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VITALI TYPE THEOREMS
FOR A CLASS OF MEASURES IN RV

LEIF MEJLBRO

1. Introduction and summary.

We consider the space RN provided with the maximum norm |- || - A closed
ball with centre x and radius r is denoted by B[x,r] and the corresponding
open ball is denoted by B(x, r). The special choice of norm is not essential for
the results below, since any norm could do. It is only convenient for some of
the proofs.

The Lebesgue measure is denoted by 4 or Ay. If R?, p< N, is imbedded in R,
the corresponding Lebesgue measure on R? is denoted by 4,. By u we denote a
measure on RN, which at least is defined on all Borel sets.

Let # denote a class of closed balls. In the notation from [5], [4] we say that
a set ASRN can be packed with balls from & with respect to the measure p, if
one can find a subclass (a packing) #* <% consisting of pairwise disjoint
(closed) balls, such that

p*(ANU{B| Be®*}) =0,

where u* denotes the outer u-measure. (In [1], 4 is said to be u adequate for
A)

For given # we introduced in [4] the local set A,,.(%) by
Ajc(@) = {xeRY| VreR,3Be #: B < B[x,r]}.

(In [1], # is said to cover a set A finely, if A A\,(#).) We shall in the
following only consider subsets of A4j,.. Note that A4, is independent of the
measure under consideration.

For any subset A<RY, let 4 denote the class of all closed balls B in R, for
which ANB=¢, i. e.

A = {Bclosed ball| BN4 = &} .

This definition is especially used, when we want to characterize the u-nullsets.
If, however, in the applications, one is only interested in a differentiation
theorem, the condition BN A =¥ may be replaced by u*(4 N B)=0.
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Let B be a family of pairs (4, %), where A<RN and 4 is a class of closed
balls in RN. The family B is called a Vitali system, if the following two
conditions are satisfied,

VS 1 VAB eBYDc A: (D,B)eB,

VS 2 V(A,8)e B VF closed: (ANF, ZBNF)e B .

We note that if # is a class of closed balls, then (A4,.(#), &), generates a
Vitali system B (%) by the axioms VS 1 and VS 2 above. Hence, if # and
AS Ay, (B) are given, we can use all the theorems for general Vitali systems.
This is sometimes done in the following without mentioning the corresponding
Vitali system.

Let B be a Vitali system. We say that the packing theorem holds for B with
respect to u, if each pair (A, %) € B satisfies the condition that there exists a u-
packing #*< # of A.

The fundamental (and classical) result for the packing theorem to hold for a
Vitali system is the following lemma, which also was used in [5] and [4].

LEMMA 1. Let B be a Vitali system. The packing theorem holds for B with
respect to p, if and only if there exists a constant ¢ € R, such that one to each
(A,#) € B, where A is bounded, can find a finite number of disjoint sets
B,,...,B, from &, such that

u(,ul Bj) 2 cop(A).
=
We note the following simple and useful consequence of Lemma 1.

LeMMA 2. Let p, and u, be two measures on RN, and let B be a Vitali
system, for which the packing theorem holds both with respect to pu, and with
respect to p,. Then the packing theorem holds for B with respect to u, + ji,.

Proor. Let (4,%) € B, and let U2 4 be an open set, such that

w (U) = 3uf(A), #2(U) £ 3uf(A).
Then,

p*(A) = (u+p)*(A) £ (uy +p)(U) = py (U)+p,(U) .

Choose B,.. ., B, € # pairwise disjoint, such that

M (j_L__Jl Bf) 2 dut(4).
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Then (ANUj., B, 2N (Ui, B ; ) € B, so we can choose pairwise disjoint sets
B,+1,-- .. B, € B0 (U1_; By, such that

u:( U Bk> > %M‘(A\Q B,.).

k=n+1 ji=1

(8 = (0ol B, e D, ) 0)

%u;“(A)+%u’2“(A\ v) Bj>+ul(k U, Bk>+u;(Aﬂ U B,.>
j= =n+

ji=1

I

I

(A +3uF(A) 2 51 (U)+31,U) Z $u*(4),

and the result follows from Lemma 1.

