ON THE RELATION BETWEEN THE MULTIDIMENSIONAL MOMENT PROBLEM AND THE ONE-DIMENSIONAL MOMENT PROBLEM

L. C. PETERSEN

Consider the multi-dimensional moment problem

(*)
$$c_{\alpha} = \int_{\mathbb{R}^n} x^{\alpha} d\mu(x) \quad \text{for } \alpha \in \mathbb{N}_0^n .$$

Here

$$\alpha = (\alpha_1, \dots, \alpha_n)$$
 is a multi-index $\alpha_j \in \mathbb{N}_0 = \{0, 1, \dots\}$
$$x = (x_1, \dots, x_n) \in \mathbb{R}^n$$

$$x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$$
.

Under which conditions on a sequence (c_{α}) of real numbers, $\alpha \in \mathbb{N}_{0}^{n}$, does there exist a positive Radon measure μ on \mathbb{R}^{n} such that (*) holds?

Generally, a measure μ is not uniquely determined by its moment sequence (c_{α}) . In this paper we show that μ is indeed unique if each of the n coordinate projections $P_i(\mu)$ is known to be uniquely determined as a one-dimensional measure. With an example we also answer the converse question in the negative. Although the positive result was stated by Kilpi in [9], Kilpi's proof did not, in fact, settle the question.

For
$$x = (x_1, ..., x_n) \in \mathbb{R}^n$$
 we put $||x|| = (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}$ and let

$$M^*(\mathsf{R}^{\it n}) \, = \, \left\{ \mu \in M^+(\mathsf{R}^{\it n}) \, \left| \, \, \int_{\mathsf{R}^{\it n}} \|x\|^{2\it m} \, d\mu(x) \, < \, \infty \, \forall \, m \in \mathsf{N}_0 \right\} \, ,$$

where $M^+(\mathbb{R}^n)$ is the set of all positive Radon measures on \mathbb{R}^n .

Let $C(\mathbb{R}^n)$ denote the real vector space of continuous real-valued functions on \mathbb{R}^n and $C_c(\mathbb{R}^n)$ the subspace of continuous functions with compact support. For $f \in C_c(\mathbb{R}^n)$ we define the mapping $\Phi_f: M^+(\mathbb{R}^n) \to \mathbb{R}$ by

Received April 15, 1981; in revised form August 1, 1981.

$$\Phi_f(\mu) \,=\, \int f\,d\mu\;.$$

The weakest topology on $M^+(R^n)$ in which all the mappings Φ_f , $f \in C_c(R^n)$, are continuous, is called the vague topology. On $M^*(R^n)$ we introduce an equivalence relation \sim given by

$$\mu \sim v \Leftrightarrow \int_{\mathbb{R}^n} x^{\alpha} d\mu(x) = \int_{\mathbb{R}} x^{\alpha} d\nu(x) \quad \forall \alpha \in \mathbb{N}_0^n$$

and the equivalence class containing μ is denoted $[\mu]_n$. The measure μ is said to be determinate if $[\mu]_n = {\mu}$.

Let $P_n \subseteq C(\mathbb{R}^n)$ be the vector space of polynomials in the variables x_1, \ldots, x_n , with real coefficients, and let

$$P_n^+ = \{ p \in P_n \mid p(x) \ge 0 \ \forall x \in \mathbb{R}^n \} .$$

It is easily seen that P_n is an adapted space in the sense of Choquet [4].

A linear form T on P_n is said to be positive if $T(p) \ge 0$ for every $p \in P_n^+$. For $\mu \in M^*(\mathbb{R}^n)$ we define $L_{\mu}(p) = \int p \, d\mu$, $p \in P_n$, and L_{μ} is a positive linear form on P_n . Conversely we have the following result, which can be found in [4] and in Haviland [8].

THEOREM 1. To any positive linear form T on P_n there exists $\mu \in M^*(\mathbb{R}^n)$ with $T=L_{\mu}$.

Given a positive linear form T on P_n , we consider the measures $v \in M^*(\mathbb{R}^n)$, which represent T, that is the set

$$B_T = \{ v \in M^*(\mathbb{R}^n) \mid T = L_v \} .$$

In particular, if $\mu \in M^*(\mathbb{R}^n)$, we see that $[\mu]_n = B_{L_n}$ and in [4] it is shown that $[\mu]_n$ is a convex, compact subset of $M^+(\mathbb{R}^n)$. Concerning the extreme points of $[\mu]_n$ we have the following useful result, a proof of which may be found e.g. in Douglas [6].

THEOREM 2. Given $\mu \in M^*(\mathbb{R}^n)$. Then $\nu \in [\mu]_n$ is an extreme point of $[\mu]_n$, if and only if P_n is dense in $L_1(\mathbb{R}^n, \nu)$.

