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ON AN INEQUALITY OF FRIEDRICHS

JUKKA SARANEN

0., Introduction.

Let Q<R3 be a smooth bounded domain. An inequality of Friedrichs states
that

0.1) lul,o = c(llcurlufg o+ lIdiveull o+ llullo,q)

for all vector fields u € L2(Q)? satisfying curlu € L*(Q)3, diveu € L*(Q) and
n Aulp=0, '=0Q, [2]. Here n denoteés the unit outward normal to I' and ¢ is a
symmetric positive definite matrix. The condition n A u|r=0 is understood in
an appropriate weak sense. The above result in [2] is a special case of the
corresponding inequalities for differential forms in Riemannian manifolds with
smooth boundaries.

Later Leis (see [11], [12]) derived this inequality by elementary methods
and the proof covers besides all smooth domains also some domains having a
piecewise smooth boundary and a special geometric configuration, compare
pp. 17-18 in [12]. More precisely, it was required that the solution w of the
Dirichlet problem

0.2) {—div EVW)+w = fe 2(Q),
wir=0
has the strong regularity w e C3({).

Moreover, it was shown by Saranen in [14] that inequality (0.1) holds for
domains having a smooth boundary except for a conical point, where the
corresponding inner cone is convex, when e¢=1.

Originally, the inequality of Friedrichs was proved in order to show that the
imbedding of the space of the fields u satisfying curlu € L?(Q)?, diveu € L*(Q),
n A u|lp=0 in the space L%(Q)? is compact. In this direction the inequality has
loosed its importance since the compactness is valid for a large class of
domains, where the inequality is not true, cf. Remark 3.6.

However, the question of the validity of the Friedrichs inequality for
nonsmooth domains is interesting by its own right. It for example provides a
regularity result for the solutions of the system
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curlu = je L3(Q)*,
0.3) diveu = g e L*(Q),
nAaulp =0

which appears e.g. in the magnetohydrodynamics. The same is true also for
other problems —such as Maxwell’s problem — concerning vector fields u with
the electric boundary condition n A u|=0. It is of central importance when the
finite element approximation of solutions for problems of this type is
considered, cf. Saranen [15], Neittaanméki and Saranen [13].

In this article we shall show that the Friedrichs inequality (0.1) is valid for all
bounded convex domains.

The well-studied regularity property v € H*(Q) with the estimate

0.4) lvll2,0 = cllfllo.e

for the solution v € H3(Q) of the Dirichlet problem

0.5) {div (Vo) = f,
U|r=0

is a necessary condition for the validity of the Friedrichs inequality. Our proof
is largely based on the fact that the above H?(Q)-regularity is valid for all
bounded convex domains.

Essentially due to the simple connectivity of the convex domains our final
result takes the refined form

(0.6) lull; o £ c(llcurluflg o+ lIdiveully o)

since (0.3) admits at most one solution in this case.

We achieve inequality (0.6) under the Lipschitz continuity of the matrix ¢
whereas the strong regularity ¢; € C*(Q) was needed in [11], [12].

The result is valid also in the two-dimensional setting. For completeness this
case is also included into the consideration.

1. Notations.

Let Q<RP?, p=3 or 2 be an open set. Further, let £= (¢;;(x)), &;(x) e R be a
continuous positive definite bounded matrix valued function in Q. More
precisely, there exist two constants m(g), M(g)>0 such that

(L1) m@E)E® £ &le(x)E> = ME)IEP

for all (x,¢) € @ x R?. Here {.|.) denotes the Euclidean inner product in R?
with the norm |-|. For the uniqueness, the constants in (1.1) are fixed by
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m(e) = inf {¢Ele(x)E) | 1E]=1, xeQ},
M) = sup{¢&le(x)E) | 1E]=1, xeQ}.

Later on, we shall assume that ¢ is symmetric as well as Lipschitz continuous.