Let # be a given class of closed balls. If x € A, we need some information
about the mass pu(B) which always can be chosen from 4 in the neighbourhood
of x. This is given by the socalled g-function, ¢,(x,r), (also depending on %),
which is defined by

0.(x,r) = sup{u(B)| Be #, B < B[x,r]},  x€ Ao reR,,

and by the neighbouring o-function, g, .(x,r), with parameter ¢ € R, which is
given by

0u.c(x,r) = sup {min (u(B,), u(B,)) | By,B, € B; B,,B, = B[x,r];
|cen B, —cenB,| = c'r},
where cen B denotes the centre of the ball B.

We shall in the following often compare g,(x,r) and g, .(x,r) with the
corresponding functions ¢,(x,r) and g, .(x,r) for the Lebesgue measure, since
we already know (cf. [4]) Vitali type theorems for the g-functions with respect
to A

It follows intrinsically from Lemma 1 that one is more interested in the
quotient of ¢,(x,r) and u(B[x,r]). This causes no problem if u=4, but for
general p we may have u(B[x,r])=0 for some r € R, and hence also g,(x,7)
=0. We shall therefore define the relative g-function g (x, r) with respect to u by

.(x,1)/u(Blx,r])  if u(B[x,r]) >0

0 (x.r) = {1 if w(B[x,r]) = 0.

It is easily shown by Lemma 1 that if there exists a constant ¢ € R, such
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that ¢¥(x,r)=c for all x € 4 and all r € ]J0,1] (say), then 4 can be p-packed
with balls from 4. This is in fact the classical result.

In [5] it was proved that if o¥(x,r)=¢(r) for all x € 4 and all r € J0,1],
where the non-negative function ¢ satisfies the condition

W j oY = 100,
0 r

then A can be A-packed with balls from 4. (The classical result is included in
this result with @(r)=c.)
In [4] it was shown by a counterexample that

! dr
) J e¥(x,r)— = + for all xe 4
o ¥

does not imply a packing theorem, but if A=4,UA4, and
! dr

) j ef(xn/lloge;(xn)l-— = +oo  forallxed,,
0

and for some c € R
! dr
“4) of . (x, ")-r~ = 400 for all x e 4, ,
0
then one again obtains a packing theorem. It was also proved that (1) follows
from (4).

It is easy to see that (3) and (4) can be relaxed to hold for almost every
x € A; and almost every x € 4,, since 4,\ N, and 4,\ N, can be packed,
where N, and N, are suitable nullsets.

DEFINITION 3. Let u be a measure on RY, and let & be a class of closed balls.
If A2 A,,.(#) and if there exists a (not necessarily disjoint) decomposition
A=A, UA, of A, such that for all ¢ € ]0,1[

€ dr
5) ok (x,r)/|logg,(x,n| T = +00 for (u)-almost every x € A4,
0
and for some c e R,
! dr
6) o . (x, r)—r~ = 400 for (u)-almost every x € 4, ,
0

we say that A satisfies P(%, u).

Then the main result i [4] can be formulated in the following way.
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THEOREM 4. Let % be a class of closed balls, and let ASRN. If A satisfies
P(%, 1), then there exists a A-packing B* = # of A.

ExampLE 1. If the conditions (5) and (6) are further relaxed only to hold in a
dense set, one cannot conclude that we have a packing. In fact, let u=4, let Q
={q, | ne N} and let ¢e R, be any given positive constant. Let U
=U} % Blg,e 27" 1]. Then A(U)<s, so U does not cover R or any subset 4,
for which 1*(4)>¢. Let

# = {I closed interval | I < U}.

Especially, B[g,,rle# for all re]0g2 "], so o¥g,r)=1 for
r € ]0,6-27""']. Hence, we conclude that

g2 !

1 d
J 05 (qm1)/0g 0, (g r)I.Tr 2 J

0

dr
1/og 2r)— = +0o0.
0 r
so (3) is satisfied in a dense set. By an analogous argument one proves that (4)
also is satisfied for all ¢ € ]0,2[ and x=gq, € Q.

