SQUARES IN ARITHMETICAL PROGRESSIONS I

L.H. E. COHN

Fermat proved that it is impossible for four consecutive terms of an arithmetical progression all to be squares, if the common difference $d \neq 0$. Pocklington [1] proves this from his result that the equation $z^2 = x^4 - x^2y^2 + y^4$ has no solutions in integers with $xy(x^2 - y^2) \neq 0$.

We shall exhibit a connection between the solubility in positive integers of the system

(1)
$$a = \alpha^2$$
; $a + 2d = \beta^2$; $a + nd = \gamma^2$; $a + (n+2)d = \delta^2$,

and the solutions in integers of

(2)
$$z^2 = x^4 + (n^2 - 2)x^2y^2 + y^4$$
 with $xy(x^2 - y^2) \neq 0$,

the case n=1 of which represents Pocklington's method. The cases n=0 and n=2 are clearly trivial for both systems of equations and we shall assume without further mention that $n \neq 0$ or 2. Specifically we prove

THEOREM 1. (i) if (2) has any solutions at all, then it has infinitely many such with different ratios for x:y;

- (ii) (1) has solutions if and only if (2) has;
- (iii) if (1) has any solutions at all, then it has infinitely many with different ratios for a:d.

PROOF. (i) If (2) has a solution then so has

$$(3) \qquad \{X^2 - n^2 Y^2\} \cdot \{X^2 - (n^2 - 4)Y^2\} = Z^2, \quad XYZ \neq 0,$$

namely X = z, Y = xy, $Z = |x^4 - y^4|$, for we find with these values that

$$X^2 - n^2 Y^2 = z^2 - n^2 x^2 y^2 = (x^2 - y^2)^2$$
 and
 $X^2 - (n^2 - 4)Y^2 = z^2 - (n^2 - 4)x^2 y^2 = (x^2 + y^2)^2$.

Conversely, if (3) has a solution then so has (2), namely $\bar{x} = 2XY$, $\bar{y} = Z$, $\bar{z} = |X^4(n^4 - 4n^2)Y^4|$. For with these values

Received March 2, 1981.

$$\begin{split} \bar{y}^2 + (n^2 - 2)\bar{x}^2 &= \big\{ X^2 - n^2 Y^2 \big\} \big\{ X^2 - (n^2 - 4) Y^2 \big\} + 4(n^2 - 2) X^2 Y^2 \\ &= X^4 + 2(n^2 - 2) X^2 Y^2 + n^2(n^2 - 4) Y^4 \\ &= \big\{ X^2 + n^2 Y^2 \big\} \cdot \big\{ X^2 + (n^2 - 4) Y^2 \big\} \; . \end{split}$$

Thus

$$\bar{y}^4 + (n^2 - 2)\bar{x}^2y^{-2} + \bar{x}^4 = \{X^4 - n^4Y^4\}\{X^4 - (n^2 - 4)^2Y^4\} + 16X^4Y^4$$

$$= X^8 - (2n^4 - 8n^2)X^4Y^4 + n^4(n^2 - 4)^2Y^8$$

$$= \{X^4 - (n^4 - 4n^2)Y^4\}^2$$

$$= \bar{z}^2.$$

It remains to show that $\bar{x}^2 \pm \bar{y}^2$, but this must be so since otherwise we should obtain successively

$$Z^{2} = 4X^{2}Y^{2}$$

$$X^{4} - (2n^{2} - 4)X^{2}Y^{2} + (n^{4} - 4n^{2})Y^{4} = 4X^{2}Y^{2}$$

$$(X^{2} - n^{2}Y^{2})^{2} = (2nY^{2})^{2}$$

$$X^{2} = (n^{2} \pm 2n)Y^{2}$$

$$(n \pm 1)^{2} = 1 + \text{square},$$

and this is not so if $n \neq 0$ or 2.

Now suppose that (2) has a solution and suppose without loss of generality that x>y>0 and that (x,y)=1. Then by the above reasoning we find a solution of (3) and from this a new solution of (2), $\bar{x}=2xyz$, $\bar{y}=x^4-y^4$, with an appropriate \bar{z} , the expression for which is rather complicated, and irrelevant for our purpose. Of course it will not necessarily follow that $\bar{x}>\bar{y}$ or that $(\bar{x},\bar{y})=1$, but at least \bar{x} and \bar{y} will be positive and unequal. Whether \bar{x} or \bar{y} is the greater is of no import, for we can interchange them if necessary. To obtain a new solution of (2) in which the variables x and y have no common factor we can now divide \bar{x} and \bar{y} by (\bar{x},\bar{y}) to obtain say x^* and y^* respectively. Now although \bar{x} and \bar{y} may have common factors, they have no factor in common with either x or y, for if so, such a factor would share a prime factor with both x and y and this cannot occur by our initial assumption about x and y. It follows therefore that $x^* \geq xy$ and in fact $x^*y^* > xy$, with the sole possible exception being if $2z = x^4 - y^4$. But this cannot occur for it would imply that x and y were both odd (since they cannot be both even) and hence that

