SQUARES IN ARITHMETICAL PROGRESSIONS I

J. H. E. COHN

Fermat proved that it is impossible for four consecutive terms of an arithmetical progression all to be squares, if the common difference $d \neq 0$. Pocklington [1] proves this from his result that the equation $z^2 = x^4 - x^2y^2 + y^4$ has no solutions in integers with $xy(x^2 - y^2) \neq 0$.

We shall exhibit a connection between the solubility in positive integers of the system

$$(1) \quad a = \alpha^2; \quad a + 2d = \beta^2; \quad a + nd = \gamma^2; \quad a + (n+2)d = \delta^2,$$

and the solutions in integers of

$$(2) \quad z^2 = x^4 + (n^2 - 2)x^2y^2 + y^4 \quad \text{with} \quad xy(x^2 - y^2) \neq 0,$$

the case $n = 1$ of which represents Pocklington's method. The cases $n = 0$ and $n = 2$ are clearly trivial for both systems of equations and we shall assume without further mention that $n \neq 0$ or 2. Specifically we prove

Theorem 1. (i) if (2) has any solutions at all, then it has infinitely many such with different ratios for $x:y$;

(ii) (1) has solutions if and only if (2) has;

(iii) if (1) has any solutions at all, then it has infinitely many with different ratios for $a:d$.

Proof. (i) If (2) has a solution then so has

$$(3) \quad \{X^2 - n^2Y^2\} \cdot \{X^2 - (n^2 - 4)Y^2\} = Z^2, \quad XYZ \neq 0,$$

namely $X = z$, $Y = xy$, $Z = |x^4 - y^4|$, for we find with these values that

$$X^2 - n^2Y^2 = z^2 - n^2x^2y^2 = (x^2 - y^2)^2 \quad \text{and} \quad X^2 - (n^2 - 4)Y^2 = z^2 - (n^2 - 4)x^2y^2 = (x^2 + y^2)^2.$$

Conversely, if (3) has a solution then so has (2), namely $\bar{x} = 2XY$, $\bar{y} = Z$, $\bar{z} = |X^4(n^4 - 4n^2)Y^4|$. For with these values

Received March 2, 1981.
\[\bar{y}^2 + (n^2 - 2)\bar{x}^2 = \{X^2 - n^2 Y^2\} \{X^2 - (n^2 - 4) Y^2\} + 4(n^2 - 2)Y^2 \]
\[= X^4 + 2(n^2 - 2)XY^2 + n^2(n^2 - 4)Y^4 \]
\[= \{X^2 + n^2 Y^2\} \cdot \{X^2 + (n^2 - 4)Y^2\} . \]

Thus
\[\bar{y}^4 + (n^2 - 2)\bar{x}^2y^{-2} + \bar{x}^4 = \{X^4 - n^4 Y^4\} \{X^4 - (n^2 - 4)^2 Y^4\} + 16X^4 Y^4 \]
\[= X^8 - (2n^4 - 8n^2)XY^4 + n^4(n^2 - 4)^2 Y^8 \]
\[= \{X^4 - (n^4 - 4n^2)Y^4\}^2 \]
\[= z^2 . \]

It remains to show that \(\bar{x}^2 \neq \bar{y}^2 \), but this must be so since otherwise we should obtain successively
\[Z^2 = 4X^2 Y^2 \]
\[X^4 - (2n^2 - 4)X^2 Y^2 + (n^4 - 4n^2)Y^4 = 4X^2 Y^2 \]
\[(X^2 - n^2 Y^2)^2 = (2nY^2)^2 \]
\[X^2 = (n^2 \pm 2n)Y^2 \]
\[(n \pm 1)^2 = 1 + \text{square} , \]
and this is not so if \(n \neq 0 \) or 2.

Now suppose that (2) has a solution and suppose without loss of generality that \(x > y > 0 \) and that \((x, y) = 1 \). Then by the above reasoning we find a solution of (3) and from this a new solution of (2), \(\bar{x} = 2xyz, \bar{y} = x^4 - y^4 \), with an appropriate \(\bar{z} \), the expression for which is rather complicated, and irrelevant for our purpose. Of course it will not necessarily follow that \(\bar{x} > \bar{y} \) or that \((\bar{x}, \bar{y}) = 1 \), but at least \(\bar{x} \) and \(\bar{y} \) will be positive and unequal. Whether \(\bar{x} \) or \(\bar{y} \) is the greater is of no import, for we can interchange them if necessary. To obtain a new solution of (2) in which the variables \(x \) and \(y \) have no common factor we can now divide \(\bar{x} \) and \(\bar{y} \) by \((\bar{x}, \bar{y}) \) to obtain say \(x^* \) and \(y^* \) respectively. Now although \(\bar{x} \) and \(\bar{y} \) may have common factors, they have no factor in common with either \(x \) or \(y \), for if so, such a factor would share a prime factor with both \(x \) and \(y \) and this cannot occur by our initial assumption about \(x \) and \(y \). It follows therefore that \(x^* \geq xy \) and in fact \(x^*y^* > xy \), with the sole possible exception being if \(2z = x^4 - y^4 \). But this cannot occur for it would imply that \(x \) and \(y \) were both odd (since they cannot be both even) and hence that
\[(x^2 - y^2)^2 \left(\frac{x^2 + y^2}{2} \right)^2 = z^2 = (x^2 - y^2)^2 + (nx^2) . \]
But then \(x^2 - y^2\) would have to divide \(nxy\) and if the quotient were \(c\) we should find that \(\left\{\frac{1}{2}(x^2 + y^2)\right\}^2 = 1 + c^2\) which is impossible as \(c \neq 0\). It follows therefore that given any one initial solution with \((x, y) = 1\) we can find another one with \((x^*, y^*) = 1\) and \(x^*y^* > xy\). We thus find in like fashion infinitely many such solutions no two of which can have the same ratio \(x:y\).

