If o, and o, are not roots of ax*+bx+c,
b+4a,c,, and b**4ac, then the maximum of |x|, |y|, |z| and q is less than C,
a number which is effectively computable in terms of a, b, ¢, d, a,, by, ¢, and d,.

In his book on Diophantine equations, Mordell, [9], remarks that the
simultaneous equations (5) and (6) have only finitely many solutions in
integers x, y, and z, if q is fixed as two, b? +4a,c,, b> + 4ac, and the roots of a, x>
+b,x+c, are different from those of ax®+ bx +c. Mordell observed that the
solutions x and y must occur as the solutions of a finite number of binary
quartic forms and by a result of Thue they are finite in number.

2. Preliminary lemmas.

Let oy, a,,...,0, be non-zero algebraic numbers. Let K=Q(a,,...,0,) and
denote the degree of K over Q by D. Let A4,,..., A, be upper bounds for the
heights of o,,...,a, respectively; the height of an algebraic number is the
maximum of the absolute values of the relatively prime integer coefficients in
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its minimal polynomial. We assume that A, is at least 4. Further let
b,,...,b,—, be rational integers with absolute values at most B, and let b, be a
non-zero rational integer with absolute value at most B'. We assume that B’ is
at least three. Put

A = bylogoa;+...+b,loga,,

where the logarithms are assumed to have their principal values. In 1973 Baker
proved the following result; take 6 =1/B’, in Theorem 1 of [1].

LEMMA 1. If A=%0, then |A|>exp (—C(log B'log A,+ B/B')), where C is a
positive number which is effectively computable in terms of n, D and A,,...,A,_,
only.

In 1976 van der Poorten established the following p-adic analogue of Baker’s
theorem; take =1 in Theorem 3 of [10].

LEMMA 2. Let p be a prime ideal of K lying above the rational prime p and
assume that b, is not divisible by p. If o8 ... ob»—1 is non-zero, then

B
ord, (0} ... o —1) < C(log B'log An+.B;> ,

where C is a positive number which is effectively computable in terms of
n,D,A,,...,A,_, and p only.

The next result which we shall state was established by S. V. Kotov [7] in
1976.

LeEMMA 3. Let K be an algebraic number field of degree d over the rationals,
and let m and n be distinct integers with m=2 and n23. Put G(x,y)=ox™+ fy",
where o and B are non-zero algebraic integers from K. If x and y are coprime
algebraic integers from K, and the greatest prime factor of Norm (G(x, y)) is less
than C, then max {|Norm (x)|,|Norm (y)|} is less than C,, a number which is
effectively computable in terms of C and the parameters of G and K.

We shall also require the following result, due to Baker, which gives bounds
for the solutions of the hyperelliptic equation. Let x be in an algebraic number

field K. We denote by | x| the maximum of the absolute value of the conjugates
of x.

LEMMA 4. Let K be an algebraic number field of degree d over the rationals
Let a,+0,a,_,,...,a, and b be algebraic numbers from K, and let m and n be
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positive integers with m=2. Further let f(x)=a,x"+...+a,x+a, be a
polynomial with at least 3 simple roots. All solutions in algebraic integers x,y
from K of the Diophantine equation

by" = f(x),

satisfy max {||x||, |yll} <C, where C is a number which is effectively computable
in terms of b,aq,ay,. . .,a, and the parameters of K.

Proor. When K is the field of rational numbers the result follows from
Theorems 1 and 2 of [2]. The generalization to an algebraic number field K
follows directly as is indicated by Theorem 4.1 and 4.2 of [3].

We require an estimate from below for the absolute value of u, the nth term
of a non-degenerate binary recurrence sequence. Schinzel [11] in 1967 and
Mignotte [8] in 1975 obtained estimates from below for u,. Their estimates are
not sufficiently precise for our purpose here. We shall require the following
estimate which is taken from [13].

LEMMA 5. Let K be a field of degree 2 over the rationals and let a, b, o, f be
non-zero numbers in K with o and f the roots of a monic quadratic polynomial
with integer coefficients. Assume |o|2|B|. If o/B is not a root of unity then

-C, 1
lao” +bpr| > |t~ Ciloen

for n>C,, where C, and C, are positive numbers which are effectively
computable in terms of a and b only.

Proor. In what follows c;,c,,... will denote positive numbers which
are effectively computable in terms of a and b only. Put u,=ao"+bp" for
n=1,2,.... We first show that u, is non-zero for n>c,. If o/f is a unit in Q (o)
then, since o/f is not a root of unity, the maximum of |e/f| and |B/o] is at least
(1 +[/§)/2 as can be readily verified. Thus if u,=0 so that —b/a= (o/B)", then
n<c,. If &/ is not a unit, then for some prime ideal p of the ring of algebraic
integers of Q(a), we have ord, («/B) different from 0 and we see that —b/a
= (a/B)" implies n<c,.