$$(x^2-y^2)^2\left\{\frac{x^2+y^2}{2}\right\}^2 = z^2 = (x^2-y^2)^2 + (nxy)^2.$$

But then $x^2 - y^2$ would have to divide nxy and if the quotient were c we should find that $\{\frac{1}{2}(x^2+y^2)\}^2 = 1+c^2$ which is impossible as $c \neq 0$. It follows therefore that given any one initial solution with (x,y)=1 we can find another one with $(x^*,y^*)=1$ and $x^*y^*>xy$. We thus find in like fashion infinitely many such solutions no two of which can have the same ratio x:y.

(ii) If (1) has solutions, let
$$x = \alpha \beta$$
 and $y = \gamma \delta$. Then $x \neq y$ and
$$x^4 + (n^2 - 2)x^2y^2 + y^4$$
$$= (a^2 + 2ad)^2 + (n^2 - 2)(a^2 + 2ad)(a^2 + (2n + 2)ad + n(n + 2)d^2) + \\ + (a^2 + (2n + 2)ad + n(n + 2)d^2)^2$$
$$= (2nad + n(n + 2)d^2)^2 + n^2(a^2 + 2ad)(a^2 + (2n + 2)ad + n(n + 2)d^2)$$
$$= n^2 \{a^4 + (2n + 4)a^3d + a^2d^2(4 + n^2 + 2n + 4n + 4) + \\ + ad^3(4n + 8 + 2n^2 + 4n) + (n + 2)^2d^4\}$$
$$= n^2 \{a^2 + (n + 2)ad + (n + 2)d^2\}^2,$$

and so (2) has solutions.

If (2) has solutions, let $z^2 = x^4 + (n^2 - 2)x^2y^2 + y^4$ and (x, y) = 1 with x > y > 0. Let $T = (x^2 + y^2)z$ and $S = xy(x^2 - y^2) > 0$. Then

$$T^{2} - (n+2)^{2}S^{2} = \{x^{4} + (n^{2} - 2)x^{2}y^{2} + y^{4}\}\{x^{4} + 2x^{2}y^{2} + y^{4}\} - (n+2)^{2}x^{2}y^{2}(x^{4} - 2x^{2}y^{2} + y^{4})$$

$$= x^{8} - (4n+4)x^{6}y^{2} + (4n^{2} + 8n + 6)x^{4}y^{4} - (4n+4)x^{2}y^{6} + y^{8}$$

$$= \{x^{4} - (2n+2)x^{2}y^{2} + y^{4}\}^{2} = A^{2}, \quad \text{say},$$

and

$$T^2 - (n-2)^2 S^2 = \{x^4 + (2n-2)x^2y^2 + y^4\}^2 = B^2$$
, say, similarly.

Now $B = (x^2 - y^2)^2 + 2nx^2y^2 \neq 0$ and we shall show that A does not vanish either. For if A were zero then $(x^2 - y^2)^2 = 2nx^2y^2$ and so $z^2 = (x^2 - y^2)^2 + n^2x^2y^2 = (n^2 + 2n)x^2y^2$ would imply that $n^2 + 2n$ were a perfect square, which is impossible as $n \neq 0$ or 2.

To complete the proof that (1) has solutions it would now suffice to be able to deduce from the above that $T \pm (n+2)S$ and $T \pm (n-2)S$ were all perfect squares and then write a = T - (n+2)S, d = 2S. Unfortunately, the various common factors which can arise are troublesome and so we proceed as follows. Let

$$\tau = T^4 - (n^2 - 4)^2 S^4$$
 and $\sigma = 2ABST \neq 0$.

Then

$$\tau = T^{2}(T^{2} - (n+2)^{2}S^{2}) + (n+2)^{2}S^{2}(T^{2} - (n-2)^{2}S^{2})$$

= $A^{2}T^{2} + (n+2)^{2}B^{2}S^{2}$,

and so

$$\tau \pm (n+2)\sigma = (AT \pm (n+2)BS)^2$$

and similarly

$$\tau \pm (n-2)\sigma = (BT \pm (n-2)AS)^2.$$

Now let $a = \tau - (n+2)\sigma$, $d = 2\sigma \neq 0$. Then a, a+2d, a+nd, and a+(n+2)d are all perfect squares, as required.