For $i=1,\ldots,n$ we define $\varphi_i\colon \mathbb{R}^n\to\mathbb{R}$ by $\varphi_i(x_1,\ldots,x_n)=x_i$. To $\mu\in M^*(\mathbb{R}^n)$ we associate the image measures $\varphi_i(\mu)\in M^*(\mathbb{R})$, $i=1,\ldots,n$, given by

$$\int_{\mathbb{R}} f \, d\varphi_i(\mu) = \int_{\mathbb{R}^n} f \circ \varphi_i \, d\mu \qquad \forall \, f \in C_c(\mathbb{R}) \, .$$

We can now state our main result:

THEOREM 3. A measure $\mu \in M^*(\mathbb{R}^n)$ is determinate if the projections $\varphi_i(\mu)$ are determinate for i = 1, ..., n.

PROOF. Let $\sigma \in [\mu]_n$. For i = 1, ..., n and $m \in \mathbb{N}_0$ we have

$$\int_{R} t^{m} d\varphi_{i}(\sigma)(t) = \int_{R^{n}} x_{i}^{m} d\sigma(x_{1}, \dots, x_{n})$$

$$= \int_{R^{n}} x_{i}^{m} d\mu(x_{1}, \dots, x_{n}) = \int_{R} t^{m} d\varphi_{i}(\mu)(t)$$

so by hypothesis $\varphi_i(\sigma) = \varphi_i(\mu)$.

For $f_1, \ldots, f_n \in C(\mathbb{R})$ let $f = f_1 \otimes \ldots \otimes f_n$ denote the function

$$f(x_1,\ldots,x_n)=f_1(x_1)\ldots f_n(x_n),$$

where $(x_1, \ldots, x_n) \in \mathbb{R}^n$. For $f_1, \ldots, f_n \in C_c(\mathbb{R})$ and $p_1, \ldots, p_n \in P_1$ we now have

$$\int_{\mathbb{R}^{n}} |f_{1} \otimes \ldots \otimes f_{n} - p_{1} \otimes \ldots \otimes p_{n}| d\sigma$$

$$= \int_{\mathbb{R}^{n}} |(f_{1} - p_{1}) \otimes f_{2} \ldots \otimes f_{n} + p_{1} \otimes (f_{2} - p_{2}) \otimes f_{3} \ldots f_{n} + \ldots$$

$$\ldots + p_{1} \otimes p_{2} \ldots \otimes p_{n-1} \otimes (f_{n} - p_{n})| d\sigma$$

$$\leq \int_{\mathbb{R}^{n}} |(f_{1} - p_{1}) \otimes f_{2} \ldots \otimes f_{n}| d\sigma + \ldots + \int_{\mathbb{R}^{n}} |p_{1} \otimes \ldots \otimes p_{n-1} \otimes (f_{n} - p_{n})| d\sigma$$

$$\leq ||f_{1} \circ \varphi_{1} - p_{1} \circ \varphi_{1}||_{2} ||1 \otimes f_{2} \ldots \otimes f_{n}||^{2} + \ldots$$

$$\ldots + ||p_{1} \otimes \ldots p_{n-1} \otimes 1||_{2} ||f_{n} \circ \varphi_{n} - p_{n} \circ \varphi_{n}||_{2},$$

where $\|\cdot\|_2$ is the 2-norm with respect to σ . For $i=1,\ldots,n$ we have

$$\begin{split} \|f_i \circ \varphi_i - p_i \circ \varphi_i\|_2^2 &= \int_{\mathbb{R}^n} |f_i \circ \varphi_i(x) - p_i \circ \varphi_i(x)|^2 d\sigma(x) \\ &= \int_{\mathbb{R}} |f_i(t) - p_i(t)|^2 d\varphi_i(\sigma)(t) \\ &= \int_{\mathbb{R}} |f_i(t) - p_i(t)|^2 d\varphi_i(\mu)(t) \ . \end{split}$$

Since each $\varphi_i(\mu)$ is determinate, P_1 is dense in $L_2(\mathbb{R}, \varphi_i(\mu))$ by the theorem of Riesz, cf. Riesz [11] or Akhiezer [1]. Given any $\varepsilon > 0$, we can find $p_1 \in P_1$ so that

$$\|f_1 \circ \varphi_1 - p_1 \circ \varphi_1\|_2 \leq \frac{\varepsilon}{n \|1 \otimes f_2 \otimes \ldots \otimes f_n\|_2}.$$

We can now find $p_2 \in P_1$ so that

$$\|f_2 \circ \varphi_2 - p_2 \circ \varphi_2\|_2 \le \frac{\varepsilon}{n \|p_1 \otimes 1 \otimes f_3 \dots \otimes f_n\|_2}.$$