(ii) If (1) has solutions, let \(x = \alpha \beta\) and \(y = \gamma \delta\). Then \(x \neq y\) and

\[
x^4 + (n^2 - 2)x^2y^2 + y^4
= (a^2 + 2ad)^2 + (n^2 - 2)(a^2 + 2ad)(a^2 + (2n + 2)ad + n(n + 2)d^2) +
+ (a^2 + (2n + 2)ad + n(n + 2)d^2)^2
= (2nad + n(n + 2)d^2)^2 + n^2(a^2 + 2ad)(a^2 + (2n + 2)ad + n(n + 2)d^2)
= n^2\left\{a^4 + (2n + 4)a^3d + a^2d^2(4 + n^2 + 2n + 4n + 4) +
+ ad^3(4n + 8 + 2n^2 + 4n) + (n + 2)^2d^4\right\}
= n^2\left\{a^2 + (n + 2)ad + (n + 2)d^2\right\}^2,
\]

and so (2) has solutions.

If (2) has solutions, let \(z^2 = x^4 + (n^2 - 2)x^2y^2 + y^4\) and \((x, y) = 1\) with \(x > y > 0\). Let \(T = (x^2 + y^2)z\) and \(S = xy(x^2 - y^2) > 0\). Then

\[
T^2 - (n+2)^2S^2 = \{x^4 + (n^2 - 2)x^2y^2 + y^4\}\{x^4 + 2x^2y^2 + y^4\} -
- (n+2)^2x^2y^2(x^4 - 2x^2y^2 + y^4)
= x^8 - (4n + 4)x^6y^2 + (4n^2 + 8n + 6)x^4y^4 - (4n + 4)x^2y^6 + y^8
= \{x^4 - (2n + 2)x^2y^2 + y^4\}^2 = A^2, \quad \text{say,}
\]

and

\[
T^2 - (n-2)^2S^2 = \{x^4 + (2n - 2)x^2y^2 + y^4\}\{x^4 + (2n - 2)x^2y^2 + y^4\}^2 = B^2, \quad \text{say, similarly}.
\]

Now \(B = (x^2 - y^2)^2 + 2nx^2y^2 \neq 0\) and we shall show that \(A\) does not vanish either. For if \(A\) were zero then \((x^2 - y^2)^2 = 2nx^2y^2\) and so \(z^2 = (x^2 - y^2)^2 + n^2x^2y^2 = (n^2 + 2n)x^2y^2\) would imply that \(n^2 + 2n\) were a perfect square, which is impossible as \(n \neq 0\) or 2.

To complete the proof that (1) has solutions it would now suffice to be able to deduce from the above that \(T \pm (n+2)S\) and \(T \pm (n-2)S\) were all perfect squares and then write \(a = T - (n+2)S, \quad d = 2S\). Unfortunately, the various common factors which can arise are troublesome and so we proceed as follows. Let

\[
\tau = T^4 - (n^2 - 4)^2S^4 \quad \text{and} \quad \sigma = 2ABST \neq 0.
\]
Then
\[\tau = T^2(T^2 - (n+2)^2S^2) + (n+2)^2S^2(T^2 - (n-2)^2S^2) = A^2T^2 + (n+2)^2B^2S^2, \]
and so
\[\tau \pm (n+2)\sigma = (AT \pm (n+2)BS)^2 \]
and similarly
\[\tau \pm (n-2)\sigma = (BT \pm (n-2)AS)^2. \]

Now let \(a = \tau - (n+2)\sigma, \ d = 2\sigma \neq 0. \) Then \(a, a+2d, a+nd, \) and \(a+(n+2)d \) are all perfect squares, as required.

(iii) Given a solution of (1) we see that (2) has a solution and hence infinitely many such with different ratios for \(x:y. \) Hence we can apply the algorithm above to produce arithmetical progressions satisfying (1) and since there can only be finitely many distinct ratios \(x:y \) which yield a given ratio \(a:d, \) the proof is complete.