(iii) Given a solution of (1) we see that (2) has a solution and hence infinitely many such with different ratios for x:y. Hence we can apply the algorithm above to produce arithmetical progressions satisfying (1) and since there can only be finitely many distinct ratios x:y which yield a given ratio a:d, the proof is complete.

As a result of the above, we now consider the system (2) in more detail. For any solution of (2) we define $W(x, y, z) = (x^2 + y^2)z$, a positive integer, and so if there are solutions at all, there will be one or more that minimise W. Such a solution we shall call a minimal solution; it is clear that for a minimal solution (x, y) = 1 and so at least one of x and y will be odd. We shall assume that y is odd. If in addition x is also odd, then we shall assume that x > y.

LEMMA 1. For a minimal solution of (2), if $m = (x^2 - y^2, n)$ then $m \le (2n)^{\frac{1}{2}}$; if in addition nxy/m is odd then $m \le (\frac{1}{2}n)^{\frac{1}{2}}$.

PROOF. For a minimal solution, $z^2 = (x^2 - y^2)^2 + (nxy)^2$ and since (x, y) = 1 it easily follows that $(x^2 - y^2, nxy) = m$. Hence

$$\left\{\frac{z}{m}\right\}^2 = \left\{\frac{x^2 - y^2}{m}\right\}^2 + \left\{\frac{nxy}{m}\right\}^2,$$

where the two summands have no common factor. Hence one of them is odd and the other even.

Case 1. If nxy/m is odd. Then for some positive integers λ , μ of opposite parity

$$nxy = (\lambda^2 - \mu^2)m$$

$$x^2 - y^2 = 2\lambda \mu m$$

$$z = (\lambda^2 + \mu^2)m$$

and so

$$\left\{ \frac{n(x^2 + y^2)}{2m} \right\}^2 = n^2 \left\{ \frac{x^2 - y^2}{2m} \right\}^2 + \left\{ \frac{nxy}{m} \right\}^2$$
$$= n^2 \lambda^2 \mu^2 + (\lambda^2 - \mu^2)^2 ,$$

an equation of the same form as (2) but with a new value for W, W_1 given by

$$W_1 = (\lambda^2 + \mu^2) \cdot \frac{n(x^2 + y^2)}{2m}$$
$$= \frac{nz(x^2 + y^2)}{2m^2}$$
$$= \frac{nW}{2m^2},$$

and descent applies unless $m \le (\frac{1}{2}n)^{\frac{1}{2}}$.

CASE 2. If nxy/m is even. We then obtain in similar fashion

$$x^{2} - y^{2} = (\lambda^{2} - \mu^{2})m$$

$$nxy = 2\lambda \mu m$$

$$z = (\lambda^{2} + \mu^{2})m$$

and so

$$\left\{ \frac{n(x^2 + y^2)}{m} \right\}^2 = n^2 \left\{ \frac{x^2 - y^2}{m} \right\}^2 + 4 \left\{ \frac{nxy}{m} \right\}^2$$
$$= n^2 (\lambda^2 - \mu^2)^2 + 16\lambda^2 \mu^2$$
$$= n^2 X^2 Y^2 + (X^2 - Y^2)^2,$$

where $X = \lambda + \mu$ and $Y = \lambda - \mu$. Again we have an equation of the same form (2) with a new W,

$$W_1 = (X^2 + Y^2) \cdot \frac{n(x^2 + y^2)}{m}$$
$$= 2(\lambda^2 + \mu^2) \cdot \frac{n(x^2 + y^2)}{m}$$

$$=\frac{2n}{m^2}W,$$

and descent applies unless $m \le (2n)^{\frac{1}{2}}$.

Throughout the following m will denote $(x^2 - y^2, n)$.

LEMMA 2. If $2 \parallel n$ and m is odd then $m \equiv \pm 1 \pmod{8}$.

PROOF. We have nxy/m is even, and so as above

$$x^{2} - y^{2} = (\lambda^{2} - \mu^{2})m$$

$$nxy = 2\lambda \mu m.$$

Since $2 \parallel n$ and m is odd, xy and $\lambda \mu$ are divisible by the same power of 2. If now $2 \parallel xy$, then each of $x^2 - y^2$ and $\lambda^2 - \mu^2$ is congruent to 3 or 5 (mod 8), whereas if $4 \mid xy$ both expressions are congruent to 1 or 7 (mod 8). In either case the statement of the lemma follows.

LEMMA 3. If $2 \parallel m$ then $n/m \equiv \pm 1 \pmod{8}$.