We shall now assume that n>c,; +c,. We then have

(7 lu, = lallo"|(—b/a)(B/a)"— 1] ,

and it is clear that the lemma depends upon obtaining a good lower estimate
for

® S = [(=b/a)(B/a)"— 1] .

For any complex number z either |e* — 1| >4 or there exists some integer k for
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which |z—ikn|<2le*—1|. On putting z=log (—b/a)+nlog (f/x) where the
logarithms are assumed to take their principal values we deduce that either S is
>1 or

S = Ylog (—b/a)+nlog (B/x) — ikn|

for some integer k<2(n+1). We conclude from Lemma 1, on setting o, =
—bja, a;=—1, 03=pf/o, B=2(n+1), and B'=n that

S > A—c,logn ,
where A denotes the height of o/f. Now A4 <2|o|? and since |a|g[/§, we have
9) S > o ~Cslosn
Our result now follows from (7), (8) and (9).
LEMMA 6. Let o be a real algebraic number larger than one from a field K of

degree D over Q. Further let d, a and b be non-zero numbers from K and let 6 be a
positive real number. If

(10) dx? = ao"+b,

with |b| <™~ and with x, q and n integers larger than one, then q is less than
C, a number which is effectively computable in terms of D, d, a, o, and & only.

ProoF. Let c,,c,,... be positive numbers which are effectively computable
in terms of D, d, a, o, and 6. We shall assume that n is larger than c,, where ¢, is
chosen sufficiently large to ensure the validity of the subsequent arguments.
Note that if n<c¢, and (10) holds then g <c,, as required, since x is an integer
larger than one.

From (10) we have

ldx9 = |ao"+b| = |ajo"—1|b] .

Since |b| <o =9 we have x?2c;0", hence

(11) logx = ¢y .
q
Further
. b
(12) R
ao ao.
SO

1—(lalo™) ™" < |d/alo™"x® < 1+ (laje®) " .
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Now for n sufficiently large (laja®™)~! <i. On taking logarithms and recalling
that |log (1 +x)|<x and |log (1 —x)| £2x for 0 x <3, we find that

(13) llogld/al—nlogo+qlogx| < cso™".

Put A=log|d/al—nloga+qlogx and employ Lemma 1 with n=3, D=D,
o, =l|d/al, 0, =0, 03=x, B =q, and B=n. From (12) and the fact that b30, we
see that A+0. Thus, by Lemma 1,

4] > exp(—c6(logqlogx+-g)> ,

(Al > exp (—c,logglogx) .

hence, by (11),

A comparison with (13) reveals that
(14) —logqlogx < cg—cqn .
However,
x? = (a"+b)d™ ! £ ¢
Thus, for n sufficiently large, c;,;9log x<n and from (14) we see that
cqlogx < ¢ ;+logglogx .
Since x is at least two we conclude that
q < cua,

as required.

LEMMA 7. Let d be a non-zero integer and let u, be the n-th term of a non-
degenerate binary recurrence sequence, as in (2), with o and § not real numbers. If

dx? = u

n>

for an integer x larger than one and a prime q, then q<C, a number which is
effectively computable in terms of a, o, b, B, and d only.

PRrOOF. Let cy,c,,. .. be positive numbers which are effectively computable
in terms of a, o, b, B, and d only. We have
(15) dx? = ao"+bf",

with ab=+0 and « and f roots of a monic quadratic polynomial. Since o and f
are not real they are complex conjugates and |o| =|f]. We note that |o =|f]|> 1,
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since otherwise o and f are roots of unity contrary to the assumption that u, is
non-degenerate. It is easy to verify that |o|=|g|=]/2.
We have x?<c,|o|", hence

(16) qlogx < c,n.
By Lemma 5,
ldx?| > |of"?,

for n>c5, whence
n
(17) a < cylogx .

since Ialg\/i. Note that we may assume n>c; since otherwise the result
follows from (16) and the fact that x=2.

Observe that o/f and f/o are conjugate algebraic numbers of degree 2 and,
since |o| =|p], of absolute value one. Since o/f is not a root of unity and Q (o)
has no units which are not roots of unity neither o/f nor f/o are algebraic
integers. Thus there is a prime ideal p in the ring of algebraic integers of Q (o)
for which either ord,o/B or ord,f/o is positive. Assume without loss of
generality that ord,a/f is positive. From (15) we find

(18) ord, (db~'xI~"—1) = ord, (a/b)+nord, (o/B) .