As a result of the above, we now consider the system (2) in more detail. For any solution of (2) we define \(W(x, y, z) = (x^2 + y^2)z, \) a positive integer, and so if there are solutions at all, there will be one or more that minimise \(W. \) Such a solution we shall call a minimal solution; it is clear that for a minimal solution \((x, y) = 1 \) and so at least one of \(x \) and \(y \) will be odd. We shall assume that \(y \) is odd. If in addition \(x \) is also odd, then we shall assume that \(x>y. \)

Lemma 1. For a minimal solution of (2), if \(m = (x^2 - y^2, n) \) then \(m \leq (2n)^4; \) if in addition \(nxy/m \) is odd then \(m \leq (\frac{1}{2}n)^4. \)

Proof. For a minimal solution, \(z^2 = (x^2 - y^2)^2 + (nxy)^2 \) and since \((x, y) = 1 \) it easily follows that \((x^2 - y^2, nxy) = m. \) Hence
\[\left\{ \frac{z}{m} \right\}^2 = \left\{ \frac{x^2 - y^2}{m} \right\}^2 + \left\{ \frac{nxy}{m} \right\}^2, \]
where the two summands have no common factor. Hence one of them is odd and the other even.

Case 1. If \(nxy/m \) is odd. Then for some positive integers \(\lambda, \mu \) of opposite parity
\[nxy = (\lambda^2 - \mu^2)m \]
\[x^2 - y^2 = 2\lambda \mu m \]
\[z = (\lambda^2 + \mu^2)m \]

and so
\[\left(\frac{n(x^2 + y^2)}{2m} \right)^2 = n^2 \left(\frac{x^2 - y^2}{2m} \right)^2 + \left(\frac{nxy}{m} \right)^2 \]
\[= n^2 \lambda^2 \mu^2 + (\lambda^2 - \mu^2)^2, \]

an equation of the same form as (2) but with a new value for \(W, W_1 \) given by
\[W_1 = (\lambda^2 + \mu^2) \cdot \frac{n(x^2 + y^2)}{2m} \]
\[= \frac{nz(x^2 + y^2)}{2m^2} \]
\[= \frac{nW}{2m^2}, \]

and descent applies unless \(m \leq (\frac{1}{2}n)^4 \).

Case 2. If \(nxy/m \) **is even.** We then obtain in similar fashion
\[x^2 - y^2 = (\lambda^2 - \mu^2)m \]
\[nxy = 2\lambda \mu m \]
\[z = (\lambda^2 + \mu^2)m, \]

and so
\[\left(\frac{n(x^2 + y^2)}{m} \right)^2 = n^2 \left(\frac{x^2 - y^2}{m} \right)^2 + 4 \left(\frac{nxy}{m} \right)^2 \]
\[= n^2 (\lambda^2 - \mu^2)^2 + 16\lambda^2 \mu^2 \]
\[= n^2 X^2 Y^2 + (X^2 - Y^2)^2, \]

where \(X = \lambda + \mu \) and \(Y = \lambda - \mu \). Again we have an equation of the same form (2) with a new \(W, W_1 \)
\[W_1 = (X^2 + Y^2) \cdot \frac{n(x^2 + y^2)}{m} \]
\[= 2(\lambda^2 + \mu^2) \cdot \frac{n(x^2 + y^2)}{m} \]
and descent applies unless \(m \leq (2n)^{\frac{1}{4}} \).

Throughout the following \(m \) will denote \((x^2 - y^2, n)\).

Lemma 2. If \(2 \parallel n \) and \(m \) is odd then \(m \equiv \pm 1 \pmod{8} \).

Proof. We have \(nxy/m \) is even, and so as above

\[
x^2 - y^2 = (\lambda^2 - \mu^2)m
\]

\[
nxy = 2\lambda\mu m.
\]

Since \(2 \parallel n \) and \(m \) is odd, \(xy \) and \(\lambda\mu \) are divisible by the same power of 2. If now \(2 \parallel xy \), then each of \(x^2 - y^2 \) and \(\lambda^2 - \mu^2 \) is congruent to 3 or 5 \((\mod 8)\), whereas if \(4 \parallel xy \) both expressions are congruent to 1 or 7 \((\mod 8)\). In either case the statement of the lemma follows.

Lemma 3. If \(2 \parallel m \) then \(n/m \equiv \pm 1 \pmod{8} \).

Proof. Since \(m \) is even, \(x \) must be odd and since \(4 \not| m \), \(4 \not| n \), since now \(8 \mid (x^2 - y^2) \). Thus \(nxy/m \) is odd, and so as in the proof of Lemma 1,

\[
nxy = (\lambda^2 - \mu^2)m
\]

\[
x^2 - y^2 = 2\lambda\mu m.
\]

Since \(x \) and \(y \) are both odd, we may define integers \(e \) and \(f \) of opposite parity by \(e = \frac{1}{2}(x + y) \) and \(f = \frac{1}{2}(x - y) \) obtaining

\[
n(e^2 - f^2) = (\lambda^2 - \mu^2)m
\]

\[
ef = \frac{1}{2}(\lambda\mu),
\]

and the conclusion now follows as in the proof of the preceding lemma.