PROOF. Since m is even, x must be odd and since $4 \nmid m, 4 \nmid n$, since now $8 \mid (x^2 - y^2)$. Thus nxy/m is odd, and so as in the proof of Lemma 1,

$$nxy = (\lambda^2 - \mu^2)m$$

$$x^2 - y^2 = 2\lambda \mu m.$$

Since x and y are both odd, we may define integers e and f of opposite parity by $e = \frac{1}{2}(x+y)$ and $f = \frac{1}{2}(x-y)$ obtaining

$$n(e^2 - f^2) = (\lambda^2 - \mu^2)m$$

$$ef = (\frac{1}{2}m)\lambda\mu,$$

and the conclusion now follows as in the proof of the preceding lemma.

LEMMA 4. For any solution of (2) $x^2 + y^2 > 2n^{\frac{1}{2}}$.

PROOF. We have

$$z^2 = (nxy)^2 + (x^2 - y^2)^2 > (nxy)^2$$

and so $z \ge nxy + 1$. Thus

$$(x^2 + y^2)^2 > (x^2 - y^2)^2$$

$$= z^{2} - (nxy)^{2}$$

$$\ge (nxy + 1)^{2} - (nxy)^{2}$$

$$= 2nxy + 1$$

$$> 4n, \text{ since } xy(x^{2} - y^{2}) \neq 0.$$

LEMMA 5. Suppose that n is odd, and that (2) has solutions. Then there exist positive integers a, b, c, d, r, s, t, λ , and μ with c and d both odd, a, b, c, and d coprime in pairs, with t=1 or 2 such that y=cd, x=tab is a minimal solution of (2) which defines m such that $\lambda \mu = n/m$, $rs = n^2 - 4$ and

$$rc^{2} - m\mu^{2}d^{2} = 2ta^{2}$$

$$m\lambda^{2}c^{2} - sd^{2} = 2tb^{2}, \quad \text{where}$$

- (a) if t = 1, a and b are both odd and $\lambda < \mu$;
- (b) if t=2, r and m cannot both be squares, and $b^2-a^2 \equiv m \pmod{4}$.

PROOF. Let x, y provide a minimal solution with y odd. Then

$$4z^{2} = 4x^{4} + 4(n^{2} - 2)x^{2}y^{2} + 4y^{4}$$
$$= \{2(x^{2} - y^{2}) + n^{2}y^{2}\}^{2} - n^{2}(n^{2} - 4)y^{4}$$

and so

$$(n^2-4)n^2y^4 \ = \ \left\{2(x^2-y^2)+n^2y^2+2z\right\}\cdot \left\{2(x^2-y^2)+n^2y^2-2z\right\} \ .$$

Now $m = (x^2 - y^2, n)$ divides z and so both factors on the right. Thus

$$(n^2 - 4)\left(\frac{n}{m}\right)^2 y^4 = \left\{\frac{2(x^2 - y^2)}{m} + \frac{n^2 y^2}{m} + \frac{2z}{m}\right\} \cdot \left\{\frac{2(x^2 - y^2)}{m} + \frac{n^2 y^2}{m} - \frac{2z}{m}\right\}$$
$$= A \cdot B, \quad \text{say} .$$

Now the left hand side of this equation is odd, since n and y are odd, and hence A and B are both odd. Let p denote any prime dividing (A, B). Then p is odd, and divides both AB and $\frac{1}{2}(A+B)$, i.e. both

$$(n^2-4)\left(\frac{n}{m}\right)^2 y^4$$
 and $\frac{2(x^2-y^2)}{m} + \frac{n^2y^2}{m}$.

In the first place we observe that p cannot divide y, otherwise it would also have to divide x, impossible since x and y were supposed to provide a minimal solution. Similarly p cannot divide n/m otherwise it would also have to divide $(x^2 - y^2)/m$, contradicting the definition of m. Hence p can only divide $n^2 - 4$,

and then it would also divide $x^2 + y^2$, and must necessarily be congruent to 1 modulo 4. Hence we obtain for suitable c, d, r, s, λ , and μ , $A = r\lambda^2 c^4$, $B = s\mu^2 d^4$, where y = cd is odd; $rs = n^2 - 4$; $\lambda \mu = n/m$ and (A, B) = (r, s) which has only prime factors congruent to 1 modulo 4. Then adding A and B to eliminate z gives

$$r\lambda^2c^4 + s\mu^2d^4 = 4(x^2 - y^2)m^{-1} + 2n^2y^2m^{-1}$$

and so solving for x^2 and substituting y = cd yields

$$4x^{2} = rm\lambda^{2}c^{4} - (2n^{2} - 4)c^{2}d^{2} + sm\mu^{2}d^{4}$$
$$= (rc^{2} - m\mu^{2}d^{2}) \cdot (m\lambda^{2}c^{2} - sd^{2})$$
$$= C \cdot D, \quad \text{say} .$$

