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SQUARES IN ARITHMETICAL PROGRESSIONS I

J. H. E. COHN

Fermat proved that it is impossible for four consecutive terms of an
arithmetical progression all to be squares, if the common difference d=0.
Pocklington [1] proves this from his result that the equation z2 = x* — x2y? + y*
has no solutions in integers with xy(x? —y?)+0.

We shall exhibit a connection between the solubility in positive integers of
the system

) a=0o% a+2d =PB* a+nd =%, a+(n+2d = 6%,
and the solutions in integers of
) 22 = x*+ (® =2)x%y? +y*  with xp(x2—y?) % 0,

the case n=1 of which represents Pocklington’s method. The cases n=0 and
n=2 are clearly trivial for both systems of equations and we shall assume
without further mention that n+0 or 2. Specifically we prove

THEOREM 1. (i) if (2) has any solutions at all, then it has infinitely many such
with different ratios for x:y;

(ii) (1) has solutions if and only if (2) has;

(iii) if (1) has any solutions at all, then it has infinitely many with different
ratios for a:d.

Proor. (i) If (2) has a solution then so has
3) {(X2—n*¥2} - {(X*—(n*—4)Y?*} = Z%, XYZ %0,
namely X =z, Y=xy, Z=|x*—y*, for we find with these values that

XZ_nZYZ = 2'2__’12x2y2 — (x2__y2)2 and
X2—(n?—4)Y? = 22— (" —4)x%? = (x> +)?)?.

Conversely, if (3) has a solution then so has (2), namely x=2XY, y=2Z,
Z=|X*(n*—4n*)Y*|. For with these values
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6 J. H. E. COHN
P4+ (2 =2)x% = {Xz—nzYz}{Xz—(nz-4)Y2}+4(n2—2)X2Y2
= X*4+2(n*=2)X2Y2 4+ n*(n* - 4)Y*

(X2 4+n2Y?} - {X*+ (n*—4)Y?} .
Thus
FHH (M2 =2)R2y 24+ x = (XA —nt YA XA~ (n? -4’ Y4+ 16X Y

]

X8 — (2n* —8nd)X*Y* + n*(n? —4)*Y®

Il

{X4 _ (n4 _4n2)Y4}2

72 .

It remains to show that x2=#§2, but this must be so since otherwise we
should obtain successively

Z? = 4X%Y?
X4 — 22 —4)X2Y? + (n* —4n?)Y* = 4X2Y?
(X2—n2Y?)? = (2nY?)?
X? = (n?+2n)Y?
(n+1)> = 1+square ,

and this is not so if n%0 or 2.

Now suppose that (2) has a solution and suppose without loss of generality
that x>y>0 and that (x,y)=1. Then by the above reasoning we find a
solution of (3) and from this a new solution of (2), X =2xyz, j=x*—y* with an
appropriate Z, the expression for which is rather complicated, and irrelevant for
our purpose. Of course it will not necessarily follow that x>y or that (x,y)=1,
but at least x and y will be positive and unequal. Whether x or j is the greater
is of no import, for we can interchange them if necessary. To obtain a new
solution of (2) in which the variables x and y have no common factor we can
now divide x and y by (X,y) to obtain say x* and y* respectively. Now
although x and y may have common factors, they have no factor in common
with either x or y, for if so, such a factor would share a prime factor with both x
and y and this cannot occur by our initial assumption about x and y. It follows
therefore that x* = xy and in fact x*y* > xy, with the sole possible exception
being if 2z = x* —y*. But this cannot occur for it would imply that x and y were
both odd (since they cannot be both even) and hence that

2+ 2)2
(xz—yz)z{i—z—y— = 22 = ()4 ()
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But then x? — y? would have to divide nxy and if the quotient were ¢ we should
find that {$(x*+y*}?=1+c* which is impossible as ¢ +0. It follows therefore
that given any one initial solution with (x,y)=1 we can find another one with
(x*,y*)=1 and x*y*>xy. We thus find in like fashion infinitely many such
solutions no two of which can have the same ratio x:y.

(i) If (1) has solutions, let x=af and y=75. Then x+y and

x4 + (nZ _ 2)x2y2 +y4

Il

(a* +2ad)? + (n* —2)(a® + 2ad)(a* + (2n +2)ad + n(n + 2)d*) +
+ (a® + (2n+2)ad + n(n+2)d*)?

(2nad + n(n +2)d*)* + n*(a* + 2ad)(a* + (2n+ 2)ad + n(n + 2)d?)