In section 2 we introduce the strongly continuous measures y with respect to
A and prove that if u is strongly continuous and A satisfies P(4, u), then there
exists a u-packing from % of A. In section 3 this result is generalized to the
socalled well-behaved measures, and in section 4 one further generalizes to the
weakly well-behaved measures on RY. In section 5 one considers weakly well-
behaved atomic measures, for which one has fairly good results, and finally in
section 6 some applications and the limits of the theory are mentioned.

2. Strongly continuous measures p with respect to A

We first prove the following simple result, which we unfortunately forgot to
include in [4].

THEOREM 5. Let u, and p, be two measures on RN, and suppose that p, is
absolutely continuous with respect to .. Let B be a Vitali system. If the packing
theorem holds for B with respect to y,, then the packing theorem also holds for B
with respect to w,.

Proor. Let (A4,4)e B. By assumption there exists a u,-packing
{Bj| jeJicBof 4,1 e

u(ANU{B;| jeJd) =0.
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As u, is absolutely continuous with respect to u,, each y,-nullset is also a u,-
nullset, so

m(ANU{B; | jel}) =0.

Let u be absolutely continuous with respect to the Lebesgue measure 4 on
RN. Let f(x) be the Radon-Nikodym derivative of u with respect to 4. By
Lebesgue’s differentiation theorem we get
W) f(x) = lim p[B(x,2 "])/AB[x,27"]) for a.e. x e RV.

n—+00

DEerFINITION 6. The measure p is said to be strongly continuous with respect
to 4, if u is absolutely continuous with respect to 4, and the Radon-Nikodym
derivative f(x) is for almost every x € RN locally of class L™, ie. for ae.
x € RV there exists an r, >0, such that f* yp,,j € L™

EXAMPLE 2. Let (p(t)=x,0,,[(t)/1ﬂ, and let

f@) =@+ Y o@2®-1) and g = ) @(2't-2",),
n=1 n=1

where QN [0,11={q, | n e N}. Then f,g € L'(4), and f, g2 0. The measure p,
defined by pl(B)=§af (x) dx is strongly continuous with respect to 4, while the

measure p, defined by p,(B)=[pg(x)dx is absolutely continuous but not
strongly continuous with respect to A.

We now have the following generalization of Theorem 4.

THEOREM 7. Let pu be strongly continuous with respect to A. Let B be a class of
closed balls. Suppose that AS RN satisfies P(®, u). Then there exists a u-packing
of A.

PRrROOF. Only Ac{x ] f(x)>0} need to be considered. We shall only prove
the theorem under the assumption.

®)

1
J e:(x,r)/uoge,.(x,rn-f} = +% for (-ae xe A S{x| f(0)>0},
0 .

as the proof in the case

1
f Q,’,",c(x,r)%i = 4+ for (u)—ae xe A, < {x | f(x)>0}
0

follows a similar pattern.
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By assumption, (7), (8) and f" xp, . € L™ are simultaneously fulfilled for
(4)-almost every x € A;. Let x be such a point. Let a=|| f* x4, jll - From (7)
follows that a>0.

Choose ny € N, such that 27" <r, and

u(Blx,27")/A(B[x,27"]) > 3f(x) and a'g;(x,2™" < 1 forall nZn,.

For n=n, we have

0 <0,(x,27") £ ag;(x,27" < 1

and

0X(x,27") = 0,(x,27")/u(B[x,27"]) £ a-0,(x,27"/{zf (%) A(B[x,27"])}
= {2a/f(x)} -0} (x,27"),

)

0x(x,27")/|log e, (x, 27" = {2a/f(x)}-e¥ (x,27")/|logag,(x,27 "] .

Using the same technique as in [4] we conclude that (8) is satisfied if and only
if

+ o0
Y 0k (x,27"/loge,(x,27"| = +%.
n=1

By the estimate above we conclude that also

+ 00
2 ef(x,27"/|loglag;(x,27"]| = +,
n=1

and since a € R, is a constant,

+ o0
Y 0f(x,27")/|logey(x, 27| = + 0,
n=1

which is equivalent to

1 dr
9 LQi‘(x,r)/llogel(x,r)l'T = +.
Since (9) is satisfied for (4)-almost every x € 4,, it follows from Theorem 4 that
we have a A-packing #* of A4,, and since u is absolutely continuous with
respect to 4, we get that #* is also a u-packing. Note that if u is strongly
continuous with respect to 4 and A< {x [ f(x)>0} satisfies P(%,u), then 4
also satisfies P(%, A).