Now both C and D are even since r, s, c, d, λ , μ , and m are all odd, and so $2 \mid (C, D)$. However we find that

$$m\mu^2 D - sC = (n^2 - rs)c^2 = 4c^2; \quad rD - m\lambda^2 C = 4d^2,$$

and so since c and d are coprime, (C, D) divides 4. Hence we obtain $C = \pm 2ta^2$, $D = \pm 2tb^2$ and x = tab, where t = 1 or 2. Apart from the \pm sign these are the required equations. But the \pm sign can be removed by interchanging in pairs c and d; λ and μ ; a and b if necessary. Here (a, b) = 1 and since x = 2tab, y = cd, it then follows that a, b, c, and d are pairwise coprime.

If t=1, a cannot be even for if it were we should find that $r \equiv m \pmod 4$ and so since $rs=n^2-4\equiv 1 \pmod 4$ we should find that $s\equiv m \pmod 4$ and so $2b^2\equiv 0 \pmod 4$ would force b to be even also, which is impossible. Similarly b must be odd. Finally, in this case we may assume that $\lambda < \mu$. For certainly $\lambda \neq \mu$ since $(\lambda,\mu)=1$ and m < n by Lemma 1, and if $\lambda > \mu$ then we find that $rb^2-m\lambda^2a^2=2d^2$, $m\mu^2b^2-sa^2=2c^2$, and now $\mu < \lambda$, and so the result follows on interchanging c and b; d and a; x and y in pairs. This concludes the first case.

If t=2, then we obtain $rb^2 - m\lambda^2 a^2 = d^2$, $m\mu^2 b^2 - sa^2 = c^2$. Since r, c, and m are all odd, $r \equiv m \pmod 4$ and so a and b have opposite parity. If $m \equiv 1 \pmod 4$, then a must be even and b odd, whereas if $m \equiv 3 \pmod 4$, then the reverse holds; in either case $b^2 - a^2 \equiv m \pmod 4$. Finally, we must show that r and m cannot both be perfect squares if t=2. We observe first that $4z/m = A - B = r\lambda^2 c^4 - s\mu^2 d^4$ and so

$$4z = rc^{2}(sd^{2} + 4b^{2}) - sd^{2}(rc^{2} - 4a^{2})$$
$$z = rb^{2}c^{2} + sa^{2}d^{2} > rbc.$$

Now suppose if possible that $r = R^2$ and $m = M^2$. Then the first equation becomes $(Rc)^2 = (M\mu d)^2 + (2a)^2$ where no prime divides both Rc and $M\mu d$. For

suppose on the contrary that a prime p did divide them both. Then $p \neq 2$, since Rc is odd, and thus we should have that $p \mid a$. But then $p \nmid cd$. Thus $p \mid R$ and $p \mid M\mu$. But $M\mu$ divides n and n and n have no common factor, since n divides $n \neq 1$ and is odd. Thus we must have for some suitable integers $n \neq 1$ and $n \neq 1$ with no common factor,

$$Rc = e^{2} + f^{2}$$

$$a = ef$$

$$M\mu d = e^{2} - f^{2}$$

Then

$$(2bM R\mu)^2 = M^4 \lambda^2 \mu^2 (Rc)^2 - R^2 s (M \mu d)^2$$
$$= n^2 (e^2 + f^2)^2 - (n^2 - 4)(e^2 - f^2)^2$$

and so

$$(bMR\mu)^2 = e^4 + (n^2 - 2)e^2f^2 + f^4$$
,

and equation of the same form as (2). But now the new W, W_1 satisfies

$$W_1 = bMR\mu(e^2 + f^2)$$
$$= bMR^2\mu c$$
$$= M\mu rbc < M\mu z,$$

and so this case is impossible by descent, unless $x^2 + y^2 < M\mu$.