The prime ideal p lies above a rational prime p with p<cs. We may assume
that g> ¢, since otherwise the lemma holds. We now apply Lemma 2 to the
expression on the left hand side of equality (18). We take oy =db~!, o, =, and
o3=x with b; =1, b, =n, and b, =q. Note that g is not divisible by p, since g is a
prime larger than p. By Lemma 2 and (18)

nordy, (¢/B) < c(,<10gqlogx+g>+c7.
Therefore, from (17),
n < cglogglogx,
and by (16)
glogx < cylogglogx ,

hence g<c,, as required.

3. Proof of Theorem 2.

We first remark that it suffices to assume that g is a prime since the theorem
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asserts that both x and g are bounded. By Lemma 6 and Lemma 7 we may
assume gq<c;; here c,,c,... are positive numbers which are effectively
computable in terms of d, a, o, b, and f. Let [x] denote the ideal generated by x
in the ring of algebraic integers of Q(x). We have ([a2],[?])=[k], where k is a
positive rational integer. Thus, for n>1,

i of2))
o= fo(E) (1))

Now if u,, or u,,,, is equal to dx4, then k" divides dx? and we have dx%k ™"
=d,x{, where d, and x, are integers with |d,| <|d|k? and 0 < x, < x. Therefore it
suffices to prove the theorem under the assumption that [o] and [B] are
coprime, for then we may apply the result to d,x4 =k~ "u,,,;for 6=0o0r 1 to
conclude that n <c, except in the case x, = 1. If x, =1, however, we may appeal
to Lemma S to conclude, since o/f is not a root of unity, that n<c;. Thus n<c,
+c; and it follows directly that x and g are less than ¢, as required.
Accordingly, we consider

(19) dx? = ao"+bp",

Uzp

with [o] and [f] coprime. Further since [o] and [f] are coprime, we may
assume, after a minor adjustment to the factors of x and d, that [x] and [o] are
coprime; in particular, it suffices to replace d by dk? and x by x/k, where k is the
greatest common divisor of x and the numerator of the norm of b. Let r be an
integer such that ra and rb are algebraic integers. We may certainly choose
r<cs. If g=3, put n=2m+4 with 6=0 or 1 so that, from (19),

(20) rdx?—raol(a™? = rbp",
while if g=2 put n=3m+6 with §=0, 1, or 2 so that
21 rdx? —rao®(e™)® = rbp" .

Since the greatest prime factor of Norm (rbf") is less than c¢, we may apply
Lemma 3 to (20) and (21) to conclude that |x|<c4. Thus |ao" +bf"| <cg and
from Lemma 5 we see that n=<cg. Our result now follows.

4. Proof of Theorem 1.
We have ax? +bx'y + cy*=d, so that

(22) a(x'—oy)(x*—oyy) = d,
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where o; and o, are algebraic numbers of degree at most 2 over the rationals.
We observe that if o; and o, are distinct rational numbers, or if o, and ¢, are
not real, dur result follows readily on inspection of (22). Since the condition
b% —4ac+0 excludes the possibility that o, = o,, we may assume that o, and o,
are real irrational numbers.

Let ¢ be the fundamental unit in Q(x,). Choose n; with 1<|n,|<¢ so that
x'—o,y=m,&" for some integer n. Applying o, the non-trivial element of the
Galois group of Q(a;) over Q, to both sides of the previous equality and
recalling that ¢ is a unit we see that x'—o,y= +o(n,)e™". Put +o(n,)=n,.
Since 1 <|n,|<¢ and n,n,=da"?, the heights of n; and =, are less than c,,
where ¢, c,,. . . are positive numbers which are effectively computable in terms
of a, b, ¢, and d. Then

(23) (0, —a)x' = o,me"—o mye™ "

We may assume without loss of generality that n=0. Since ¢ is a real algebraic
number larger than one, in fact at least (1 +l/§)/2, we may apply Lemma 6
with §=4%, d= (0, —0,), a=o,n,, a=¢, and b= —a,m,¢ " Certainly for n>c,,
we have |b| <&"? and hence, by Lemma 6, t < c;. Note that if n< c,, then since x
is an integer larger than one, we have t <c,. Thus in either case t <cs.

If in (23), t=3 we write o,m,&" in the form a,m,¢°(e™)? with § either 0 or 1,
while if t = 2, we write o,,7,€" as a,7, 6" (e™)® with & one of 0, 1, and 2. Since [x]
and [¢] are coprime ideals, we may apply Lemma 3 to conclude that |x|<c.
Since t<cs, we also have that |y| <c¢, as required.

5. Proof of Theorem 3.
Let ¢,,c,,. .. be positive numbers which are effectively computable in terms
of d,a,a,,...,a, and the coefficients and degrees of P,,..., P, We have
u, = a;0] +P,(n)oy+ ... +P,(n)f,

with a; +0 and |o;| > ol for j=2,...,t. We may assume that «, is positive by, if
necessary, changing the sign of a,. Further, since o is an algebraic integer with
absolute value strictly larger than all its conjugates on taking the norm we see
that either o; > 1 or o, is one of 0 and 1. But if o, =0 or 1, then u, —a,o" is zero
and so we may assume o; > 1. Put

b = Py(moh+...+P(nof, and d, = max{degree(P)| i=2,...,t}.