For the space of the square integrable functions, — fields and the Sobolev
spaces with the corresponding inner products and norms we use the familiar
notations L?(Q), L*(Q)?, H*(Q), H}() etc., [1]. In particular, we abbreviate

CIa=C1 e and [-l=1"lieo
Besides the above spaces we introduce
(1.2) H(dive) = {ue L¥Q) | diveu e L}(Q)}
and for p=3
(L.3) H(curl) = {ue L*(Q)® l curlu e L¥(Q)%},

(1.4) Hy(curl) = {u e H(curl) | (curlu| @)o=(u|curl 9)y, ¢ € H(curl)} .

The operations curl u and diveu above are defined in the usual weak sense. In
the two-dimensional case the weak curl generalizes the notation curlu=20,u,
— d,u, for the differentiable fields. It is given as follows. For ¢ € H*(Q) we set
curl ¢ = (0,9, —d,¢) and introduce

(1.5 H(curl) = {u e L*(Q)* | g e LUQ): (u|curl p)o=(g| )0, @ €
2(Q)}

with curlu:=g. Here 2(Q) denotes the space of all infinitely differentiable
functions with a compact support in Q. Analogous to (1.4) we abbreviate for
p=2

(1.6) Hy(curl) = {u e H(curl) l (curlu| @)y = (u|curl @)y, @ € H'(Q)} .

The statement u € H(curl) describes for both dimensions the boundary
condition n A u|=0, where “ A” denotes the exterior product such that n A u
=n,u, —nyu, for p=2.

The space Hgy(curl) has also another characterization. Define namely in
H(curl) the norm |- ||, by

(1.7) lul2 = llcurlulld+ flullf .
Then it holds that Hg(curl)=2(Q)?' ", Weber [16, Lemma 3.3].

We abbreviate X (¢)= H,(curl) N H(dive). The space X (¢) is a Hilbert space
with respect to the inner product

(U] V)4 dive = (curlu|curlv)y+ (diveu|div ev)y + (eu|v), .

Let || |lc+dive b€ the corresponding norm.
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As carlier, the notation c refers to a generic constant independent on the
functions or fields under discussion. The notations X (¢, Q), H,(curl, Q) etc. are
used when necessary. Since the entries ¢;; are real valued we may assume that
all the fields have real components and the functions are real valued. The
partial derivatives are denoted by d,=0d/0x;.

2. Preliminary lemmas.

The Friedrichs inequality which we are going to prove for a class of domains
states that the space X () is continuously imbedded in H'(Q)?, that is X (e)
< H'(Q)* with

21 lully = clullcrgive u e X(e).

We first point out that this imbedding property implies a well-studied
regularity result for the second order problem (0.5). Define namely the
corresponding closed operator div, (¢V) in L?(R) with the domain

D(e) = {we Hy(®@) | 3fe L*Q): (VW |V9)o= —(f19)o ¢ € H§(Q)}

and with div, (eVw)=f. Here the subscript in div, (¢V) refers to the Dirichlet
boundary condition. Since ¢ is positive definite the inverse (div, (eV)) ™ !: L*(Q)
— D(¢) exists by the inequality of Poincaré and by the theorem of Lax and
Milgram. If imbedding (2.1) is valid, then holds D(g)= H*(R2) with

(2.2 Iwl, = cllfllo

for w=(div, (¢V))"'f. This follows from the fact that u € Hy(curl) N H(dive)
and curlu=0, diveu=f, if u=Vw.

Conversely, the subsequent characterization of the space X (¢) enables one to
utilize the relation D(e) < H*>(Q) and inequality (2.2) (when they are true) in the
proof of the imbedding result (2.1). Since the inverse (—div, (eV)+1)7': L2(Q)
— D(e) also exists (Q bounded or not) we can define

Vie) = {(p=l//+V((—diV0 (eV)+ 1)~ (divey) | Y e 2(Q7} .
It holds

LemMA 2.1. Let Q< RP, p=3 or 2 be an open set. Then the space V (&) is dense
in X(e).

