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A UNIQUENESS THEOREM FOR HIGHER ORDER
ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

TORBJORN KOLSRUD
Introduction.

In the by now classical paper [7] on Beppo Levi functions by J. Deny and
J.-L. Lions, the following result (Theorem S5.1) is proved. Suppose f is an ele-
ment of the Sobolev space W3(Q), having boundary limits zero g.e. (quasi
everywhere) in the fine topology of potential theory. Then f can be arbitrarily
well approximated by functions in CJ(Q), that is fe W2 ((Q).

We give a brief sketch of the argument. There is a function g € W? (), such
that h=f—g is harmonic. By assumption, fine lim h=0 g.e. at 0Q, since this is
trivially true for functions in W? ().

Since truncations operate on W?(Q), we may assume that f, hence h, is non-
negative. Invoking a result due to M. Brelot, [3, Lemme 1] (or the fine
minimum principle, B. Fuglede [9, p. 76]), we conclude h=0.

We shall give a direct proof of a result— Theorem 2—which generalizes
this. More precisely, for p>2—1/d (see the remark after Theorem 4) we solve
the following approximation problem: Given f e WE(Q), when is it possible to

approximate f by smooth compactly supported functions? In other words,
when is

1 fe Wi o(@)?

As a corollary we get our main result, a uniqueness theorem for the Dirichlet
problem (Theorem 3) of “Brelot type”.

We shall also treat the following extension problem.
Given f e WE(Q), define J(x)=f(x) for x € Q and f(x)=0 otherwise. Find
conditions on f such that

2 fe WhRY.

It is easy to see that (1) = (2), and in the case m=1, the converse is true for all
p € (1,00). This follows from the characterization

WE,o(Q) = {ge WE2(RY: g=0 qe. off Q} .
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(See [12] for further references on this non-trivial fact.) When m> 1, one has to
impose restrictions on dQ for the implication (2) = (1) to hold.

To see this, consider the following example. In R2, let B be the open unit
disk, let I be the interval [ —3%, +3] on the x-axis and let Q=B\I. If
fe WE o(B)NWE(Q) is equal to y near I, then (2) holds but (1) does not.

Among previous work in this area, we mention V. 1. Burenkov’s article [5]
where the case p>d, (i.e. when the functions in question actually belong to
C™ 1) is treated. The problem of extending a particular function — not a whole
class—has also been studied by D. R. Adams [1].

I want to thank Lars Inge Hedberg for friendly advice and valuable
comments.

1. Preliminaries.

General references for this paragraph are V G. Maz’ja and V. P. Havin [14]
and N. G. Meyers [15, 16]. For me Z*, p € (1,00) and 2 and open subset of
R4, the Sobolev space WZ/(Q) consists of all functions f: Q — C for which the
distributional derivatives D*f, |o|<m, are in L?(Q). Equipped with the norm
Yiatzm 1D f Nl Loy Whi(S2) is a Banach space. We write Wh = WP (RY and the
subscript 0 is used to denote the closure in W2 () of functions in CJ (Q), C*
functions with compact support in Q.

The (m, p)-capacity measures the deviation from continuity of functions in
W?E. For a compact set K, this quantity is defined as

Cn,(K) = inf| 'Z JlD“(pl"dx ,
@ |aj=m

where the infimum is taken over all ¢ in WE, supported in B, such that ¢ =1 on

K, and where all sets considered are supposed to be subsets of the fixed large

ball B. (In particular we assume that Q is bounded. This is no restriction since

in (1) and (2) we can replace f by f-y, where x is a cut-off function with support

in some openball Bg, say, and then replace Q by QN Bg.) For G open we let

C,. ,(G) = sup{C, ,(K): KcG, K compact}
and finally, for an arbitrary set E, we define
C,, ,(E) = inf{C,, ,(G): EcG, G open} .

(If mp>d, C,, , is of no interest to us, since then C, ,(E)=0 if and only if
E=#.) A property P is said to hold (m, p)-quasi everywhere ((m, p)-q.e. or just
qe) if C, ,({P fails})=0.

A function ¢ is said to be (m, p)-quasicontinuous, if for any ¢>0 there is an
open set w with C, ,(w)<e such that ¢|, is continuous in the relative
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topology of w*, the complement of w. Functions in W? have quasicontinuous
representatives which are unique up to sets of zero (m, p)-capacity and this is
true also for functions in W2 (Q). Whenever it makes sense, we are referring to
the quasicontinuous representative when speaking of Sobolev functions.

A consequence of quasicontinuity is that for ¢ € W2 and for any set E with
Con, p(E)>0, the trace ¢|g is well defined and similarly for D*@ € W, _ ., lo| <
m—1.