Continuing in this way we end up having n polynomials $p_1, \ldots, p_n \in P_1$ so that

(**)
$$\int_{\mathbb{R}^n} |f_1 \otimes \ldots \otimes f_n - p_1 \otimes \ldots \otimes p_n| \, d\sigma < \varepsilon.$$

The set $\{f_1 \otimes \ldots \otimes f_n \mid f_1, \ldots, f_n \in C_c(\mathbb{R})\}$ is dense in $L_1(\sigma)$, and since $p_1 \otimes \ldots \otimes p_n \in P_n$, we see from (**) that P_n is dense in $L_1(\sigma)$, and therefore σ is an extreme point of $[\mu]_n$. Since this is true for any $\sigma \in [\mu]_n$, the set $[\mu]_n$ must be a singleton.

Using Hölder's inequality instead of the Cauchy-Schwarz-inequality the proof of Theorem 3 can be modified to give the following density result:

PROPOSITION. Given $\mu \in M^*(\mathbb{R}^n)$. If P_1 is dense in $L_p(\mathbb{R}, \varphi_i(\mu))$ for i = 1, ..., n, then P_n is dense in $L_r(\mathbb{R}^n, \mu)$ for any $1 \le r < p$.

EXAMPLE. That the converse of Theorem 3 is not true, can be seen from the following example: Let $\mu_1, \mu_2 \in M^*(R)$ be two determinate measures with $\mu_1 + \mu_2$ being indeterminate (to see that this is possible, let $\mu = \sum_{n=0}^{\infty} a_n \varepsilon_{x_n}$ be an indeterminate N-extremal measure $M^*(R)$. Then $\mu' = \sum_{n=1}^{\infty} a_n \varepsilon_{x_n}$ is determinate, cf. [1, p. 115] or [2, Theorem 7]). Put $\nu = \mu_1 \otimes \varepsilon_0 + \mu_2 \otimes \varepsilon_1$. Then $\nu \in M^*(R^2)$ with

$$supp (v) \subseteq R \times \{0\} \cup R \times \{1\} .$$

Taking $\tau \in [\nu]_2$ we have

$$\int p\,d\tau = \int p\,dv = 0,$$

where $p(x_1, x_2) = x_2^2 (1 - x_2)^2$. Thus

$$supp (\tau) \subseteq \mathbf{R} \times \{0\} \cup \mathbf{R} \times \{1\} .$$

If we put $\tau_1 = \varphi_1(\tau|_{R \times \{0\}})$ and $\tau_2 = \varphi_1(\tau|_{R \times \{1\}})$, where $\varphi_1 \colon R^2 \to R$ is the projection $\varphi_1(x_1, x_2) = x_1$, it is easy to see that $\tau = \tau_1 \otimes \varepsilon_0 + \tau_2 \otimes \varepsilon_1$. We now have for every $m \in \mathbb{N}_0$,

$$\int_{\mathbb{R}} t^m d\tau_1(t) = \int_{\mathbb{R}^2} x_1^m (1 - x_2) d\tau(x_1, x_2)$$

$$= \int_{\mathbb{R}^2} x_1^m (1 - x_2) \, dv(x_1, x_2) = \int_{\mathbb{R}} t^m \, d\mu_1(t) ,$$

$$\int_{\mathbb{R}} t^m \, d\tau_2(t) = \int_{\mathbb{R}^2} x_1^m x_2 \, d\tau(x_1, x_2) = \int_{\mathbb{R}^2} x_1^m x_2 \, dv(x_1, x_2) = \int_{\mathbb{R}} t^m \, d\mu_2(t) ,$$

and therefore $\tau_1 = \mu_1$ and $\tau_2 = \mu_2$. Hence $\tau = v$ and v is determinate, but $\varphi_1(v) = \mu_1 + \mu_2$ is indeterminate.

In the case of product measures, Theorem 3 may be sharpened:

THEOREM 4. Given $\mu_1, \ldots, \mu_n \in M^*(\mathbb{R})$ and $p \ge 1$. Then the product measure $\mu = \mu_1 \otimes \ldots \otimes \mu_n$ is determinate if and only if μ_i is determinate for every $i = 1, \ldots, n$, and P_n is dense in $L_n(\mathbb{R}^n, \mu)$, if and only if P_1 is dense in $L_n(\mathbb{R}, \mu)$ for $i = 1, \ldots, n$.

PROOF. If $\mu_1 \sim \nu_1$, then $\mu_1 \otimes \ldots \otimes \mu_n \sim \nu_1 \otimes \ldots \otimes \mu_n$, which shows that μ is indeterminate if μ_1 is indeterminate.

