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ON THE RELATION BETWEEN
THE MULTIDIMENSIONAL MOMENT PROBLEM
AND THE ONE-DIMENSIONAL MOMENT PROBLEM

L. C. PETERSEN

Consider the multi-dimensional moment problem

* Cc, = J x*du(x) for o e Nj.
R

Here
o = (04,...,0,) is a multi-index
a;€ Ng = {0,1,...}

x = (Xg,...,x,) € R"

&

x* = xP..oxpr

o

Under which conditions on a sequence (c,) of real numbers, o € Nj, does
there exist a positive Radon measure u on R" such that (*) holds?

Generally, a measure u is not uniquely determined by its moment sequence
(c,). In this paper we show that p is indeed unique if each of the n coordinate
projections P;(u) is known to be uniquely determined as a one-dimensional
measure. With an example we also answer the converse question in the
negative. Although the positive result was stated by Kilpi in [9], Kilpi’s proof
did not, in fact, settle the question.

For x=(x,,...,X,) € R" we put ||x| = (X', x?)* and let

M*(R") = {MGM+(R") J IIXIIZ'”d#(x)<OOVm€No},
R"

where M* (R") is the set of all positive Radon measures on R".

Let C(R") denote the real vector space of continuous real-valued functions
on R" and C,(R") the subspace of continuous functions with compact support.
For fe C.(R") we define the mapping ¢,: M* (R") — R by
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@ f(ﬂ) = jf du .
The weakest topology on M * (R") in which all the mappings @, fe C.(R"),
are continuous, is called the vague topology. On M*(R") we introduce an
equivalence relation ~ given by

Uy J x*du(x) = j x*dv(x) VYaeNj,
R" R

and the equivalence class containing u is denoted [u],. The measure y is said to
be determinate if [u],={u}.

Let P,= C(R") be the vector space of polynomials in the variables x,,. . ., X,
with real coefficients, and let

P; ={peP,| p(x)20 VxeR"}.

It is easily seen that P, is an adapted space in the sense of Choquet [4].

A linear form T on P, is said to be positive if T(p) =0 for every p € P,}. For
u e M*(R") we define L,,(p)=j pdu, p € P,, and L, is a positive linear form on
P,. Conversely we have the following result, which can be found in [4] and in
Haviland [8].

THEOREM 1. To any positive linear form T on P, there exists u € M*(R") with
T=L,.

Given a positive linear form T on P,, we consider the measures v € M*(R"),
which represent T, that is the set
Br= {ve M*R"| T=L}.

In particular, if y € M*(R"), we see that [u],=B; and in [4] it is shown that
[u], is a convex, compact subset of M * (R"). Concerning the extreme points of
[u], we have the following useful result, a proof of which may be found e.g. in
Douglas [6].

THEOREM 2. Given u € M*(R"). Then v € [u], is an extreme point of [u],, if
and only if P, is dense in L, (R",v).

For i=1,...,n we define ¢;: R" > R by ¢,(x;,...,x,)=x;. To ue M*(R")
we associate the image measures ¢;(u) € M*(R), i=1,...,n, given by

f Sdoi) = L_fowidu Ve CR).
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We can now state our main result:

THEOREM 3. A measure u € M*(R") is determinate if the projections ¢ (u) are
determinate for i=1,...,n.

Proor. Let g € [u],. For i=1,...,n and m € N, we have

J t"do;(o)(t) = J xPdo(xy,. .., x,)
R R

- J X dp(xg,. . %) = f " dep; (1) (1)
R" R

so by hypothesis ¢;(0)=@;(n).
For f,.... f, € C(R) let f=f®...®f, denote the function

Sxpenxy) = fi(xh) o falxa) 5

where (x,,...,x,) € R" For f},..., f, € C.(R) and p,,...,p, € P, we now have

J‘R" i®..8f,—p®...Qp,ldo

= jR" (fi=P)®f:. .. ®L+P1®(f,—p)®Sf3... fut ...

s +p1®p2 e ®pn—l®(.fn~pn)|da

IIA

j‘R" [(fi—=P)®Sf2... ®fldo+ ... +_[R" P ®...0p,-1®(f,—pnldo

A

[ fic@i—pie@:I1®f; ... ®f;n||2+ Ces
P ® . P @ L S0 = Pro @l s

where |- |, is the 2-norm with respect to 6. For i=1,...,n we have

~

Hfi"(Pi_PiO(Pi“% o |f.‘°(Pi(x)_Pi°(Pi(x)‘2 do(x)

r

=, (0= pi(0)]* do(0)(2)