We say that a closed set F<R? admits-(m, p)-spectral synthesis if for any
function ¢ in W%,

() [D°@lp=0, loj=m—1] < ¢ e W} ((F).

For m=1, (3) is true for any p € (1, 00).

Recently, Hedberg [12] has proved that also for m>1, (3) holds provided
p>2—1/d. It is known whether this is so for all values of p or not.

We shall use the concept of fine continuity. Following Meyers [16], a set E is
said to be (m,p)-thin at a point &, if

j ' {Cm.p(EﬂBm»}"’“‘ﬁé <

5a=mr 5 =%

where B(¢,9) is the ball {x: [x—¢&|<d} and p’=p/(p—1). This gives rise to a
topology — fine or (m, p)-fine topology — by letting U be a neighbourhood of
& if U¢ is (m, p)-thin at &.

In this topology, a function ¢ has (finite) limit A at &, if the set {x: |p(x)— A4
=¢} is (m, p)-thin at & for all ¢>0. This will be written

0

(m, p)—finelimp(x) = 4.
x—¢

The fine exterior of E is the set

e(E) = e, ,(E) = {{: Eis (m,p)-thin at &} .

In fact, if E denotes the fine closure of E, then e(E)=(E). When p>2—m/d,
Con, , has the important “Choquet property”:

Given any £>0 and any set EcRY, there is an open set G such that e(E)cG
and C, ,(ENG)<e.

For a proof, see [ 11, Theorem 6] and the crucial Theorem 5.3 in [2]. See also
Choquet’s original proof in [6].

The relationship between quasi topology and fine topology is treated in
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Fuglede [8], [10], and Brelot [4, Chapter IV]. From [8] (Theorem 3) we note
the following result:

(m, p)-quasicontinuous functions are (m, p)-finely continuous (m, p)-q.e.

2. The quasicontinuous case.

Let f € WE (). By what was said in section 1, a reasonable starting-point is
to assume that f and its derivatives D°f, |o|<m~—1, when extended by zero
outside Q, are quasicontinuous functions. For this reason we make the
following

DerINITION. A function g, defined (m, p)-q.e. in Q, has quasi limit zero at 0Q if
for any £>0, there is an open set w with C, ,(w)<e such that for any
tedl\w, gx)— 0as x> & xe Q\ w. This will be written

quasilimg = 0 at 0Q,
the (m, p) referred to being understood in each instance.
Notice that if fe W2(Q), and if quasilimf=0 at 0Q, then [ is

quasicontinuous in the entire space R
We have the following result.

THEOREM 1. Suppose f € WE(RQ), where 1 <p<oo and m € Z*. Then,

4) quasilimD?*f = 0 at 0Q, |o|]sm—1,
if and only if
) fews and Df= (D), ledsm.

ReEMARK. The implication (5) = (4) should be understood in the following
sense: Suppose F € WE and denote by f the function F|, € WE(Q). I f fulfills
(5), then (4) holds.

COROLLARY. Under the hypothesis of spectral synthesis (hence, at least for
m=1, 1<p<oo or m>1, p>2-1/d), (4) holds if and only if fe WE ,(Q).
In particular, for m=1, 1 <p<oo,

6) fe Wt 4(Q) <« quasilimf = 0at 0Q.

Proor. We start by proving (6). The proof is more or less the same as the
proof of spectral synthesis in the case m=1, 1 <p<oo; see e.g. [11, Lemma 4].
We include it for the reader’s convenience.
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We must prove the implication <=. The converse is trivial. Choose ¢>0 and
let w be the corresponding exceptional set, such that fis continuous on Q\ w
and has limit zero as x in Q\ w tends to ¢ € 02\ w, and such that C, ,(w)<e.

Then one can find ¢=¢, € Wi with [|VglP<e, such that 0<¢@<1
everywhere and ¢ =1 on w. Since W¥(Q) is closed under truncation [7, p. 316],
we may assume that 0<f<M <o0. For §>0, let

fr=F = (=9 e Wi(Q).

Then F=F, ;=f'(1—¢) is in W{(Q) and F has compact support in £, so
Fe W§ Q).
By assumption, ¢, tends to zero in measure. Thus, the inequality

IV(f'oll, = M{Vel,+le VI,

shows that f'@, — 0 in W¥(Q) as ¢ — 0, by dominated convergence.
Consequently, by first letting ¢, then 6, tend to zero we get f—F, s=f—f
+f50. — 0 in W2(Q), and (6) follows.