We may assume without loss of generality that |o,| 2ol for j=2,...,t. Then
|bl < ¢ n?o,|". Put 6= (1—0)/2, where 0=0 if |o,| <1 and

9 — log |as,|
log o,

Math. Scand. 52 — 3
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otherwise. Since o, >1 we have
1-9
bl < of® 7%,

for n>c,. By assumption b=u,—a,o" is non-zero hence by Lemma 6 if n>c,
and

(24) dx? = u

)

then g <c;. Certainly if n<c, and (24) holds, then g <c,, since x is an integer
larger than one. Thus q is less than cs as required.

6. Proof of Theorem 4.

Let c,,c3,... denote positive numbers which are effectively computable in
terms of a, b, ¢, d, a,, by, ¢;, and d,. From (5), a,x*+b,xy +c,y* =d,, so that
ay(x—oa,y)(x—oa,y)=d,. Note that if o; and o, are distinct and are not real
quadratic irrationals, then x and y are bounded and the theorem follows
directly. By assumption b? #4a,c,, so o, and o, are distinct, and therefore we
may assume that o; and o, are real quadratic irrationals. Let ¢ be the
fundamental unit in Q(o,). Then x — o,y =m,&" with 1 <|r,| < ¢, for some integer
n, and x—oa,y=m,¢~"; as in the proof of Theorem 1 we see that the heights of
7, and m, are less than c,. We have

(0y—o0q)y = me"—mye™™ and (o, —0y)x = o,m,8"—0 7 "
Put y,=m,(0,—0,)"" and y,=mn,(0;—0,)" . Then
(25) X = o,y,&"—oyy,e” ", and
(26) y =1y

We may assume without loss of generality that n>0. Further, we remark that
it suffices to prove that n<c,, since then, from (25) and (26), |x| and |y| are less
than ¢, and so, from (6), |z| and q are less than cs. From (6), (25) and (26) we
have

27 dz% = (a03+bo,+c)yie? — (2a0,0, +b(0y +0,) +2¢)y,7,
+ (a0} +bo, +cy3e ™" .
Put
r = (a3 +bo,+cly; and
s = — (2aoy0 +b(0y +0,4) + 2¢)y, v, + (a0 + boy +chyle 2" .

Note that r+0, since by assumption o, is not a root of a_{c2 +bx+c and a; 'd,
%0, hence y, +0. Further, s+0 for n>cq, since ¢ (1+|/5)/2, a; 'd, +0, and o,
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is not a root of ax? + bx + c. Thus we may assume that r and s are non-zero and
we may apply Lemma 6 with §=1%, o =¢, a=r, and b=s to (27) to conclude that
g<c.

From (27) we obtain

(28) de?"z% = (ao3 +bo, +c)yle*” — (2a0,0, +b(0y +0q) + 2¢)y,7,62"
+ (a0 + bo, +cy3 .

Observe that a solution of (28) in integers z and n yields a solution of the
related equation

D1 = AX*+BX?*+C,

in algebraic integers t and X from Q(,); here D=de™, where 0<m<gq and
2n=m (mod g),

A = (a0} +bo,+o)yi,
B = —(2a0,0,, +b(0t; +01y) +2¢)y1y5 »
C = (ao}+ba, + o)y}

and the solution is given by t=¢2"9z and X =¢" We observe that the
polynomial AX*+ BX?+ C has 4 distinct roots, if 440, C+0, and B*—4AC
+0. By assumption, «, and «, are not roots of ax?+bx+c and a;'d, +0,
hence also vy,y,, is non-zero. Thus A+0 and C=0. Further, since y,7,+0,
the condition B2 —4AC #+0 is equivalent to 4ac(a, —o,)* +b*(x, —a,)*. But b?
+4ac and, since b? +4a,c,, o, +a,. Thus we may assume that AX*+BX?+C
has four distinct roots. We now employ Lemma 4 to obtain || X| <cg and |¢||
<cq for each g with 2<g<c,. But | X| <cg implies n<c,, as required.

NoTE. A. Petho has informed us that he has proved independently a result
similar in character to Theorem 2 of the present paper. He has proved with the
hypotheses of Theorem 2 and subject to the additional assumption that r; and
r, are coprime, where u,=r,u,_, +r,u,_,, that x, g, and n are less than C, a
number which is effectively computable in terms of a, o, b, B, and the greatest
prime factor of d. Petho’s result will appear in the Journal of Number Theory
under the title “Perfect powers in second order linear recurrences”.
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