Lemma 4. For any solution of (2) \(x^2 + y^2 > 2n^{\frac{1}{4}} \).

Proof. We have

\[
z^2 = (nxy)^2 + (x^2 - y^2)^2 > (nxy)^2,
\]

and so \(z \geq nxy + 1 \). Thus

\[
(x^2 + y^2)^2 > (x^2 - y^2)^2
\]
\[\begin{align*}
&= z^2 - (nxy)^2 \\
&\geq (nxy+1)^2 - (nxy)^2 \\
&= 2nxy + 1 \\
&> 4n, \quad \text{since } xy(x^2 - y^2) \neq 0.
\end{align*} \]

Lemma 5. Suppose that \(n \) is odd, and that (2) has solutions. Then there exist positive integers \(a, b, c, d, r, s, t, \lambda, \) and \(\mu \) with \(c \) and \(d \) both odd, \(a, b, c, \) and \(d \) coprime in pairs, with \(t = 1 \) or \(2 \) such that \(y = cd, \ x = tab \) is a minimal solution of (2) which defines \(m \) such that \(\lambda \mu = n/m, \ rs = n^2 - 4 \) and

\[\begin{align*}
rc^2 - m\mu^2 d^2 &= 2ta^2 \\
m\lambda^2 c^2 - sd^2 &= 2tb^2,
\end{align*} \]

where

(a) if \(t = 1 \), \(a \) and \(b \) are both odd and \(\lambda < \mu; \)

(b) if \(t = 2 \), \(r \) and \(m \) cannot both be squares, and \(b^2 - a^2 \equiv m \pmod{4} \).

Proof. Let \(x, y \) provide a minimal solution with \(y \) odd. Then

\[\begin{align*}
4z^2 &= 4x^4 + 4(n^2 - 2)x^2 y^2 + 4y^4 \\
&= \left\{ 2(x^2 - y^2) + n^2 y^2 \right\}^2 - n^2 (n^2 - 4)y^4
\end{align*} \]

and so

\[(n^2 - 4)n^2 y^4 = \{2(x^2 - y^2) + n^2 y^2 + 2z\} \cdot \{2(x^2 - y^2) + n^2 y^2 - 2z\}. \]

Now \(m = (x^2 - y^2, n) \) divides \(z \) and so both factors on the right. Thus

\[\begin{align*}
(n^2 - 4)\left(\frac{n}{m}\right)^2 y^4 &= \left\{ \frac{2(x^2 - y^2)}{m} + \frac{n^2 y^2}{m} + \frac{2z}{m} \right\} \cdot \left\{ \frac{2(x^2 - y^2)}{m} + \frac{n^2 y^2}{m} - \frac{2z}{m} \right\} \\
&= A \cdot B, \quad \text{say}.
\end{align*} \]

Now the left hand side of this equation is odd, since \(n \) and \(y \) are odd, and hence \(A \) and \(B \) are both odd. Let \(p \) denote any prime dividing \((A, B) \). Then \(p \) is odd, and divides both \(AB \) and \(\frac{1}{2}(A + B) \), i.e. both

\[\begin{align*}
(n^2 - 4)\left(\frac{n}{m}\right)^2 y^4 \quad \text{and} \quad \frac{2(x^2 - y^2)}{m} + \frac{n^2 y^2}{m}.
\end{align*} \]

In the first place we observe that \(p \) cannot divide \(y \), otherwise it would also have to divide \(x \), impossible since \(x \) and \(y \) were supposed to provide a minimal solution. Similarly \(p \) cannot divide \(n/m \) otherwise it would also have to divide \((x^2 - y^2)/m \), contradicting the definition of \(m \). Hence \(p \) can only divide \(n^2 - 4 \),
and then it would also divide $x^2 + y^2$, and must necessarily be congruent to 1 modulo 4. Hence we obtain for suitable c, d, r, s, λ, μ, and $A = r\lambda^2c^4, B = s\mu^2d^4$, where $y = cd$ is odd; $rs = n^2 - 4; \lambda\mu = n/m$ and $(A, B) = (r, s)$ which has only prime factors congruent to 1 modulo 4. Then adding A and B to eliminate z gives

$$r\lambda^2c^4 + s\mu^2d^4 = 4(x^2 - y^2)m^{-1} + 2n^2y^2m^{-1}$$

and so solving for x^2 and substituting $y = cd$ yields

$$4x^2 = rm\lambda^2c^4 - (2n^2 - 4)c^2d^2 + sm\mu^2d^4$$

$$= (rc^2 - m\mu^2d^2)(m\lambda^2c^2 - sd^2)$$

$$= C \cdot D, \quad \text{say}.$$

Now both C and D are even since r, s, c, d, λ, μ, and m are all odd, and so $2 | (C, D)$. However we find that

$$m\mu^2D - sC = (n^2 - rs)c^2 = 4c^2; \quad rD - m\lambda^2C = 4d^2,$$

and so since c and d are coprime, (C, D) divides 4. Hence we obtain $C = \pm 2ta^2, D = \pm 2tb^2$ and $x = tab$, where $t = 1$ or 2. Apart from the \pm sign these are the required equations. But the \pm sign can be removed by interchanging in pairs c and $d; \lambda$ and $\mu; a$ and b if necessary. Here $(a, b) = 1$ and since $x = 2tab, y = cd$, it then follows that a, b, c, and d are pairwise coprime.