"

=1, Lf:(0) = p; ()1 dep; () (1)

o

Since each ¢;(u) is determinate, P, is dense in L, (R, ¢;(¢)) by the theorem of
Riesz, cf. Riesz [11] or Akhiezer [1]. Given any ¢>0, we can find p, € P, so
that
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®LH®...Qfl,"

| fie@; —pioo4ll, =

We can now find p, € P, so that

€

np,®1IQf; .. 1l '

Continuing in this way we end up having n polynomials p,,. . ., p, € P, so that

[ f2002—Dp2o@,ll, =

(*%) J'Rn|f1®‘..®f"—-p1®...®p,,}d0'<8.

The set {fi®...®f, | fis-- o f, € C.(R)} is dense in L,(0), and since
P1®...®p, € P,, we see from (**) that P, is dense in L, (s), and therefore o is
an extreme point of [u],. Since this is true for any ¢ € [u],, the set [u], must be
a singleton.

Using Holder’s inequality instead of the Cauchy—Schwarz-inequality the
proof of Theorem 3 can be modified to give the following density result:

PROPOSITION. Given u € M*(R"). If P, is dense in L (R, @,()) for i=1,...,n,
then P, is dense in L.(R", u) for any 1<r<p.

ExaMpLE. That the converse of Theorem 3 is not true, can be seen from the
following example: Let u,, u, € M*(R) be two determinate measures with u,
+ u, being indeterminate (to see that this is possible, let p=37_,a,e, be an
indeterminate N-extremal measure M*(R). Then ' =322, a,¢,, is determinate,
cf. [1, p. 115] or [2, Theorem 7]). Put v=yu, ®@¢,+ 4, ®¢,. Then v e M*(R?)
with

supp (v) € Rx {0} URx{1}.

jpd‘t = jpdv =0,

where p(x,,x,) = x2(1—x,)%. Thus

Taking 7 € [v], we have

supp (r) € Rx {0} U Rx{1}.

If we put 1,=0,(tlrxf) and 7,=,(tlrx(1), Where ¢,;: R* - R is the
projection ¢, (x,, x,)=Xx,, it is easy to see that =1, ®¢, + 1,®¢,. We now have
for every m e N,,

f t"dr, (1) =j X7 (1 =x;) dt(xy, x5)
R R?
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=J X7 (1=x;) dv(xy, x,) =f " dp, (1)
R? R

J Mdr,y(t) = J‘ X{x,dt(xy, x;) = J X7, dv(xy, x,) = j "dp, (1),
R R? R? R

and therefore 7, =y, and t,=yu,. Hence 1=v and v is determinate, but ¢, (v)
=y, + 1, is indeterminate.

In the case of product measures, Theorem 3 may be sharpened:

THEOREM 4. Given u;,...,u, € M*(R) and p=1. Then the product measure p
=1, ®...R®u,is determinate if and only if y; is determinate for every i=1,. . .,n,
and P, is dense in L,(R", u), if and only if P, is dense in L (R, u) for i=1,...,n.

Proor. If p; v, then 4, ®. . .®u,,7v1(>?. .. ®u,, which shows that u is
indeterminate if u, is indeterminate.

Assume that P, is dense in L,(R,y) and let f;,..., f, € C(R) and
Pir-- Py € P;. As in Theorem 3 we have

1/p
<J|f1®- - ®fi—p®.. -®P,.I"d#>

S Wh=plu Mol - Ufall, + oo+
Pl NP2l - - 1= Pall,
where |||, , is the p-norm with respect to u;. Since
®...®f, | fu - fy€ CR)

is dense in L,(R", p), it follows that P, is dense in L,(R", p).

We can without any restriction assume that u,,...,u, are all probability
measures, and we will prove that P, is dense in L,(R,u,), if P, is dense in
L, (R" p). Let fe C.(R) and £>0. Thus there exists p € P, so that

"fo(pl ~p|lp,p <é B

where |||/, , is the p-norm with respect to p. Setting

q(xl) = fk"“ p(xl,- . ~’xn)d(u2® .. ®.un)(x2" . "xn) ’

we have that q is a polynomial in the variable x; and from Holder’s inequality
we get

If=qlf., = f
R

14
JR"“ f(xl)'_p(xla' . -axn)d”'2® e ®H’n(x2,' . 'axn) dul (xl)
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< JR JRH f(x)=p(xps- - o X )P A, ® . o @ (X - ., X)) dpty ()

= | fop,—pli, < €.
Hence P, is dense in L,(R, uy).
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