Proor. Take @=y+Vw with —divy(eVw)+w=divey, ¥ € D(Q). As
VH(Q) < H,(curl), and as diveVw e L*(R), we have V(¢)< X (¢). Since X (¢) is a
Hilbert space, it suffices to establish that V(e)* N X (¢)={0}, where V(e)*
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denotes the orthogonal complement of V(g) with respect to the inner product
(‘1" )etdive Let u € V(e)* N X (¢) be given. Then we obtain

(2.3) 0= (uly+Vw)iave
= (curlu|curly), + (div eu | div ey),
+ (diveu | diveVw)y + (eu | )y + (eu | Vw),
= (curlu|curly)y+ (euly),
for all ¥ € 2(Q)?. By Hy(curl)=2(Q)"' " relation (2.3) implies u=0.
As a consequence of Lemma 2.1 we note that when the regularity D(g)

< H?*(Q) is valid, then holds V(g)c H'(Q)". Accordingly, for the imbedding
X (e)c H'(Q)? with (2.1) it is enough to prove that the estimate

24 lully = cllullctaive

holds for every u € Hy(curl) N HY(Q)? or for all u € V(¢).
Let ||, o be the usual semi-norm such that

P
hvﬁ,g = E: "a#%“ﬂﬁ,o-

ij=1

By the above remarks the following result of Kadlec ([9, Teorema 10 and
Teorema 14]) is relevant.

THEOREM 2.2. Let Q<RP, pe N be a bounded convex domain. If ¢ is a
Lipschitz continuous positive definite matrix in Q, then holds D(g) = H*(Q) with

(2.5) w2, = ¢l flloa
for all fe L*(Q), w=(div, (¢V))"'f. Particularly, if ¢ is constant, we have
(2.6) Wlao £ m@e) ™ flloq-

3. Friedrichs inequality.

In this section we shall prove the imbedding X () = H! (Q)? with (2.1) for all
bounded convex domains if the matrix ¢ is symmetric positive definite and
Lipschitz continuous.

We fix some conventions for the vector fields. If u= (u;) € H' ()", then Vu:
= (Vu) € (L*(Q)P)?. Especially holds
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lulf,o = IVuld o+ lluld o
for u € H*(Q)?. Furthermore, if w € H*(R), then
Wi o = IVWI§ a,

where V2w:=V(Vw). For the field u € H*(Q)?, Au is the vectorial Laplacian
which satisfies

Au = —curl (curlu)+Vdivu .
Let us begin with the case ¢=1.
THEOREM 3.1. Let Q< R? p=3 or 2 be a bounded convex domain. Then holds
X (1) HY(Q)P, where the imbedding is continuous such that
@n - IVull§ < llcurlu|§+ divu|
for all u e X(1).
Proor. According to Lemma 2.1 and Theorem 2.2 it suffices to consider the

fields u € V(1). We take u=y +Vw, where ¥ € 2(Q)?, and where —A4,w+w
=divy, w € H}(Q). Equivalently,

(3.2) (Vw[V)o+ (wl)o = (divy|e)

for every @ € H.(Q). We use the identity

(33 Vul = IVW+IWIE = [IVYIG+2(VTY 1 Viwo+ [ V2wG

where further by € 2(Q)” holds

(B4 (VWIViw), = —(4y|Vw) = (curl (curl )| Vw)o — (Vdivy | Vw)o
= —(Vdivy|Vw), .

Choosing ¢ =divy in (3.2), we find by (3.4)
(3.5) (VY [V2w)o = —[divilig+ (wldiv), .

The essential trick is to use the sharp estimate (2.6) for the last term in (3.3).
This yields

(3.6) IV2wli§ < 1Awlg = llw—div i3
Iwlg —2(w | div o + Idive|l§ -

I

Since, on the other hand,

IVYl§ = llcurly g+ lidivilid = feurlu|g+ |Idivyls,
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Idivuld = |divyg+dw]|d = |wl3,

formulae (3.3), (3.5), and (3.6) imply estimate (3.1).