Il

n2{a* + 2n+9)@d+ a>d (4+n? +2n+dn+4) +
+ad® (4n+8+2n% +4n) + (n+2)%d*}
= n*{a’+ (n+2)ad + (n+2)d*}* ,

and so (2) has solutions.
If (2) has solutions, let z2 =x*+ (n* —2)x?y? +y* and (x,y)=1 with x>y>0.
Let T=(x*+y%)z and S=xy(x?—y?)>0. Then

T? = (n+2)2S? = {x*+ (n* =2)x%y? +y*} {x* + 2x2y2 +y*) —

— (n+2)2x2y* (x* = 2x%y? +y%)

I

x8 — (4n+4)x°y% + (4n* + 8n + 6)x*y* — (4n +4)x2y° + 8

{x4—(2"+2)x2y2+y4}2 = AZ’ say,
and
T>—(n—2)’S? = {x*+(2n—2)x%* +)*}2 = B%,  say, similarly .

Now B=(x2—y?)?+2nx%y?+0 and we shall show that 4 does not vanish
either. For if 4 were zero then (x*—y?)?=2nx?y? and so z%=(x?—)?)?
+n?x2y? = (n? + 2n)x2y? would imply that n® +2n were a perfect square, which
is impossible as n#0 or 2.

To complete the proof that (1) has solutions it would now suffice to be able
to deduce from the above that T+ (n+2)S and T+ (n—2)S were all perfect
squares and then write a=T— (n+2)S, d=2S. Unfortunately, the various
common factors which can arise are troublesome and so we proceed as follows.
Let

T=T*-(n"—4)?*S* and o =24BST+ 0.
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Then
T = TZ(TZ__(n+2)2Sz)+(n+2)ZSZ(T2_(n_2)282)
A*T?+ (n+2)*B*S?,

and so
1+ (n+2)6 = (AT £ (n+2)BS)*
and similarly

t+(n—2)c = (BT+(n—2)AS)* .

Now let a=t— (n+2)s, d=20+0. Then a, a+2d, a+nd, and a+ (n+2)d are
all perfect squares, as required.

(iii) Given a solution of (1) we see that (2) has a solution and hence infinitely
many such with different ratios for x:y. Hence we can apply the algorithm
above to produce arithmetical progressions satisfying (1) and since there can
only be finitely many distinct ratios x:y which yield a given ratio a: d, the proof
is complete.

As a result of the above, we now consider the system (2) in more detail. For
any solution of (2) we define W(x, y, z) = (x2 + y?)z, a positive integer, and so if
there are solutions at all, there will be one or more that minimise W. Such a
solution we shall call a minimal solution; it is clear that for a minimal solution
(x,¥)=1 and so at least one of x and y will be odd. We shall assume that y is
odd. If in addition x is also odd, then we shall assume that x> y.

LemMa 1. For a minimal solution of (2), if m= (x* —y?,n) then m< (2n)}; if in
addition nxy/m is odd then m< (3n)}.

Proor. For a minimal solution, z? = (x2 —y%)? + (nxy)? and since (x,y)=1 it
easily follows that (x*—y?, nxy)=m. Hence

W - U

where the two summands have no common factor. Hence one of them is odd
and the other even.

Caske 1. If nxy/m is odd. Then for some positive integers 4,u of opposite
parity
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nxy = (A —p*)m
x2—y? = 2Aum

z = (A2 +pud)m

n(x2+y2) 2 _ n2 x2__y2 2+ ﬂ 2
2m 2m m

— n2i2y2+(;12—}12)2 ,

and so

an equation of the same form as (2) but with a new value for W, W, given by

2, .2
W, = (,{2.‘_#2)' M
2m
_nz(x*+y?)
N 2m?
_ nW
T om?

and descent applies unless m< (3n)t.

Case 2. If nxy/m is even. We then obtain in similar fashion
xt—y? = (32— uPm
nxy = 2ium

z = (A2+pdm,

{n(XZ +y2)}2 _ nz{XZ_y2}2+4{m}2
m m m

nZ(;tZ_”Z)2+16;LZ‘u2
— n2x2y2+(x2_y2)2 ,

and so

i

where X =4+ u and Y=4— u. Again we have an equation of the same form (2)

with a new W,
.2 2
W1 = (XZ_,_YZ).&”_T.X)

-2 2
= 2024 2) 1Y)
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and descent applies unless m< (2n)?.
Throughout the following m will denote (x? —y?,n).
LEMMA 2. If 2| n and m is odd then m= +1 (mod?8).