If $t = 1$, a cannot be even for if it were we should find that $r \equiv m \pmod{4}$ and so since $rs = n^2 - 4 \equiv 1 \pmod{4}$ we should find that $s \equiv m \pmod{4}$ and so $2b^2 \equiv 0 \pmod{4}$ would force b to be even also, which is impossible. Similarly b must be odd. Finally, in this case we may assume that $\lambda < \mu$. For certainly $\lambda \neq \mu$ since $(\lambda, \mu) = 1$ and $m < n$ by Lemma 1, and if $\lambda > \mu$ then we find that $rb^2 - m\lambda^2a^2 = 2d^2, m\mu^2b^2 - sa^2 = 2c^2$, and now $\mu < \lambda$, and so the result follows on interchanging c and $b; d$ and $a; x$ and y in pairs. This concludes the first case.

If $t = 2$, then we obtain $rb^2 - m\lambda^2a^2 = d^2, m\mu^2b^2 - sa^2 = c^2$. Since $r, c, and m$ are all odd, $r \equiv m \pmod{4}$ and so a and b have opposite parity. If $m \equiv 1 \pmod{4}$, then a must be even and b odd, whereas if $m \equiv 3 \pmod{4}$, then the reverse holds; in either case $b^2 - a^2 \equiv m \pmod{4}$. Finally, we must show that r and m cannot both be perfect squares if $t = 2$. We observe first that $4z/m = A - B = r\lambda^2c^4 - s\mu^2d^4$ and so

$$4z = rc^2(sd^2 + 4b^2) - sd^2(rc^2 - 4a^2)$$

$$z = rb^2c^2 + sa^2d^2 > rbc.$$
suppose on the contrary that a prime \(p \) did divide them both. Then \(p + 2 \), since \(Rc \) is odd, and thus we should have that \(p \mid a \). But then \(p \mid cd \). Thus \(p \mid R \) and \(p \mid M \mu \). But \(M \mu \) divides \(n \) and \(n \) and \(R \) have no common factor, since \(R \) divides \(n^2 - 4 \) and is odd. Thus we must have for some suitable integers \(e \) and \(f \) with no common factor,

\[
Rc = e^2 + f^2
\]

\[
a = ef
\]

\[
M \mu d = e^2 - f^2.
\]

Then

\[
(2bM R \mu)^2 = M^4 \lambda^2 \mu^2 (Rc)^2 - R^2s(M \mu d)^2
\]

\[
= n^2(e^2 + f^2)^2 - (n^2 - 4)(e^2 - f^2)^2
\]

and so

\[
(bMR \mu)^2 = e^4 + (n^2 - 2)e^2f^2 + f^4,
\]

and equation of the same form as (2). But now the new \(W, W_1 \) satisfies

\[
W_1 = bMR \mu (e^2 + f^2)
\]

\[
= bMR^2 \mu c
\]

\[
= M \mu rbc < M \mu z,
\]

and so this case is impossible by descent, unless \(x^2 + y^2 < M \mu \).

To deal with the possibility that \(x^2 + y^2 < M \mu \), we can as before rewrite our equations in the form

\[
R^2b^2 - M^2 \lambda^2 a^2 = d^2
\]

\[
M^2 \mu^2 b^2 - sa^2 = e^2,
\]

and obtain just as before, successively

\[
Rb = g^2 + h^2
\]

\[
M \lambda a = 2gh
\]

\[
d = g^2 - h^2
\]

\[
(M \lambda Rc)^2 = M^4 \lambda^2 \mu^2 (g^2 + h^2)^2 - 4rs(2h^2).
\]

Now let \(G = g + h, H = g - h \). Then

\[
(M \lambda Rc)^2 = \frac{1}{4}n^2(G^2 + H^2)^2 - \frac{1}{4}(n^2 - 4)(G^2 - H^2)^2
\]

\[
= G^4 + (n^2 - 2)G^2H^2 + H^4,
\]
where now

\[W_2 = M\lambda Rc(G^2 + H^2) \]
\[= 2M\lambda Rc(g^2 + h^2) \]
\[= 2M\lambda rbc \]
\[< 2M\lambda z , \]

and again descent applies unless \(x^2 + y^2 < 2M\lambda \).