REMARK 3.2. Inequality (3.1) instead of the equality is essentially due to the
“curvature” of the boundary. Namely, if Q is a smooth bounded domain, then
we have the imbedding X (1)< H!(Q)? with

3.7 IVul|2 = ncur1u||g+udivu||g-—j div n(x)|ul? do .
r

Here divn(x)|r= —2H(x), where H(x) is the mean curvature. If Q is convex,
then especially holds div n(x)|; =0, cf. Saranen [14, Lemma 1.3 and Satz 1.4],
the proof.

REMARK 3.3. If Q is a bounded convex polyhedron, then we have
3.8) [Vulld = |lcurlu|d+||divul3, ueX(1).
This can be seen from the proof of Theorem 3.1, if one applies the equality
(3.9 V2wl = lldwll

(cf. Grisvard [6, p. 363]) instead of inequality (2.6) used above.
Next we consider the case where ¢ is constant. In the following f’ denotes the
adjoint of the matrix B; Bf’ =det -9, where =1 is the identity matrix.

THEOREM 3.4, Let Q<=RP, p=3 or 2 be a bounded convex domain and let ¢ be a
symmetric positive definite constant matrix. Then holds X (¢) = H* (Q)?, where the
imbedding is continuous such that

(3.10) m(e)*|Vullg < M(e)|curl ul|d + |diveu
Jor all u € X(g).

Proor. This assertion follows from Theorem 3.1 by using a suitable
transformation. Since some notations are different for p=3 and p=2, we write
the formulae only for p=3.

Because ¢ is symmetric and positive definite then there exists a symmetric
positive definite matrix y such that e =72, dety>0. Denote a=7y ! and consider
the mapping x — y=ax: Q@ — «(Q). Again, it suffices by Lemma 2.1 and
Theorem 2.2 to assume that u € Hy(curl, Q)N H!(Q)>.

We define in the domain «(Q) the field v by

(3.11) v(y) = yuly), yea(Q).
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Then we have v € H'(2(Q))* and (summation convention)

0 0 o
3.12 —u,(y) =y,
(3.12) P v;(¥) = Vi oy u,(yy) = v,uvava

u,(x) .

Accordingly,

. 0 0 .
(3.13) dive = 5;ivi(y) ymy,,a u,(x) = = div (eu) .

0
ué?uu

[

Furthermore, if i, j, k € {1,2,3} are the indices in the usual cyclic order i <j
<k, then

0 0
(3.14) (curlv); = 5 Uk’“éy“kvj = (Vku)’aj—?juyak)aa“u

i
One obtains from (3.14) by the symmetry of y after a reordering of the terms
the formula

(curlv); = (y' curlu), .
Therefore holds
(3.15) curlv = y'curlu .

The mapping u — v preserves the boundary condition n A u|=0. If namely
¥ (») =y (yy), then one concludes that ¢ € H(curl,a(Q)) iff ¢ € H(curl, Q) and
then curly =y curl ¢. For all € H(curl, o(2)) thus holds

(3.16) (v]curly)g 4 = deta(v(ax)|y curl @)oo
= (" 'o(@9)|curl @)y g = (ulcurl g)og
= (CUY1“|(P)0,Q = (Curlvlllf)o,a(g),

since u € Hy(curl, Q). By (3.16) holds v € Hy(curl,2(€)). As the domain a(L) is
bounded and convex and as ve Hy(curl,a(Q)NH! (x(2))?, we have by
Theorem 3.1

(3.17) VO3 woy £ llcurlv]d yo)+ I1divoll§ o) -
Writing (3.17) by means of the field u we obtain

(3.18) (6,0, (pu); | 0,(yu))o < lly curlufd+ |[div eul|5 .
Observing the estimate

(3.19) Iy curlul|d = (v curlujcurlu), £ M (&)|lcurl u)|2

and
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P
(3.20) (510, (yu)i | 0, vu))o 2 m(e) Z IV (yuill

m(g)(gi.uaaul | aauu)()

(|

P
m(e)* 3. 10,1,/
o, 1

= m(e)*|Vullj
we find the desired inequality by (3.18)-(3.20).