ProoF. We have nxy/m is even, and so as above
xt—y? = (P —p)m
nxy = 2ium .

Since 2 | n and m is odd, xy and Au are divisible by the same power of 2. If
now 2| xy, then each of x*—y? and A%2—p® is congruent to 3 or 5 (mod8),
whereas if 4| xy both expressions are congruent to 1 or 7 (mod 8). In either case
the statement of the lemma follows.

LEMMA 3. If 2| m then n/m= +1 (mod 8).

ProOF. Since m is even, x must be odd and since 4 } m, 4 4 n, since now 8] (x*
—y?). Thus nxy/m is odd, and so as in the proof of Lemma 1,

nxy = (22— uHm
x2—y? = 2ium .

Since x and y are both odd, we may define integers ¢ and f of opposite parity by
=3(x+y) and f=3(x —y) obtaining

n(e*~f? = (A —pu*m
ef = Gmyin,
and the conclusion now follows as in the proof of the preceding lemma.

Lemma 4. For any solution of (2) x*+y?>2nt.

Proor. We have
2 = (mxy)?+ (x> =y?)? > (nxy)?,
and so z=nxy+ 1. Thus

(xz +y2)2 > (xz__yz)z
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22 — (nxy)?

v

(nxy +1)2 — (nxy)?

2nxy+1
> 4n, since xy(x2—y*) + 0.
LeMMA 5. Suppose that n is odd, and that (2) has solutions. Then there exist
positive integers a, b, ¢, d, r, s, t, A, and p with ¢ and d both odd, a, b, c, and d

coprime in pairs, with t =1 or 2 such that y=cd, x=tab is a minimal solution of
(2) which defines m such that ip=n/m, rs=n>—4 and

re* —my*d* = 2ta?
mitc? —sd®> = 2tb?,  where
(a) if t=1, a and b are both odd and 7 <y;
(b) if t=2, r and m cannot both be squares, and b*> —a*=m (mod 4).
Proor. Let x,y provide a minimal solution with y odd. Then
422 = 4x* +4(n? —2)x%r + 44
{20 =y?) +n’y?}2 —n? (n® — d)y*

and so
(2 —amy* = 2(x2—yH)+n?y? +2z} - {2(x* =y} +n?y* =2z} .

Now m= (x2—y?,n) divides z and so both factors on the right. Thus
y

Y P e R O N

m m m m m m

Now the left hand side of this equation is odd, since n and y are odd, and hence
A and B are both odd. Let p denote any prime dividing (A, B). Then p is odd,
and divides both AB and (4 + B), i.e. both

2 2 22 2
(n2—4)(ﬁ> # and XM
m

i

= A-B, say.

2

m m

In the first place we observe that p cannot divide y, otherwise it would also
have to divide x, impossible since x and y were supposed to provide a minimal
solution. Similarly p cannot divide n/m otherwise it would also have to divide
(x* —y?)/m, contradicting the definition of m. Hence p can only divide n* —4,
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and then it would also divide x?+»?, and must necessarily be congruent to 1
modulo 4. Hence we obtain for suitable ¢, d, r, s, 4, and p, A=ri%c*, B=su%d*,
where y=cd is odd; rs=n*—4; iu=n/m and (A, B)=(r,s) which has only
prime factors congruent to 1 modulo 4. Then adding A and B to eliminate z
gives

ri2et +sptd* = 4(x2—yH)m~ ' 4 2n%y*m !
and so solving for x? and substituting y=cd yields
4x? = rmA%c* — 2n* — 4)c2d? + smp?ad*
= (rc? —mu2d?)- (mitc? —sd?)
= C-D, say.

Now both C and D are even since r, s, ¢, d, 4, u, and m are all odd, and so
2| (C, D). However we find that

mi?D—sC = (i ~rs)c? = 4c;  rD—mi’C = 4d*,

and so since ¢ and d are coprime, (C, D) divides 4. Hence we obtain C = + 2ta?,
D= +2tb* and x=tab, where t=1 or 2. Apart from the + sign these are the
required equations. But the + sign can be removed by interchanging in pairs ¢
and d; 4 and y; a and b if necessary. Here (a,b)=1 and since x =2tab, y=cd, it
then follows that a, b, ¢, and d are pairwise coprime.