The proof of Theorem 7 suggest the following
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ConJecTure. If p is absolutely continuous with respect to 4, and
Ac{x| f(x)>0} satisfies P(%, ), then A also satisfies P(%, A).

3. Well-behaved measures on R".

In section 2 we considered the measure y from a measure theoretical point of
view. We shall now turn to the geometrical aspect in order to handle the case,
where u is not absolutely continuous with respect to 4. We shall first consider
a very simple case.

LEMMA 8. Let Ay be the Lebesgue measure in RN and A4 the Lebesgue measure
in R%, g < N, where R1 is imbedded in RN. We put u=An+ 4, Let B be a class of
closed balls, and suppose that ASRY satisfies P(&, n). Then there exists a u-
packing B*< R of A.

ProoOF. We may suppose that N=2 and q=1, and that supp 4, is the x-axis
in R2. First we note that if y,+0, then

0. ((x0:0)57) = 03,((X0¥0);7)  for r e J0,|y,lL

and

0¥ ((%0,¥0)51) = @} ((X0,¥o)s1)  for r €0, [y,l[ -

Hence, there is nothing to prove if 4 does not intersect the x-axis.

If we can prove that ANsupp 4, also satisfies P(4%, 4,), we conclude, since
{BNsupp 4, ( B e #} is a system of closed intervals on supp 4,, that the
packing theorem holds for (4, %) both with respect to 4, and with respect to
441, and hence according to Lemma 2, also with respect to u=4, +4,.

Now, let (x,0) € 4. Then

u(BL(x,0);r]) = 2r+4*  and  4,(B[(x,0);r]) = 2r,
and from the definition of the g-function we get
(10)  0,((x,00;7) < 0, ((x,0);7)+A,(BL(x,0);r]) = 04, ((x,0);7)+4r?,
and similarly
e ((%,0);7) £ 05, c((x,0);7)+4r7,
sO

(I 0¥ ((x,0); r)

0.((x,0); r)/(2r +4r?)

= 0;,((x,0);r)/{2r (1 +2n)}
+4,(BL(x,0);7])/{2r(1 +2r)}
X ((x,0);r)+2r/(1+21),

A
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and similarly
e ((x,0)57) < of (((x,0);r)+2r/(1421),
from which we derive that
%, ((e,05r)/r 2 ok ((x,0);r)/r—=2/(1+2r) .
Sincef(’,2/(1+2r)dr=log 3, it follows from the assumption that

1
d
J Q,i:vc((x, 0);r)Tr = 4+ for (u)-almost every (x,0) € 4, .
0

In the same way one proves using (10) and (11) that

1 dr
J Qf,((x,O);r)/IIOgQil((x,O);r)l-7 = +%
[1]

for (u)-almost every (x,0) € 4, .

In fact, assume that (8) holds, and assume that Q,,(r)<% for r € 10,1].

Then also

I

14 dr
f o4 (r)/|loge, (|- — =+,

0

where we have used the shorter notation g,(r) for ¢((x,0);r) etc. Let
Bl = {re[oﬁll_] ‘ Qu(r)ggrz}’ BZ=[0’%]\BI .

Since u/|logu] is increasing for u € ]0, 1[, we get

J ex(r dr _ j 2.() 1 dr
8, llogo, ("l r 8, llog ¢, (| u(BL(x,0); r]) r

8r? 11
s 2 7 dr
B, llog (8r%)| 2r+4r® r

1
< .
<2 LZ Togri—Tiog8 dr < +00,
SO
(t j e v
B, lloge, ()| r

For r € B, we have from (10),

3> 0,0 2 e,(N-4r* 2 10,0,

297
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hence,
llogg;, ()| < llog (3o, (M), re€B,.
From (11) we get

1 1 2
—_o¥% > _po* —_—
rQ}.l(r) = er(r) 1+2r s

hence for r € By,

e (r) ext) 12 1
lloge,, (M r = llog (be, (M)l r 1+2r Jlog (3o, (M)

Since g, 2{(1 +2r)llog (3¢, (M)} ! dr < + o0, it follows from (*) that

A ﬂécj o) dr_ o
olloge,, 0 7 = Jy, Tloge, () 7

!
;

and the proof is complete.