As the main result of this section we achieve the Friedrichs inequality (2.1)
for Lipschitz continuous matrices &.
A function ¢: Q — R is called Lipschitz continuous if the norm

lp(x) -

= su
Lol p{ x—)l

x,y € Q, x=t=y}

is finite. Let C%!(Q) be the corresponding function space. For ¢ € C>!(Q)
holds

lo(xX)—o() = [ol,ox—y, x,yeQ.

THEOREM 3.5. Let Q<R?, p=3 or 2 be a bounded convex domain and let ¢ be a
symmetric positive definite matrix function such that ; € C>'(Q). Then holds
X (e)c HY(Q)P, where the imbedding is continuous, that is

(3.21) lull,o = c(lcurlullg o+ lIdiveullo o+ llullo,0)
for all u € X ().

Proor. Again, it suffices to consider the fields u € Hy(curl) N H!(Q)?.
Denote

B(y,r) = {x e R?| |x—yl<r}

and let Z be the set of all integers. The family {B(gq, 0) | q € ZP} covers all of
the space R? for every ¢>0. We abbreviate U=U(y,r)=B(y,r)NQ, if the
intersection is nonvoid. If » is any function belonging to 2(U), then holds
ne, € Hy(curl, U), because no, € 2(U)* with

[curl (o —nu)llo,u + Inex—nullo,u < clex—ulloe— 0,

when ¢, — u in Hy(curl, Q), ¢, € 2(Q)".
We fix for every ball B(gq, 3p) a test function & € 2(B(gq, 30)) (depending on
¢ and ¢) such that 0<&(x)<1 and that
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H) {1 if l—oql<e,
0 if [x—pq|=2¢.
There exist the points x, , € U(gq, ¢) and it holds
(3.22) m(e) < mle(x, ), M(E'(x,,) < M(€).

Since ¢u € Hy(curl, U{gq, 30)) N H*(U(0q, 30))?, and since the domain
U(ggq, 30) is convex, we find by (3.22) and by Theorem 3.4

(3.23) m(e)*|Vull§ o < m(e)* Y 1Vull§ vieg0
< Y mle(x, )P IVEDIE Uieq 30
< M) Y (llcurl Eulld yoq.30)

+1div Ee(x,, 18, U(eq. 30) »

where > means the summation over all g € Z? satisfying B(gq,0) N Q=+ .
Furthermore holds (U'=U(gq, 30))

(.29 Ieurl &ull§ o = g curlu+ (V&) A ullg v
< 2(llcurl ullg v +cllullg v)

and similarly

(3.29) Idiv &ex,, Jull, v

IA

2(Idiv e(x,, Julld v +clluld v) -

The last term in (3.23) is the crucial one. Denoting by c, a generic constant
independent on g and the radius ¢ we obtain by (3.23)-(3.25)
(3.26) IVulg o < cllcurlull§ o+ ull§ o)

+¢Co Z, ”dive(xo.q)“”(%,U(chQ) :

We use next the fact (cf. Gilbarg and Trudinger [3, pp. 142-144]) that if
@ € C>'(Q), then the weak derivatives d,¢ exist and coincide almost
everywhere with the partial derivatives defined for ¢ as an absolute continuous
function. Accordingly

16k (X)l = [@]1,0
for almost all x € Q. If in addition w € H' (), then the weak derivatives d,(pw)
exist and satisfy 0,(pw)=(6,@)w + @O, w.
Applying these remarks to the functions (g;;(x) —&;(x,,,))4; and noting that
Ix—x, /<60, x € U we obtain

(327)  Iidive(x, Jullo,vr < lIdiveullo v+ l1div (e(x) —e(x,,ulo, v
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IIA

Idiv eullo, u+ | (Dies)ujllo, ur + Il (6:(x) — &5(x, ))0itt 0, 1

1A

lldiv eullo, y+cllullo, v+ coellVillo v -
By (3.26) and (3.27) follows
(3.28) IVulg o < c(lcurlul|§ o+ lldiveul§ o+ llulld o)

+¢00% Y IVUld vioq.30) -
Now we use the characteristic property of the chosen family of the balls. If
namely
k(p) := kard{g € Z7 | |q|<6},
then for every g holds
(3.29) kard {q' € Z* | U(eq,3¢) N Uleq’, 30+ I} < k(p)
for all 9>0. Inequality (3.28) implies by (3.29)

IVulld,o = cllcurlull§ o+ lldiveull§ o+ ulf o)

+cok(p)e®IVuld a,

which yields the desired estimate if ¢ is small enough.