If t =1, a cannot be even for if it were we should find that r=m (mod 4) and
so since rs=n? —4=1 (mod 4) we should find that s=m (mod 4) and so 2b*>=0
(mod 4) would force b to be even also, which is impossible. Similarly b must be
odd. Finally, in this case we may assume that 1< pu. For certainly A= pu since
(A4,p)=1 and m<n by Lemma 1, and if 1>y then we find that rb?> —mila?
=2d%, mu?b*—sa*=2c? and now pu<4i, and so the result follows on
interchanging ¢ and b; d and a; x and y in pairs. This concludes the first case.

If t=2, then we obtain rb?> —mi%a®=d?, mu®b?> —sa*=c?. Since r, ¢, and m
are all odd, r=m (mod 4) and so a and b have opposite parity. If m=1 (mod 4),
then a must be even and b odd, whereas if m=3 (mod 4), then the reverse holds;
in either case b?> —a’=m (mod 4). Finally, we must show that r and m cannot
both be perfect squares if t=2. We observe first that 4z/m=A—B=ri*c*
—~su?d* and so

4z

rc?(sd* 4 4b* — sd*(rc* — 4a?)

z = rb*c®* +sa*d* > rbc.

Now suppose if possible that r=R? and m= M?. Then the first equation
becomes (Rc)? = (Mud)® + (2a)* where no prime divides both Rc and Mud. For
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suppose on the contrary that a prime p did divide them both. Then p=2, since
Rc is odd, and thus we should have that p|a. But then p,{/cd. Thus p|R and
p| Mu. But Mpu divides n and n and R have no common factor, since R divides
n? —4 and is odd. Thus we must have for some suitable integers e and f with no
common factor,

he Rc = e*+f?
a = ef
Mpd = e*—f2 .
Then
(2bM Rp)* = M*2?u*(Rc)*> — R2%s(M ud)?
= n*(e+f2)? = (n* = 4)(e* — )
and so

(bMRp)* = e*+ (n*—2)e*f2+f*,
and equation of the same form as (2). But now the new W, W, satisfies
bMRu(e* +£?)
= bMR?uc

W,

= Murbc < Muz,

and so this case is impossible by descent, unless x*+y* < Mpu.
To deal with the possibility that x?+y* < Mu, we can as before rewrite our
equations in the form

szz—-MzitZaz — d2

M?u?b? —sa’ = c*,

and obtain just as before, successively

Rb = g*+h?
Mia = 2gh
d — gl_hZ,

(MARc) = M*i2u?(g* +h?)* —4rsg*h? .
Now let G=g+h, H=g—h. Then
(MARc)* = n*(G*+ H*? —-L(n* —4)(G* — H??
G*+ (n* —2)G*H? + H* ,

I
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where now

W, = MiRc(G*+ H?)

It

2MiRc(g* +h?)
= 2Mirbc
< 2Miz ,

and again descent applies unless x*+y* <2MA4.

But the conditions x?+y?><Mpyu and x*+y?<2Mi cannot hold simul-
taneously, for together they would imply (x*+y%)?<2M?iu=2mip="2n,
impossible by Lemma 4.

This concludes the proof.

We next state without proof three more results which together deal with the
various cases in which n is even. In all cases the proofs are similar to the above,
the differences concerning only the powers of 2 which arise.

LEMMA 6. If there exists a solution of (2) which is minimal and has n/m even,
then there exists such a solution and positive integers a, b, ¢, d, r, s, A and p with ¢
and d both odd; a, b, ¢ and d coprime in pairs; (A, ) =1 and with (r,s) divisible
only by primes congruent to 1 modulo 4; rs=4n*>—1; Au=n/(2m); x=ab; y=cd
and with

rct —mp*d* = a?

mi*c? —sd®> = b?,

where if m is even, a and b are both odd and A<y, and if m is odd b*—a*=m
(mod4). Also r and m cannot both be squares.

LEMMA 7. If there exists a minimal solution of (2) with n/m odd and 4|n, then
there exists such a solution and odd positive integers a, b, ¢, d, r, s, » and p with a,
b, ¢, d coprime in pairs; (A, u)=1; A<p; (r,s) divisible only by primes congruent
to 1 modulo 4; rs=in> —1; ju=n/m; x=ab; y=cd and with

rc? —imp?d* = a?
imitc? —sd? = b?
and with r and im not both squares.

LemMA 8. If there exists a solution of (2) with n/m odd and 2 || n, then there
exists such a solution and positive integers a, b, ¢, d, r, s, 4 and p with a, b, ¢, d
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coprime in pairs and all odd; (i,u)=1; A<y; (r,s) divisible only by primes
congruent to 1 modulo 4; iu=n/m; rs={s(n*—4); x=ab; y=cd and with

2rc? —imp?d* = a®

imitc? —2sd* = b*.