Now we turn to the general case. Let m>1 and assume (4). We shall prove
that (5) holds. It is easy to see that if j>1, then C, ,(-)<const-C; ,(*), so
(1,p)—quasilimg=0 at 0Q if (j,p)—quasilimg=0 at Q. Hence from the
case m=1, we see that D*f e W{ ,(Q) for [o|sm—1.

Choose y, € C3'(Q) such that || f—y,llwe @ — 0, n — oo.

For i=1,2,...,d and for any ¢ € C¥(RY), we get

ijiw = J‘ fDip = ]imjv Y.Dip
Q n Q

= lim(—j Dill/,.q)) = —J Dife = —J(D;f)?p,
n Q Q

so D,f=(D.,f) ae. Similarly, D,D;f=D,[(D;f)]1=(DD;f) and proceeding
inductively, one gets D*f= (D%) a.. for any multiindex o with |o|<m. This
proves that f has distributional derivatives which for |o| <m all belong to L”.
Hence fe WP By assumption all the functions (D%f), |¢/<m—1, are
quasicontinuous, so by uniqueness of quasicontinuous representatives, we
conclude D*f=(D*f) for all o <m— 1, which is (5).

That (5) = (4) as described in the remark above is clear. Finally, the
corollary follows by spectral synthesis.
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3. The finely continuous case.

In this section, the rdle of quasicontinuity is taken over by fine continuity.
Thus the condition on our given function fe WZ(Q) will be:

(m—ld*"p)_ﬁnelimDaf(x) = O, (m_‘ULP)_qe é S 695 |(Z‘§m—1 5
Q3x—¢

abbreviated “finelim D*f=0 q.e. at 0Q, |¢|<m—1".

We have the following

THEOREM 2. Let f € WE(Q), where p>2—1/d and m € Z*. Then all conditions
below are equivalent:

(7) finelimD* = 0 q.e. at 0Q, |oj]<m—1,
(8) quasilimD?* = 0 at 0Q, |lo|]Em—1,
©) Je W and D'f = (D*f), |el<m,
(10) fe Wi o(Q).

Proor. In view of Theorem 1 and its corollary, we need only prove that for
le|<m—1, g=D?* has quasilimit zero at dQ as soon as (7) holds. (Recall that
quasicontinuity implies fine continuity q.e.)

We extend g by zero outside Q and denote again the resulting function by g.
In this way we get a function R? — C which is finely continuous q.e. For the
values of p that we are considering, C; , has the Choquet property for all
j € Z*. Hence the following lemma implies the theorem.

LEMMA. ([4]) Suppose that g: R — C is (s, q)-finely continuous q.e. and that
C,,, has the Choquet property. Then g is (s, q)-quasicontinuous.

Proor. We may assume that g is finely continuous everywhere, since we can
replace R? by R?\ N, where C(N)=C, ,(N)=0, if necessary. If {B,, n € N} is a
countable basis for the topology in C, let {F,, ne N} denote all
complementary sets: F, = BS. For a fixed n € N, define K, =g~ !(F,). Then K,, is
finely closed. Furthermore, ¢(K,)= K-

Choose ¢>0. By the Choquet property there is an open set (in the usual
topology) G, such that K{<=G, and C(G,NK,)<e-27". Let w,=G,NK, and
w=Uw, Then C(w)<e and g is continuous on w because K,\w, ne N,
are closed with respect to w°.



A UNIQUENESS THEOREM FOR HIGHER ORDER ELLIPTIC... 329

REMARK. Thinness can be defined in several ways and some of them are
known to be different, when p <2 —m/d; see Meyers [16, p. 164]. It is clear that
any definition of thinness such that fine continuity is weaker than
quasicontinuity and such that the Choquet property holds is sufficient for our
purposes.

4. Application to the Dirichlet problem.

We shall use Theorem 2 to prove a uniqueness theorem for the equation 4™u
=0, u € W2(Q). Here 4=3 D} is the Laplace operator and 4™ denotes its mth
power. Among possible generalizations, for instance via Garding’s inequality,
we only mention the following. Suppose

P(x,D) = Y (=1"D%*a,(x)D

[, 1Bl < m

determines the same topology on W2(Q) as A™ do, i.e. suppose that for some
constant A and for all v in W(Q),

lj Vo2 <) j a, 5 (x)D?o(x)D(x) dx < AJ [V™o)? .
Ao wpJQ Q

Then the theorem below holds with A™ replaced by P(x, D).

THEOREM 3. Suppose f e W7, (Q), m e Z* and A™f=0 in the open and bounded
set Q. If finelim D°f=0 q.e. at 0Q for |o|<m—1, then f=0.