Assume that P_1 is dense in $L_p(\mathbb{R}, \mu_i)$ and let $f_1, \ldots, f_n \in C_c(\mathbb{R})$ and $p_1, \ldots, p_n \in P_1$. As in Theorem 3 we have

$$\left(\int |f_1 \otimes \ldots \otimes f_n - p_1 \otimes \ldots \otimes p_n|^p d\mu\right)^{1/p}$$

$$\leq ||f_1 - p_1||_{\mu_{1,p}} ||f_2||_{\mu_{2,p}} \ldots ||f_n||_{\mu_{n,p}} + \ldots + ||p_1||_{\mu_{1,p}} ||p_2||_{\mu_{1,p}} \ldots ||f_n - p_n||_{\mu_{n,p}}$$

where $\|\cdot\|_{\mu_{i,n}}$ is the p-norm with respect to μ_{i} . Since

$$\{f_1 \otimes \ldots \otimes f_n \mid f_1, \ldots, f_n \in C_c(\mathsf{R})\}\$$

is dense in $L_p(\mathbb{R}^n, \mu)$, it follows that P_n is dense in $L_p(\mathbb{R}^n, \mu)$.

We can without any restriction assume that μ_1, \ldots, μ_n are all probability measures, and we will prove that P_1 is dense in $L_p(\mathbb{R}, \mu_1)$, if P_n is dense in $L_p(\mathbb{R}^n, \mu)$. Let $f \in C_c(\mathbb{R})$ and $\varepsilon > 0$. Thus there exists $p \in P_n$ so that

$$\|f\circ\varphi_1-p\|_{\mu,n}<\varepsilon,$$

where $\|\cdot\|_{\mu,p}$ is the p-norm with respect to μ . Setting

$$q(x_1) = \int_{\mathbb{R}^{n-1}} p(x_1,\ldots,x_n) d(\mu_2 \otimes \ldots \otimes \mu_n)(x_2,\ldots,x_n) ,$$

we have that q is a polynomial in the variable x_1 and from Hölder's inequality we get

$$||f-q||_{\mu_{1,p}}^{p} = \int_{\mathbb{R}} \left| \int_{\mathbb{R}^{n-1}} f(x_{1}) - p(x_{1}, \dots, x_{n}) d\mu_{2} \otimes \dots \otimes \mu_{n}(x_{2}, \dots, x_{n}) \right|^{p} d\mu_{1}(x_{1})$$

366 L. C. PETERSEN

$$\leq \int_{\mathbb{R}} \int_{\mathbb{R}^{n-1}} |f(x_1) - p(x_1, \dots, x_n)|^p d\mu_2 \otimes \dots \otimes \mu_n(x_2, \dots, x_n) d\mu_1(x_1)$$

$$= \|f \circ \varphi_1 - p\|_{\mu, n}^p < \varepsilon^p.$$

Hence P_1 is dense in $L_n(\mathbb{R}, \mu_1)$.

ACKNOWLEDGMENT. The author wishes to thank professor C. Berg and professor B. Fuglede for their contributions in the preparation of this paper.

REFERENCES

- 1. N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
- 2. C. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), 99-114.
- 3. C. Berg, J. P. R. Christensen and C. U. Jensen, A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163-169.
- G. Choquet, Le problème des moments, in Initiation à la l'Analyse, Seminaire Choquet, 1^{re}
 Année, 1961/1962, No. 4, pp. 1-10, Facultè de Science de Paris, Secretariat Mathématique,
 Paris, 1962.
- 5. A. Devinatz, Two parameter moment problems, Duke Math. J. 24 (1957), 481-498.
- R. G. Douglas, On extremal measure and subspace density, Michigan Math. J. 11 (1964), 243– 246.
- G. I. Eskin, A sufficient condition for the solvability of a multidimensional problem of moments, Dokl. Akad. Nauk. SSSR 133 (1960), 540-543.
- 8. E. K. Haviland, On the momentum problem for distributions in more than one dimension, Amer. J. Math. 57 (1935), 562-568.
- Y. Kilpi, Zur Theorie des mehrdimensionalen Momentenproblems, Ann. Acad. Sci. Fenn. Ser. A I Math.-Phys., 205 (1955), 13 pp.
- 10. A. E. Nussbaum, Ouasianalytic vectors, Math.-Phys. Ark. Mat. 6 (1966), 179-191.
- M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Acad. Sci. Szeged. 1 (1923), 209-225.

MATEMATISK INTITUT
KØBENHAVNS UNIVERSITET
UNIVERSITETSPARKEN 5
2100 KØBENHAVN Ø
DENMARK