The above results can be used for many values of n either to find solutions,
where they exist, or to prove the non-existence of solutions. In order to aid the
latter, we make the following

DEFINITION. For i=1, 3, 5 and 7, let ¢(i) denote the number of distinct prime
factors of (n*—4), and R(i) the total number of prime factors, counting
multiplicity, which are congruent to i modulo 8.

LEMMA 9. If n is odd, the case m=1 can only arise if there exist integers r,s
with rs=n%—4, (r,s) divisible only by primes congruent to 1 modulo 4 and

either (a) r=1 (mod 8); r not a square; r divisible only by primes congruent to
1 modulo 4 and (r|P)=1 for every prime P dividing n,
or (b) r=3 (mod 8); every factor of r congruent to 1 or 3 modulo 8; every
factor of s congruent to 1 or 7 modulo 8 and (2r| P)=1 for every
prime P dividing n.

In particular we must have ¢(1)=1 or 9(5)22 or {¢(5)=0 and R(3) odd}.

PrOOF. Lemma 5 applies and so rs=n* —4 with (r, s) divisible only by primes
congruent to 1 modulo 4, Au=n and

re? —uld® = 2ta®

it —sd® = 2tb* .

If t=1, then a and b are both odd and so r=3 (mod 8) and every factor of r
must be congruent to 1 or 3 modulo 8, every factor of s must be congruent to 1
or 7 modulo 8. Now if P|n, then P divides 4 or u. In the former case (—2s| P)
=1, and since rs= —4 (mod P) (2r| P)=1; in the latter case (2r|P)=1 also.

If t=2, then r=1 (mod 8), r cannot be a square, every factor of r =1 (mod 4)
and (r|P)=1 as above.

Finally, we see that in case (a), r must have either a prime factor congruent
to 1 modulo 8, or else two distinct prime factors congruent to 5 modulo 8. In
case (b) there can be no prime factors of n* —4 congruent to 5 modulo 8 at all
whereas all prime factors congruent to 3 modulo 8 divide r, and so ¢(5)=0 and
R(3) must be odd.
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In exactly the same way we may prove the following results whose proofs are
omitted.

LeEMMA 10. If 2 || n, the case m=1 can only arise if there exists an integer r
dividing n? — 1, with r not a square, every factor of r congruent to 1 modulo 4 and
(r| P)=1 for every odd prime P dividing n. In particular ¢(1)+o(5)=1.

LEMMA 11. If 4|n, the case m=1 can only occur if there exists an integer r
dividing £n? —1 with r not a square, every factor of r congruent to 1 modulo 4, r
=1 (mod 8) and (r| P)=1 for every odd prime P dividing n. In particular ¢(1)=1
or g(5)=2.

THEOREM 2. If n is an odd prime, then a necessary condition for (2) to have
solutions is that either ¢(1)21 or ¢(5)22, or {0(5)=0 and R(3) is odd}.

ProoF. By Lemma 1, for any minimal solution m< (2n)* and so m=1. The
result then follows by Lemma 9.

THEOREM 3. If n=2p, where p denotes a prime, p=2 or p= +3 (mod8), then a
necessary condition for (2) to have solutions is that g(1)+0(5)2 1.

Proor. For p=2, the result was proved by Pocklington [1]. Suppose then
that p= + 3 (mod 8). Then by Lemma 1, for a minimal solution m £ (4p)* <p if
p>4 Thusm=1or2if p>4,and m=1, 2 or 3 if p=3. By Lemma 2, the case p
=m=3 cannot arise. By Lemma 3, the case m=2 does not arise. Thus m=1,
and the result follows by Lemma 10.

THEOREM 4. If n=4p, where p denotes a prime, then a necessary condition for
(2) to have solutions is that 4p* —1 have a factorisation rs with (r|p)=1if p is
odd, and with

either (a) r=1 (mod 8), every factor of r congruent to 1 modulo 4, r not a
square,
or (b) r=3 (mod 8); every factor of r congruent to 1 or 3 modulo 8; every
factor of s congruent to 1 or 7 modulo 8.

In particular o(1)21 or g(5)22 or {¢(5)=0 and R(3) is odd}.