To deal with the possibility that $x^2 + y^2 < M\mu$, we can as before rewrite our equations in the form

$$R^{2}b^{2} - M^{2}\lambda^{2}a^{2} = d^{2}$$
$$M^{2}\mu^{2}b^{2} - sa^{2} = c^{2},$$

and obtain just as before, successively

$$Rb = g^2 + h^2$$

$$M\lambda a = 2gh$$

$$d = g^2 - h^2,$$

$$(M\lambda Rc)^2 = M^4\lambda^2\mu^2(g^2 + h^2)^2 - 4rsg^2h^2.$$

Now let G = g + h, H = g - h. Then

$$(M\lambda Rc)^2 = \frac{1}{4}n^2(G^2 + H^2)^2 - \frac{1}{4}(n^2 - 4)(G^2 - H^2)^2$$

= $G^4 + (n^2 - 2)G^2H^2 + H^4$,

where now

$$W_2 = M\lambda Rc(G^2 + H^2)$$

$$= 2M\lambda Rc(g^2 + h^2)$$

$$= 2M\lambda rbc$$

$$< 2M\lambda z,$$

and again descent applies unless $x^2 + y^2 < 2M\lambda$.

But the conditions $x^2 + y^2 < M\mu$ and $x^2 + y^2 < 2M\lambda$ cannot hold simultaneously, for together they would imply $(x^2 + y^2)^2 < 2M^2\lambda\mu = 2m\lambda\mu = 2n$, impossible by Lemma 4.

This concludes the proof.

We next state without proof three more results which together deal with the various cases in which n is even. In all cases the proofs are similar to the above, the differences concerning only the powers of 2 which arise.

LEMMA 6. If there exists a solution of (2) which is minimal and has n/m even, then there exists such a solution and positive integers a, b, c, d, r, s, λ and μ with c and d both odd; a, b, c and d coprime in pairs; $(\lambda, \mu) = 1$ and with (r, s) divisible only by primes congruent to 1 modulo 4; $rs = \frac{1}{4}n^2 - 1$; $\lambda \mu = n/(2m)$; x = ab; y = cd and with

$$rc^2 - m\mu^2 d^2 = a^2$$

$$m\lambda^2 c^2 - sd^2 = b^2$$

where if m is even, a and b are both odd and $\lambda < \mu$, and if m is odd $b^2 - a^2 \equiv m \pmod{4}$. Also r and m cannot both be squares.

LEMMA 7. If there exists a minimal solution of (2) with n/m odd and $4 \mid n$, then there exists such a solution and odd positive integers a, b, c, d, r, s, λ and μ with a, b, c, d coprime in pairs; $(\lambda, \mu) = 1$; $\lambda < \mu$; (r, s) divisible only by primes congruent to 1 modulo 4; $rs = \frac{1}{4}n^2 - 1$; $\lambda \mu = n/m$; x = ab; y = cd and with

$$rc^{2} - \frac{1}{2}m\mu^{2}d^{2} = a^{2}$$
$$\frac{1}{2}m\hat{\lambda}^{2}c^{2} - sd^{2} = b^{2}$$

and with r and $\frac{1}{2}$ m not both squares.

LEMMA 8. If there exists a solution of (2) with n/m odd and $2 \parallel n$, then there exists such a solution and positive integers a, b, c, d, r, s, λ and μ with a, b, c, d

coprime in pairs and all odd; $(\lambda, \mu) = 1$; $\lambda < \mu$; (r,s) divisible only by primes congruent to 1 modulo 4; $\lambda \mu = n/m$; $rs = \frac{1}{16}(n^2 - 4)$; x = ab; y = cd and with

$$2rc^{2} - \frac{1}{2}m\mu^{2}d^{2} = a^{2}$$

$$\frac{1}{2}m\lambda^{2}c^{2} - 2sd^{2} = b^{2}$$

The above results can be used for many values of n either to find solutions, where they exist, or to prove the non-existence of solutions. In order to aid the latter, we make the following

DEFINITION. For i = 1, 3, 5 and 7, let $\varrho(i)$ denote the number of distinct prime factors of $(n^2 - 4)$, and R(i) the total number of prime factors, counting multiplicity, which are congruent to i modulo 8.

LEMMA 9. If n is odd, the case m=1 can only arise if there exist integers r, s with $rs = n^2 - 4$, (r, s) divisible only by primes congruent to 1 modulo 4 and

- either (a) $r \equiv 1 \pmod{8}$; r not a square; r divisible only by primes congruent to 1 modulo 4 and (r|P)=1 for every prime P dividing n,
 - or (b) $r \equiv 3 \pmod{8}$; every factor of r congruent to 1 or 3 modulo 8; every factor of s congruent to 1 or 7 modulo 8 and $(2r \mid P) = 1$ for every prime P dividing n.

In particular we must have $\varrho(1) \ge 1$ or $\varrho(5) \ge 2$ or $\{\varrho(5) = 0 \text{ and } R(3) \text{ odd}\}$.