REMARKS. 1) In Hedberg [12] it is shown that in W}, D*ulag=0, |o|<m—1,
and 4™u=0 in Q is satisfied only by the function u=0, so the above theorem
can be seen as an amplification of this result.

2) When p=+2, p>2-1/d, we get “maximum principles” for certain
nonlinear equations; e.g. suppose (1,p)—finelimu=0 q.e. on 02, u € W{(Q),
and suppose

div (Vu|Vul?~%) = 0.
Then u=0. Cf. Maz’ja [13]. This can be generalized to higher order equations.
PROOF OF THE THEOREM: We can decompose W2(Q) as an orthogonal sum,
see [7, p. 367],
(11) Wi(Q) = W, o(Q@H,(Q),
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where H,,(f) is the subspace of W?2(Q) consisting of function u satisfying 4™u
=0 in Q. From Theorem 2, f belongs to W7 () and by our assumption, to
H,,(Q). Hence f=0 since W3, o(2)NH,(Q)={0}.

S. A stronger result in the plane.

It would be desirable to extend Theorem 2 to the case m=1, 1 <p <00, since
the spectral synthesis theorem holds in this case. Unfortunately, we have not
succeeded with this. We have, however, the following partial result.

THEOREM 4. Assume fe W2(Q), 1<p<oo, me Z* and Q<=R?* Then (7)
implies (9). In particular, for m=1,

(12) fimelimf = 0 qe. on 0Q <« fe W% ((Q).

PrOOF. We start by observing that if (7) holds, then D*f, || <m — 2, must be
continuous. Thus it suffices to prove the case m=1, i.e. we must prove the
implication = in (12). We can also assume that p<2 and f=0.

As is well-known, a function u belongs to W% ,.(G), G<=R? an open set, if
and only if u is absolutely continuous on almost every (with respect to one-
dimensional Lebesgue measure) line segment in G— parallel to some co-
ordinate axis— and if the partial derivatives D,u and D,u are in Lf{,. See [7, p.
315]. Moreover, given such a line segment, u tends to a limit as the endpoints
tend to points on the boundary of G. See Morrey [17, p. 66].

Let I=U>_I,, I,=(a,b,), be the intersection of Q with the x-axis R, and
assume that f(-,0) is absolutely continuous on every interval I,. Define ¢(t)
=D, f(t,0) for tel and ¢(r)=0 elsewhere. Then g(t)=["_¢p()dr is
absolutely continuous on R. We shall show that g(t)=F(t,0). Clearly this
proves the theorem. Let I'=dQ\UI, and suppose te R\I. We can
enumerate the I,’s such that b, <t for all v< N. (The enumeration will of course
depend on ¢, but this does not matter.) Denoting by 1. the indicator function of
aset E (1g equals 1 on E and 0 on Ef) we get

> f ¢(T)dT+{J‘ <P(T)df}' Litery
v<N JI, anN
Z {f(bwo)’—f(awo)} +{f(t7 0)_f(aN’ O)}.I{IEIN} .

v<N

(13) g

Let us assume for a moment that
(14) Vv: f(a,0) = f(b,0) = 0.
Then (13) yields g(t)=f(t,0) for t e R\ T and wé shall prove that this is true
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also for t € I'. We have two alternatives: either t is an isolated boundary point
of Q in which case
gt)=limg(t) = 0 = f(t,00 (teR\Q),

=t

or t=Ilim¢t, where t, € 0I,. In this case,

g(t) = limg(t,) = 0 = f(,0),

os the theorem follows from (14).

To prove (14), assume that the converse is true for
a, = 0: f(3,0) =2 const. > 0, when 0=9,,

whereas the set E,={f=¢} is (1, p)-thin at 0 for every £>0. Then, if ¢ is small
enough and if 6 <6,, E,N B(0, ) contains the interval (0,0) on the x-axis. Let
J=(0,1),s0 (0,8)=4J. It follows by comparing C, , with Hausdorff measure —
see [14; Theorem 1, p. 133]—that C, ,(J)+0. By a change of variables in the
integral defining capacity, one sees that C,,(6J)=C;, ,,(J)-&Z"’, whence

S0
j {5"'2C1,‘,(E£ﬂB(O,é))}”"‘d&/é = 00,
0
which is a contradiction.

ADDED IN PROOF. Since this work was completed, Hedberg and Wolff [18]
have extended the results on spectral synthesis to arbitrary p e (1,00).
Moreover, the Choquet property is valid for all p € (1,00). Hence, in our
Theorem 2, the condition p>2—1/d is superfluos and the result is valid for all
l<p<oo.
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