Proor. For a minimal solution we have by Lemma 1 that m< (8p)t<p if p
> 8, and for these cases m=1, 2 or 4. The same holds if p=2. For p=3, we have
the additional case m=3, whereas for p=5 or 7 the conditions given are
satisfied and so the theorem is vacuously true. The cases m=2 for all p, and m
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=4 for p=2 cannot arise, for m divides x? — y? and this latter expression if even
at all requires both x and y to be odd, and then is divisible by 8.

For m=1, the result holds by Lemma 11. Suppose then that m=4 with p
odd. Then Lemma 7 applies and we find rs=4p>—1,

re? —-2p*d* = a?

2¢? —sd? = b?,

with a, b, ¢ and d all odd and coprime in pairs. Then r=3 (mod 8) and r has
only factors =1 or 3 (mod 8), s has only factors =1 or 7 (mod 8) and (r|p)=1
if p is odd, and again the theorem follows.

Finally the case p=m=23 cannot occur. for now Lemma 6 would apply with
rs=35 and '

rc? =3ptd* = a?
3i2¢? —sd® = b2

Since 5|rs, one of these is impossible modulo 5.

In exactly the same way we may prove the following results whose proofs are
omitted.

THEOREM 5. If n=8p, where p denotes a prime, a necessary condition for (2) to
have solutions is that there exists a factorisation 16p> —1=rs with (r|p)=1, if p
is odd, and with r not a square, every factor of r congruent to 1 modulo 4. In
particular g(1)+o(5)=1.

THEOREM 6. [f n=16p, where p denotes a prime, a necessary condition for (2)
to have solutions is that there exists a factorisation 64p> —1=rs with r not a
square, r=1 (mod 8) and with (r|p)=1 if p is odd and with

either (a) every factor of r congruent to 1 modulo 4,
or (b) every factor of r congruent to 1 or 3 modulo 8 and every factor of s
congruent to 1 or 7 modulo 8.

In particular o(1)21 or ¢(5)22, or {¢(5)=0 and R(3) is even}.

THEOREM 7. If n=3p, where p denotes an odd prime, then a necessary condition
ofr (2) to have solutions is that there exists a factorisation 9p* —4 =rs, where
(r,s) is divisible only by primes congruent to 1 modulo 4 and

either (a) (r|p)=1,r=1 (mod 24), r not a square, every factor of r congruent
to 1 modulo 4;

Math. Scand. 52 — 2
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or (b) 2r|p)=1, r=5 (mod 24), every factor of r is conruent to 1, 5, 7 or
11 (mod24) and every factor of s is congruent to +1 or +5
(mod 24);

or (c) (r|p)=1, r=7 (mod 24), every factor of r is congruent to 1 modulo
3 and every factor of s is congruent to +1 (mod 12);

or (d) 2r|p)=1, r=11 (mod 24), every factor of r is congruent to 1 or 3
modulo 8 and every factor of s is congruent to 1 or 3 modulo 8 and
every factor of s is congruent to 1 or 7 modulo 8.

Using the above results, we find that no solutions exist for n=1, 3,4, 6, 7, 8,
10, 11, 12,13, 15, 16, 17, 21, 23, 26, 31, 39, 40, 41, 47, 48, 52, 59, 68, 69, 73, 74, 86,
92, 93 or 97. On the other hand, we find solutions for many values of n <100,
and a table of minimal solutions for 53 different values of n is appended (Table
1). This leaves 14 values of n <100, and in fact we are able to show that there
are no solutions for any of these; thus the table gives a complete list of values of
n for which solutions exist and n <100. The methods used for these 14 values
vary in complexity, and it is hoped in a subsequent paper to deal with one of
these, n=49, in detail.
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SQUARES IN ARITHMETICAL PROGRESSIONS I

Table 1. Values of n<100, for which (2) has solutions.

n X y
5 3 1
9 4 1
14 5 1

19 7 3

20 6 1

22 5 2

24 7 2

25 11 4

27 7 1

28 4 1

29 2967 517

33 19 1

34 35 13

35 8 1

37 16 5

38 34 1,

43 5365 976

44 9 1

46 35 17

51 209 25

53 13 8

54 10 1

55 63 13

56 24 11

57 209 29

58 13 2

60 18 7

n X y
61 23 3
63 8 3
65 11 1
66 51 5
67 22631 1360
71 41 1
75 13 4
76 195 8
77 12 1
78 111 1
79 267 133
80 20 1
81 12299 1924
82 13 3
83 91039 42304
84 187 3
85 76 1
87 32683 2928
88 217 30
89 26381 18040
90 13 1
91 21 1
94 9605 91
95 11 3
96 17 3
99 19 5
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