PROOF. Lemma 5 applies and so $rs = n^2 - 4$ with (r, s) divisible only by primes congruent to 1 modulo 4, $\lambda \mu = n$ and

$$rc^2 - \mu^2 d^2 = 2ta^2$$
$$\lambda^2 c^2 - sd^2 = 2tb^2.$$

If t=1, then a and b are both odd and so $r\equiv 3\pmod 8$ and every factor of r must be congruent to 1 or 3 modulo 8, every factor of s must be congruent to 1 or 7 modulo 8. Now if $P\mid n$, then P divides λ or μ . In the former case $(-2s\mid P)=1$, and since $rs\equiv -4\pmod P$ $(2r\mid P)=1$; in the latter case $(2r\mid P)=1$ also. If t=2, then $r\equiv 1\pmod 8$, r cannot be a square, every factor of $r\equiv 1\pmod 4$

Finally, we see that in case (a), r must have either a prime factor congruent to 1 modulo 8, or else two distinct prime factors congruent to 5 modulo 8. In case (b) there can be no prime factors of n^2-4 congruent to 5 modulo 8 at all whereas all prime factors congruent to 3 modulo 8 divide r, and so $\varrho(5)=0$ and R(3) must be odd.

and (r|P)=1 as above.

In exactly the same way we may prove the following results whose proofs are omitted.

LEMMA 10. If $2 \parallel n$, the case m = 1 can only arise if there exists an integer r dividing $\frac{1}{4}n^2 - 1$, with r not a square, every factor of r congruent to 1 modulo 4 and $(r \mid P) = 1$ for every odd prime P dividing n. In particular $\varrho(1) + \varrho(5) \ge 1$.

LEMMA 11. If $4 \mid n$, the case m = 1 can only occur if there exists an integer r dividing $\frac{1}{4}n^2 - 1$ with r not a square, every factor of r congruent to 1 modulo 4, $r \equiv 1 \pmod{8}$ and $(r \mid P) = 1$ for every odd prime P dividing n. In particular $\varrho(1) \ge 1$ or $\varrho(5) \ge 2$.

THEOREM 2. If n is an odd prime, then a necessary condition for (2) to have solutions is that either $\varrho(1) \ge 1$ or $\varrho(5) \ge 2$, or $\{\varrho(5) = 0 \text{ and } R(3) \text{ is odd}\}$.

PROOF. By Lemma 1, for any minimal solution $m \le (2n)^{\frac{1}{2}}$ and so m = 1. The result then follows by Lemma 9.

THEOREM 3. If n = 2p, where p denotes a prime, p = 2 or $p \equiv \pm 3 \pmod{8}$, then a necessary condition for (2) to have solutions is that $\varrho(1) + \varrho(5) \ge 1$.

PROOF. For p=2, the result was proved by Pocklington [1]. Suppose then that $p \equiv \pm 3 \pmod{8}$. Then by Lemma 1, for a minimal solution $m \le (4p)^{\frac{1}{2}} < p$ if p>4. Thus m=1 or 2 if p>4, and m=1, 2 or 3 if p=3. By Lemma 2, the case p=m=3 cannot arise. By Lemma 3, the case m=2 does not arise. Thus m=1, and the result follows by Lemma 10.

THEOREM 4. If n=4p, where p denotes a prime, then a necessary condition for (2) to have solutions is that $4p^2-1$ have a factorisation rs with $(r \mid p)=1$ if p is odd, and with

- either (a) $r \equiv 1 \pmod{8}$, every factor of r congruent to 1 modulo 4, r not a square,
 - or (b) $r \equiv 3 \pmod{8}$; every factor of r congruent to 1 or 3 modulo 8; every factor of s congruent to 1 or 7 modulo 8.

In particular $\varrho(1) \ge 1$ or $\varrho(5) \ge 2$ or $\{\varrho(5) = 0 \text{ and } R(3) \text{ is odd}\}$.

PROOF. For a minimal solution we have by Lemma 1 that $m \le (8p)^{\frac{1}{2}} < p$ if p > 8, and for these cases m = 1, 2 or 4. The same holds if p = 2. For p = 3, we have the additional case m = 3, whereas for p = 5 or 7 the conditions given are satisfied and so the theorem is vacuously true. The cases m = 2 for all p, and m

= 4 for p = 2 cannot arise, for m divides $x^2 - y^2$ and this latter expression if even at all requires both x and y to be odd, and then is divisible by 8.

For m=1, the result holds by Lemma 11. Suppose then that m=4 with p odd. Then Lemma 7 applies and we find $rs=4p^2-1$,

$$rc^2 - 2p^2d^2 = a^2$$

 $2c^2 - sd^2 = b^2$,

with a, b, c and d all odd and coprime in pairs. Then $r \equiv 3 \pmod{8}$ and r has only factors $\equiv 1$ or 3 (mod 8), s has only factors $\equiv 1$ or 7 (mod 8) and $(r \mid p) = 1$ if p is odd, and again the theorem follows.