But the conditions \(x^2 + y^2 < M\mu \) and \(x^2 + y^2 < 2M\lambda \) cannot hold simultaneously, for together they would imply \((x^2 + y^2)^2 < 2M^2\lambda\mu = 2m\lambda\mu = 2n \), impossible by Lemma 4.

This concludes the proof.

We next state without proof three more results which together deal with the various cases in which \(n \) is even. In all cases the proofs are similar to the above, the differences concerning only the powers of 2 which arise.

Lemma 6. If there exists a solution of (2) which is minimal and has \(n/m \) even, then there exists such a solution and positive integers \(a, b, c, d, r, s, \lambda \) and \(\mu \) with \(c \) and \(d \) both odd; \(a, b, c \) and \(d \) coprime in pairs; \((\lambda, \mu) = 1 \) and with \((r, s)\) divisible only by primes congruent to 1 modulo 4; \(rs = \frac{1}{2}n^2 - 1 \); \(\lambda\mu = n/(2m) \); \(x = ab; y = cd \) and with

\[rc^2 - m\mu^2d^2 = a^2 \]
\[m\lambda^2c^2 - sd^2 = b^2 , \]

where if \(m \) is even, \(a \) and \(b \) are both odd and \(\lambda < \mu \), and if \(m \) is odd \(b^2 - a^2 \equiv m \) (mod 4). Also \(r \) and \(m \) cannot both be squares.

Lemma 7. If there exists a minimal solution of (2) with \(n/m \) odd and \(4 | n \), then there exists such a solution and odd positive integers \(a, b, c, d, r, s, \lambda \) and \(\mu \) with \(a, b, c, d \) coprime in pairs; \((\lambda, \mu) = 1 \); \(\lambda < \mu \); \((r, s)\) divisible only by primes congruent to 1 modulo 4; \(rs = \frac{1}{2}n^2 - 1 \); \(\lambda\mu = n/m \); \(x = ab; y = cd \) and with

\[rc^2 - \frac{1}{2}m\mu^2d^2 = a^2 \]
\[\frac{1}{2}m\lambda^2c^2 - sd^2 = b^2 \]

and with \(r \) and \(\frac{1}{2}m \) not both squares.

Lemma 8. If there exists a solution of (2) with \(n/m \) odd and \(2 \| n \), then there exists such a solution and positive integers \(a, b, c, d, r, s, \lambda \) and \(\mu \) with \(a, b, c, d \)
coprime in pairs and all odd; \((\lambda, \mu) = 1\); \(\lambda < \mu\); \((r, s)\) divisible only by primes congruent to 1 modulo 4; \(\lambda \mu = n/m\); \(rs = \frac{1}{16}(n^2 - 4)\); \(x = ab\); \(y = cd\) and with
\[
2rc^2 - \frac{1}{2}m\mu^2 d^2 = a^2 \\
\frac{1}{2}m\lambda^2 c^2 - 2sd^2 = b^2.
\]

The above results can be used for many values of \(n\) either to find solutions, where they exist, or to prove the non-existence of solutions. In order to aid the latter, we make the following

Definition. For \(i = 1, 3, 5\) and 7, let \(g(i)\) denote the number of distinct prime factors of \((n^2 - 4)\), and \(R(i)\) the total number of prime factors, counting multiplicity, which are congruent to \(i\) modulo 8.

Lemma 9. If \(n\) is odd, the case \(m = 1\) can only arise if there exist integers \(r, s\) with \(rs = n^2 - 4\), \((r, s)\) divisible only by primes congruent to 1 modulo 4 and

- (a) \(r \equiv 1 \pmod{8}\); \(r\) not a square; \(r\) divisible only by primes congruent to 1 modulo 4 and \((r \mid P) = 1\) for every prime \(P\) dividing \(n\),
- (b) \(r \equiv 3 \pmod{8}\); every factor of \(r\) congruent to 1 or 3 modulo 8; every factor of
 \(s\) congruent to 1 or 7 modulo 8 and \((2r \mid P) = 1\) for every prime \(P\) dividing \(n\).

In particular we must have \(g(1) \geq 1\) or \(g(5) \geq 2\) or \(\{g(5) = 0\text{ and } R(3) \text{ odd}\}\).

Proof. Lemma 5 applies and so \(rs = n^2 - 4\) with \((r, s)\) divisible only by primes congruent to 1 modulo 4, \(\lambda \mu = n\) and
\[
rc^2 - \mu^2 d^2 = 2ta^2 \\
\lambda^2 c^2 - sd^2 = 2tb^2.
\]

If \(t = 1\), then \(a\) and \(b\) are both odd and so \(r \equiv 3 \pmod{8}\) and every factor of \(r\) must be congruent to 1 or 3 modulo 8, every factor of \(s\) must be congruent to 1 or 7 modulo 8. Now if \(P \mid n\), then \(P\) divides \(\lambda\) or \(\mu\). In the former case \((-2s \mid P) = 1\), and since \(rs \equiv -4 \pmod{P}\) \((2r \mid P) = 1\); in the latter case \((2r \mid P) = 1\) also.