COROLLARY 9. Let uy be a strongly continuous measure with respect to Ay, and
e <N, a strongly continuous measure with respect to A, and let p=py+p,. If
A is a class of closed balls, and A< RN satisfies P(®, ), then there exists a ji-
packing B* < # of A.

Proor. If x ¢ supp pu,, there exists an r, € R, such that

ﬂ'B[x,rol = #NIB[xer] s

so when x ¢ supp p,, the result follows from Theorem 7.

Since, by assumption, uy(supp u,)=0, we shall only prove that 4 Nsupp u,
satisfies P (4%, u,), when A satisfies P(%, p).

Let f, be the Radon-Nikodym derivative of u, with respect to 4, and let fy
be the Radon-Nikodym derivative of uy with respect to 1y. When fy(x)=0,
there is nothing to prove, and the set where either f,(x)= + 00 or fy(x)= + 00
is a nullset by assumption. Hence, we need only consider the case, where
fo(x) € R, and fy(x) € R,. Furthermore, for (u)-almost every :

x e {xesupppy, | f,(x) e Ry, fn(x) e R,}
there exists an r, € R, such that

11y(BLx. 7))
21,(B[x.7)

#q(BLx,r])

< 10 = 274G

for all r € ]0,r,]

and
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1 un(B[x,r]) un(BLx,r])
Em é fN(X) é Zm for all re ]0,7’0] »
so for r € JO,r,] we get

0.(x%,1) = 0,,(x, 1)+ un(B[x,r]) = 0,,(x,r)+2fn(x)  An(Bx,r])

= g, (N +2fy(x) 2NV

and
u(BLx,r]) = pg(BLx,r])+ un(Blx,r])
2 3fo(x)- Ag(BLx, 1) + 5 fn (%) An(B[x,7])
= 1,(x) 27+ fy ) 2N
SO

IA

oX(6r) = 0 (6 n)+ 2/ N0 2PN/ (3 fy(x) 207 + 3 iy (x)- 2PV}
0 6N+ 2N I f () fo (0} PN e

Since x is fixed and g <N, we conclude that

IIA

F 2”“'+2{fN(x)/f,,(x)}rN—q-dr—' < +00,

0o

so using the same method as in the proof of Lemma 8 we conclude that

AN{x € supp p, | f,(x) € Ry, fy(x) € Ry}

satisfies P(%, u,), and the proof is complete.

Let V;, j<N, be a j-dimensional (orientable) C'-manifold imbedded in RN.
The manifold ¥; need not necessarily be connected. Then by the Cl-structure
V; inherits a measure 1, which is uniquely determined by the Lebesgue
measure in R/ (cf. e. g. [3]).

When we have a j-dimensional C'-manifold V; as above we can by the local
charts define the absolutely continuous and the strongly continuous measures
u; with respect to 4.

If to every x € V; one can find r, € R, such that V;N B(x,r) is connected for
all r € 0,r,[, it follows by the C!-structure, which assures the existence of the
tangent space, that if A satisfies P(%, A)), then one has a 1}-packing #* = % of
A. In fact, condition P(4, 4)) is local, and if x € ANV, let (U,,x), U,cR/, be
the corresponding chart. Then x is extended to a C'-map % in a neighbourhood
of x in RV, such that % is bijective on B(x,r)). If

# = {#B)| Be®, BSB(x,r)},
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then & is regular in the sense of [2], hence %(ANB(x,r,)) satisfies P(#, 1)), so
%#(ANB(x,r,) can be A;-packed with sets from #. Using z~ ', we get a A-
packing of ANB(x,r).

This result, together with Theorem 7, Lemma 8 and Corollary 9, leads to the
following definition.