Finally the case p = m = 3 cannot occur. for now Lemma 6 would apply with rs = 35 and

$$rc^2 - 3\mu^2 d^2 = a^2$$

 $3\lambda^2 c^2 - sd^2 = b^2$.

Since $5 \mid rs$, one of these is impossible modulo 5.

In exactly the same way we may prove the following results whose proofs are omitted.

THEOREM 5. If n = 8p, where p denotes a prime, a necessary condition for (2) to have solutions is that there exists a factorisation $16p^2 - 1 = rs$ with $(r \mid p) = 1$, if p is odd, and with r not a square, every factor of r congruent to 1 modulo 4. In particular $\varrho(1) + \varrho(5) \ge 1$.

THEOREM 6. If n = 16p, where p denotes a prime, a necessary condition for (2) to have solutions is that there exists a factorisation $64p^2 - 1 = rs$ with r not a square, $r \equiv 1 \pmod{8}$ and with $(r \mid p) = 1$ if p is odd and with

- either (a) every factor of r congruent to 1 modulo 4,
 - or (b) every factor of r congruent to 1 or 3 modulo 8 and every factor of s congruent to 1 or 7 modulo 8.

In particular $\varrho(1) \ge 1$ or $\varrho(5) \ge 2$, or $\{\varrho(5) = 0 \text{ and } R(3) \text{ is even}\}.$

THEOREM 7. If n = 3p, where p denotes an odd prime, then a necessary condition of r(2) to have solutions is that there exists a factorisation $9p^2 - 4 = rs$, where (r,s) is divisible only by primes congruent to 1 modulo 4 and

either (a) (r|p)=1, $r \equiv 1 \pmod{24}$, r not a square, every factor of r congruent to 1 modulo 4;

- or (b) (2r|p)=1, $r \equiv 5 \pmod{24}$, every factor of r is conruent to 1, 5, 7 or 11 $\pmod{24}$ and every factor of s is congruent to ± 1 or $\pm 5 \pmod{24}$;
- or (c) (r|p)=1, $r \equiv 7 \pmod{24}$, every factor of r is congruent to 1 modulo 3 and every factor of s is congruent to $\pm 1 \pmod{12}$;
- or (d) (2r|p)=1, $r\equiv 11\pmod{24}$, every factor of r is congruent to 1 or 3 modulo 8 and every factor of s is congruent to 1 or 3 modulo 8 and every factor of s is congruent to 1 or 7 modulo 8.

Using the above results, we find that no solutions exist for $n = 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 21, 23, 26, 31, 39, 40, 41, 47, 48, 52, 59, 68, 69, 73, 74, 86, 92, 93 or 97. On the other hand, we find solutions for many values of <math>n \le 100$, and a table of minimal solutions for 53 different values of n is appended (Table 1). This leaves 14 values of $n \le 100$, and in fact we are able to show that there are no solutions for any of these; thus the table gives a complete list of values of n for which solutions exist and $n \le 100$. The methods used for these 14 values vary in complexity, and it is hoped in a subsequent paper to deal with one of these, n = 49, in detail.

Acknowledgement.

Theorem 3 was first proved by Veluppillai [2], who also calculated many of the solutions given in the table.

REFERENCES

- H. C. Pocklington, Some diophantine impossibilities, Proc. Cambridge Philos. Soc. 17 (1914), 110–118.
- 2. M. Veluppillai, Some diophantine equations, Ph. D. thesis, University of London, 1977.

ROYAL HOLLOWAY COLLEGE EGHAM SURREY TW20 0EX ENGLAND

Table 1. Values of $n \le 100$, for which (2) has solutions.

у	х	n	У	X	n
3	23	61	1	3	5
3	8	63	1	4	9
1	11	65	1	5	14
5	51	66	3	7	19
1360	22631	67	1	6	20
1	41	71	2	5	22
4	13	75	2	7	24
8	195	76	4	11	25
1	12	77	1	7	27
1	111	78	1	4	28
133	267	79	517	2967	29
1	20	80	1	19	33
1924	12299	81	13	35	34
3	13	82	1	8	35
42304	91039	83	5	16	37
3	187	84	1 ,	34	38
1	76	85	976	5365	43
2928	32683	87	1	9	44
30	217	88	17	35	46
18040	26381	89	25	209	51
1	13	90	8	13	53
1	21	91	1	10	54
91	9605	94	13	63	55
3	11	95	11	24	56
3	17	96	29	209	57
5	19	99	2	13	58
			7	18	60