If \(t = 2\), then \(r \equiv 1 \pmod{8}\), \(r\) cannot be a square, every factor of \(r \equiv 1 \pmod{4}\) and \((r \mid P) = 1\) as above.

Finally, we see that in case (a), \(r\) must have either a prime factor congruent to 1 modulo 8, or else two distinct prime factors congruent to 5 modulo 8. In case (b) there can be no prime factors of \(n^2 - 4\) congruent to 5 modulo 8 at all whereas all prime factors congruent to 3 modulo 8 divide \(r\), and so \(g(5) = 0\) and \(R(3)\) must be odd.
In exactly the same way we may prove the following results whose proofs are omitted.

Lemma 10. If $2 \parallel n$, the case $m=1$ can only arise if there exists an integer r dividing $\frac{1}{2}n^2 - 1$, with r not a square, every factor of r congruent to 1 modulo 4 and $(r \mid P) = 1$ for every odd prime P dividing n. In particular $\sigma(1) + \sigma(5) \geq 1$.

Lemma 11. If $4 \mid n$, the case $m=1$ can only occur if there exists an integer r dividing $\frac{1}{2}n^2 - 1$ with r not a square, every factor of r congruent to 1 modulo 4, $r \equiv 1 \pmod{8}$ and $(r \mid P) = 1$ for every odd prime P dividing n. In particular $\sigma(1) \geq 1$ or $\sigma(5) \geq 2$.

Theorem 2. If n is an odd prime, then a necessary condition for (2) to have solutions is that either $\sigma(1) \geq 1$ or $\sigma(5) \geq 2$, or \{ $\sigma(5)=0$ and $R(3)$ is odd \}.

Proof. By Lemma 1, for any minimal solution $m \leq (2n)^\dagger$ and so $m = 1$. The result then follows by Lemma 9.

Theorem 3. If $n = 2p$, where p denotes a prime, $p = 2$ or $p \equiv \pm 3 \pmod{8}$, then a necessary condition for (2) to have solutions is that $\sigma(1) + \sigma(5) \geq 1$.

Proof. For $p = 2$, the result was proved by Pocklington [1]. Suppose then that $p \equiv \pm 3 \pmod{8}$. Then by Lemma 1, for a minimal solution $m \leq (4p)^\dagger < p$ if $p > 4$. Thus $m = 1$ or 2 if $p > 4$, and $m = 1, 2$ or 3 if $p = 3$. By Lemma 2, the case $p = m = 3$ cannot arise. By Lemma 3, the case $m = 2$ does not arise. Thus $m = 1$, and the result follows by Lemma 10.

Theorem 4. If $n = 4p$, where p denotes a prime, then a necessary condition for (2) to have solutions is that $4p^2 - 1$ have a factorisation rs with $(r \mid p) = 1$ if p is odd, and with

- either (a) $r \equiv 1 \pmod{8}$, every factor of r congruent to 1 modulo 4, r not a square,
- or (b) $r \equiv 3 \pmod{8}$; every factor of r congruent to 1 or 3 modulo 8; every factor of s congruent to 1 or 7 modulo 8.

In particular $\sigma(1) \geq 1$ or $\sigma(5) \geq 2$ or \{ $\sigma(5)=0$ and $R(3)$ is odd \}.

Proof. For a minimal solution we have by Lemma 1 that $m \leq (8p)^\dagger < p$ if $p > 8$, and for these cases $m = 1, 2$ or 4. The same holds if $p = 2$. For $p = 3$, we have the additional case $m = 3$, whereas for $p = 5$ or 7 the conditions given are satisfied and so the theorem is vacuously true. The cases $m = 2$ for all p, and m
= 4 for \(p = 2 \) cannot arise, for \(m \) divides \(x^2 - y^2 \) and this latter expression if even at all requires both \(x \) and \(y \) to be odd, and then is divisible by 8.

For \(m = 1 \), the result holds by Lemma 11. Suppose then that \(m = 4 \) with \(p \) odd. Then Lemma 7 applies and we find \(rs = 4p^2 - 1 \),

\[
rc^2 - 2p^2d^2 = a^2
\]

\[
2c^2 - sd^2 = b^2,
\]

with \(a, b, c \) and \(d \) all odd and coprime in pairs. Then \(r \equiv 3 \pmod{8} \) and \(r \) has only factors \(\equiv 1 \) or \(3 \pmod{8} \), \(s \) has only factors \(\equiv 1 \) or \(7 \pmod{8} \) and \((r \mid p) = 1 \) if \(p \) is odd, and again the theorem follows.

Finally the case \(p = m = 3 \) cannot occur, for now Lemma 6 would apply with \(rs = 35 \) and

\[
rc^2 - 3\mu^2d^2 = a^2
\]

\[
3\lambda^2c^2 - sd^2 = b^2.
\]

Since \(5 \mid rs \), one of these is impossible modulo 5.

In exactly the same way we may prove the following results whose proofs are omitted.