DerINITION 10. A measure g on RV is called well-behaved, if there exist N + 1
measures pg, 4y, - -, 4N, Such that

H=untuy_1+ ...+t o,

where supp u;€ V), j=0,1,...,N, and each V; is a j-dimensional C!-manifold
satisfying

(12) VxeV;dr,e R, ¥re]0,r[ : V;NB(x,r) is connected ,

and where y; is strongly continuous with respect to the measure 4; induced by
Aj-

ReMARK. In the definition above supp ; is considered as a closed set relative
to the manifold V;, which need not be closed in Ry.

Note that the V; are not necessarily disjoint. This idea of decomposition of u
according to dimension was also used in [6] in a simpler case, though in a
different context.

Note also that if the conjecture in section 2 is true, we may allow that y; is
only absolutely continuous with respect to 4. In that case the concept of well-
behavior would only depend on the geometry.

The reason for introduction of well-behaved measures is that we have a
unique decomposition p=p,+u, of every measure u on RN, where p, is
absolutely continuous with respect to Ay and y, is singular. If supp u, is
contained in UN5'V, where V; is a j-dimensional C!-manifold of the
considered kind, we may again split pu|Vy_; into pY =14+ uN~1 where ¥ ! is
absolutely continuous with respect to Ay _, and after a finite number of steps
and under suitable assumptions we would get u=puy+uy_(+ ... +u; +p, as
in Definition 10.

THEOREM 11. Let u be a well-behaved measure on RN, and let % be a class of
closed balls in RN, If A satisfies P(%B, p), then there exists a p-packing B* < & of
A.

ProOF. It is enough to assume that A is bounded, and u*(A4)< +o00. As 4
satisfies P(4, u) we must have A < 4,,.(#B), so (A, &) defines a Vitali system B.
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Let
B=BNFUN_1t+ . TR,
where supp u;cV; and u,(V)=0 for all k>j. First we choose disjoint balls
B,,...,B, € %, such that
:uo(_U1 Bj) Z Juo(A N V)
=

(cf. Corollary 9). Since

<A\ U B, .@n(d B,.>~)e%,
j=1 j=1

we can choose disjoint balls
no
By i1se - By, € é«?ﬂ( U B,-)~ ,
j=1
such that

ny ny
,“1( U Bj) 2 %ﬂx*([Aﬂ ViN U Bj) >
j=ne+1 =t

and hence (cf. the proof of Lemma 2)

(“0+”1)<‘©l Bj> 2 3(uo+p)*(A) .

After a finite number of steps we have chosen n disjoint closed balls B, ..., B,
from 4, such that

u(fj B,-) 2 Ju*(4),
j=1

and the theorem follows from Lemma 1.

4. Weakly well-behaved measures on R",
In Theorem 11 we proved that for well-behaved measures u on RN we have

the same type of Vitali theorems as the theorems proved in [4] for Lebesgue
measure. If the u; are only absolutely continuous with respect to 4, we may put
p=AN+AN_1+ ... +4] + 4, because if A satisfies P(4, ji) we get a fi-packing
of A, which of course also is a p-packing.

We shall now turn to extensions of the geometrical structure of supp u. Let
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H=pNtuy oot tig,

where supp u;S V), and each V; is a j-dimensional C'-manifold imbedded in
RV, and suppose that each u; is strongly continuous with respect to 1. Suppose
that V; does not satisfy (12), i. e.

(13) IxeV;Vroe R, 3re]0,r,]: V; N B(x,r) is disconnected .
Let W; be the subset, for which (13) holds for all x € W,. In order to avoid too
many complications we shall assume that [cf. (12)]
Vx e W;3r, e R,Vre ]0,r,[ : W,NB(x,r) is connected.
Let ji;=u;|W;. Then we have the following lemma.

LEMMA 12. Let u=p; supp u; SV, where V; is given as above, including a
subset W; characterized as above. Suppose that

(14) {1 = fi;(B[x, r])/u;(BLx,r])}/r € L' (70, 1])

for (uj)-almost every x € W;. If A satisfies P(®, ui;), then A can be u;-packed with
balls from 2.