RemMArk 3.6. If the domain Q is nonconvex, then the Friedrichs inequality
need not be valid. It is namely well-known that the necessary condition
described by means of the second order elliptic problem in section 2 does not
hold for all bounded open sets. For domains with conical boundary points we
refer to Kondrat’ev [10] and for polyhedral domains to Grisvard [4]-[7] as
well as to Hanna and Smith [8]. On the other hand, the compactness of the
imbedding X (g) = L%(Q)? is true for these types of domains, Weber [16] and
Weck [17]. Note also that for the compactness no regularity for the matrix ¢ is
needed; it suffices that ¢ is bounded and measurable [16].

4. The refinement.

We turn to the refinement (0.6) announced in the introduction. In the
following result it suffices that the matrix ¢ is bounded positive definite and
measurable.

THEOREM 4.1. Let Q<RP, p=3 or 2 be a bounded convex domain. Then the
problem u € X (g)

@1 {cur]u =0,

]
o

diveu =

has only the trivial solution u=0.
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Proor. Let v be the extension of u in R? defined by v(x)=0 x ¢ Q. Since
u € Hy(curl, Q) it holds for every ¢ € Z(RF)? by (1.4)

(vlcurl@)ope = (ulcurl @)g g = (curlu|@)q = 0.

Accordingly we have v € L*(R?)? with curlv=0.

Let us first consider the case p=3. According to Weber [16, Lemma 3.6],
there exists a function w € L?(R%) such that Vw=v and w(x)=0, x € R3\ Q.
Since @ has the segment property it holds by [16, Lemma 3.2] that
wlo € H§(9Q). Since wlg is a solution of the Dirichlet problem div (eV(w]g)) =0, it
follows that w=0 and consequently u=0.

In the case p=2 the argument of [16, Lemma 3.6] can be modified as
follows. From v € L2(R%?, curl v=0 one obtains for the Fourier transform o
= (0,,0,) that x,0,—x,0, =0. Accordingly &= (9- x)|x| ™ 'x.

Since © is bounded and % € L2(R?)?, we can define the function w as the
inverse Fourier transform of the tempered distribution —i(#- x)|x|” 2. By using
f;=(9-x)|x|~'x; one verifies that Vw=v, where w € L{.(R?). Since Vw=0 in
R2\ @, there exists a constant ¢ such that w'=w — ¢ satisfies Vw' = v with w'(x)
=0, x e R2\Q, w' € L?(R?). The rest follows as above.

Finally, we obtain the refinement of Theorem 3.5

THEOREM 4.2. Let Q<=RP, p=3 or 2 be a bounded convex domain and let ¢ be a
symmetric positive definite Lipschitz continuous matrix function in Q. Then holds
X (e)c H'(Q)?, where the imbedding is continuous such that

(4.2) lulli,o = c(llcurlullo o+ lldiveullo o)
for all u e X (s).
Proor. Assume that (4.2) is not true. Then there exists a sequence u, € X (g)
with the properties
(4.3) luly = 1,
4.9 lcurlu, |l + |diveu,fo — 0, k — oo .

The imbedding H!(Q)? = L*(Q)* being compact we can by (4.3) choose a
subsequence u, =u, such that

4.5) lu,—ullo = 0, v—o00,

for a field u e L%(Q)?.

By (4.4) and (4.5) follows u € X (¢), curlu=0, diveu=0. Hence u=0 by
Theorem 4.1.

Math. Scand. 51 — 21
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On the other hand, inequality (3.21) with (4.4), (4.5) yields that u is a
Cauchy sequence in H!(Q)’. Necessarily v, — u=0 also in H!(Q)?, which
contradicts (4.3).
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