Theorem 5. If \(n = 8p \), where \(p \) denotes a prime, a necessary condition for (2) to have solutions is that there exists a factorisation \(16p^2 - 1 = rs \) with \((r \mid p) = 1 \), if \(p \) is odd, and with \(r \) not a square, every factor of \(r \) congruent to 1 modulo 4. In particular \(\varrho(1) + \varrho(5) \geq 1 \).

Theorem 6. If \(n = 16p \), where \(p \) denotes a prime, a necessary condition for (2) to have solutions is that there exists a factorisation \(64p^2 - 1 = rs \) with \(r \) not a square, \(r \equiv 1 \pmod{8} \) and with \((r \mid p) = 1 \) if \(p \) is odd and with

either (a) every factor of \(r \) congruent to 1 modulo 4,
or (b) every factor of \(r \) congruent to 1 or 3 modulo 8 and every factor of \(s \) congruent to 1 or 7 modulo 8.

In particular \(\varrho(1) \geq 1 \) or \(\varrho(5) \geq 2 \), or \(\{ \varrho(5) = 0 \text{ and } R(3) \text{ is even} \} \).

Theorem 7. If \(n = 3p \), where \(p \) denotes an odd prime, then a necessary condition of (2) to have solutions is that there exists a factorisation \(9p^2 - 4 = rs \), where \((r, s) \) is divisible only by primes congruent to 1 modulo 4 and

either (a) \((r \mid p) = 1, r \equiv 1 \pmod{24} \), \(r \) not a square, every factor of \(r \) congruent to 1 modulo 4;
or (b) \((2r | p) = 1, r \equiv 5 \pmod{24}\), every factor of \(r\) is congruent to 1, 5, 7 or 11 \(\pmod{24}\) and every factor of \(s\) is congruent to \(+1\) or \(+5\) \(\pmod{24}\);

or (c) \((r | p) = 1, r \equiv 7 \pmod{24}\), every factor of \(r\) is congruent to 1 modulo 3 and every factor of \(s\) is congruent to \(+1\) \(\pmod{12}\);

or (d) \((2r | p) = 1, r \equiv 11 \pmod{24}\), every factor of \(r\) is congruent to 1 or 3 modulo 8 and every factor of \(s\) is congruent to 1 or 3 modulo 8 and every factor of \(s\) is congruent to 1 or 7 modulo 8.

Using the above results, we find that no solutions exist for \(n = 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 21, 23, 26, 31, 39, 40, 41, 47, 48, 52, 59, 68, 69, 73, 74, 86, 92, 93\) or 97. On the other hand, we find solutions for many values of \(n \leq 100\), and a table of minimal solutions for 53 different values of \(n\) is appended (Table 1). This leaves 14 values of \(n \leq 100\), and in fact we are able to show that there are no solutions for any of these; thus the table gives a complete list of values of \(n\) for which solutions exist and \(n \leq 100\). The methods used for these 14 values vary in complexity, and it is hoped in a subsequent paper to deal with one of these, \(n = 49\), in detail.

Acknowledgement.

Theorem 3 was first proved by Velupillai [2], who also calculated many of the solutions given in the table.

REFERENCES

Table 1. Values of \(n \leq 100 \), for which (2) has solutions.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>2967</td>
<td>517</td>
</tr>
<tr>
<td>33</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>38</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>5365</td>
<td>976</td>
</tr>
<tr>
<td>44</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>35</td>
<td>17</td>
</tr>
<tr>
<td>51</td>
<td>209</td>
<td>25</td>
</tr>
<tr>
<td>53</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>54</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>63</td>
<td>13</td>
</tr>
<tr>
<td>56</td>
<td>24</td>
<td>11</td>
</tr>
<tr>
<td>57</td>
<td>209</td>
<td>29</td>
</tr>
<tr>
<td>58</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>61</td>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>63</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>51</td>
<td>5</td>
</tr>
<tr>
<td>67</td>
<td>22631</td>
<td>1360</td>
</tr>
<tr>
<td>71</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>76</td>
<td>195</td>
<td>8</td>
</tr>
<tr>
<td>77</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>78</td>
<td>111</td>
<td>1</td>
</tr>
<tr>
<td>79</td>
<td>267</td>
<td>133</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>81</td>
<td>12299</td>
<td>1924</td>
</tr>
<tr>
<td>82</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>83</td>
<td>91039</td>
<td>42304</td>
</tr>
<tr>
<td>84</td>
<td>187</td>
<td>3</td>
</tr>
<tr>
<td>85</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>32683</td>
<td>2928</td>
</tr>
<tr>
<td>88</td>
<td>217</td>
<td>30</td>
</tr>
<tr>
<td>89</td>
<td>26381</td>
<td>18040</td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>94</td>
<td>9605</td>
<td>91</td>
</tr>
<tr>
<td>95</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>96</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>99</td>
<td>19</td>
<td>5</td>
</tr>
</tbody>
</table>