ProoF. Since u;— fi; is a well-behaved measure, it is enough to prove that 4
also satisfies P(4,ji). Let x € W; and let r € ]J0,1]. Then for geometrical
reasons,

0,,(6,) < 0z(x,7)+ {1;(BLx, 1) — (B, D)} ,
S0
(6 r) = of (6, r)+1—[;(Blx,r])/u;(Blx,r])
hence
o3 (. n/r 2 ¢ (x,1)/r— {1~ i,(BLx, r))/u;(BLx, P} /r ,

and a similar estimate, when g* is replaced by the relative neighbouring
function. From (14) follows that ANW; and hence also A satisfies P(4, ji;). The
packing result follows from that W, is a connected C'-manifold.

Let V; be a j-dimensional C'-manifold and let W; ; be the subset of V; for
which (13) holds for all x € W, ;. Let W, , be the subset of W, ,, for which
VxeW,;,Vroe R, 3re]0,r0]: W, NB(x,r) is disconnected .

By induction, define W; , by

VxeW,;,Vr,e R, 3re ]0,r,]: W;,_,NB(x,r) is disconnected.
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The W, , are generalizations of the set of accumulation points, the set of the

accumulation points of the accumulation points etc. in e. g. the 1-dimensional
case.

DeriNITION 13. The manifold V; is called weakly well-behaved, if there exists
an n € N, such that W; ,=J. If W, ;, = &, we also say that V; is well-behaved.

The definition means that we can achieve any finite order of complexity of
each V.

DEFINITION 14. A measure u on R¥ is called weakly well-behaved, if there
exists a decomposition

H=pNtuNn_1+ .. Fugto,

such that supp u; SV, where each V; is a weakly well-behaved j-dimensional
C'-manifold, y; is strongly continuous with respect to 45, and if furthermore
Wi k=1,2,...,n, are non-empty, while W, . =, we require that fj;,
=W, , satisfies

{1= i, (B[x, r])/u(BLx,r])}/r € L' (10, 1])

for (u)-almost every x e W, , for all k=1,2,...,n.

We shall later (cf. Example 4) construct a measure yx on R, which satisfies all
the conditions for a weakly well-behaved measure except that V,=supp u is
not a well-behaved 0-dimensional manifold, and we shall construct a system %
of closed intervals and a set A satisfying P(4, u) such that A has no u-packing
from 4.

THEOREM 15. Let p be a weakly well-behaved measure on RN, and let B be a
class of closed balls. If A<RN satisfies P(%, u), then there exists a u-packing
B*S B of A.

Proor. First we split u into the sum of measures

B=pNtUN-1 T Tl

as described in Definition 14. Then each p; is again split into a sum p;=4; ,
+ (4;—fi;,1). The measure fi; , is again split into a sum of fi; , —f; , and fi; ,.
However, as W, , , = for some n; € N by assumption, we end up with ;
after a finite number of steps. Hence,
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p= {fign,+ (Fong—1—Hon) + - - - + (o —flo,1)
+ ...

+ AN+ (Y -1 = AN V) + -+ (v — i)} -

Using the same technique as in the proof of Lemma 12, we conclude that we
can find a finite number of disjoint balls B,,...,B,, € 4, such that

m
ﬁO,n‘,(.U‘ B;) ; %ﬂ({no(A) .
j=

Then use the same method on jiy, _i—fo, and the set AN U, B,
Combined with the proof of Lemma 2 and possibly an iteration of the usual
kind we get a finite number of disjoint balls B,,...,B, € # including
B,,...,B,, such that

14
ﬁo,no—1<.Ul Bj) 2> 3, —1(A) .
i

[Note that fig ,,—1= fio,n, + (fo,n,—1— flo,n,)-] In this way we continue, until we
have got disjoint balls B,,.. ., B, € %, such that

Ho (,-L:)l B ,-) 2

Then consider fi; ,, and the set A\ U4_, B;. By the same procedure we are able
to continue through all the ji, ;_,—f, ;, o we can turn to fi, ,,, etc. After a
finite number of steps we have chosen disjoint balls B,. .., B, € %, such that

ug(A) .

(M

u(,@l B,) 2 but(4),

and the theorem follows from Lemma 1.

5. Weakly well-behaved atomic measures.
In the case of y, above we have a much better description, and this may help

us to understand the higher dimensional cases. Let

+ 0o

(15) b= Y a0,
n=1

where a,20 and d, is the Dirac measure in x, € RN, and p(B)< + oo for all
bounded sets B. Then
Vo = {x,| neN}

is a 0-dimensional manifold.
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Let & be a class of closed balls in RY, and let A4 satisfy condition P (4, y).
Suppose that ANV, % & and let x, e ANV,. If x, is isolated in V, in the

topology of RN, there exists an r, € R, such that B(x,,r,)NV,={x,}, and
hence

[J(B(X", rO)) = ”({xn}) = 4y .

Suppose that a,>0. Since A satisfies P(%4, ), we must have g,(x,,r)>0 for
r € ]0,ro[, but this is only possible if there exists a B e %, such that
X, € B< B[x,,r]. Therefore, if x, is isolated in V,, (in the topology of RV) and a,
>0, then g,(x,,r)>0 for all » € R, implies that there exists a B € 4, such that
x, € B.

THEOREM 16. Suppose that the set of accumulation points of {x, | n € N} only
consists of isolated points in RN, and let these be included in {x, | n e N}. Let

+ 00

p= Y ady,),
n=1
where a,=0 and u(B) < + >0 for B bounded. Suppose that for every accumulation
point x,,

(16) Y a,a,lloglx,—x, || < +

0<ix,=x,ll<r,
for some r, € 10,1]. If & is a class of closed balls in RN, and A satisfies P(®, p),
then there exists a u-packing B*< % of A.

The proof may easily be extended to the case, where one considers the set of
accumulation points of the set of accumulation points etc. a finite number of
steps. This extension is left to the reader.

Proor. If a,=0 there is nothing to prove, as for some r,>0 the set {x, | 0
<|lx,—x,| <r,} only consists of isolated points. We shall prove that when a,
>0, there exists a B € 4, such that x, e B&B[x,r,].

Without loss of generality we may assume that there exists only one
accumulation point and that

{x,| ne N}cB(x,r,) = B(x,1).

Also, let x,=0 and a,=1.
Suppose that 0 ¢ B for all B € 4. After a change of index we may assume
that x,=0 and that {x,} has been arranged, such that {| x,|} is decreasing. We

shall for a while assume that {| x, |} is strictly decreasing and later remove this
restriction. Hence, ||x,, /| <|x,| for all n e N.

Math. Scand. 51 — 20
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For r e [fx, 4+, Ix,l we have

+ 00
WBOD =1+ Y a2zl ad  o0NS Y a
j=n+1 j=n+1

since by assumption x,=0 ¢ B for all B € 4.
Choose a sequence r, € R, such that

i) {B[xm,r. | ne N} is a system of disjoint balls;
1]) "xn+1|l+rn+l < ”xn“_rn for all he N,
it) log ({IIx,ll +r.}/{lIx,l=r,}) < 27"  for all ne N.

Then we get the estimate

bl +ry dr
J Q: (09 r)T

0
R B Mi’i} S qu o M‘”}
= "z; {Juxm!lﬂm 1(BLO,r]) r + g‘ Ix,1—r, #(B[O,7]) 7

too (CIx,)=r, +oo flxuli+r, dr
Z f Qu(O "xn+1” Z J Qu(O’ “xn”)T

(R 2 a0l =1y

+ 00 + 00 Xl =7, +00 + 00 x| +r
5 (5 aj)log( 5l =r ) 5 (5 o og (147
n=1 j=n+1 ”xn+1"+rn+l n=1 \j=n ”xn"—rn

Z )k)g(“x I/ 1xe s )+ M Z 2"

IIA

IIA

lIA
™

n=1 j=n+1 n=1
400 ( +oo +00

= Z { Z ajl‘)g 1%, —aps i lOg 1344l — Z ajlog ”xn+1“}+M
n= j=n+1 j=n+2
+00 +o0

= .22 a;log ||x, || + Zl dysy|log X, 4 ||+ M
i= n=

+ oo
S0+ Y alloglx,l|+M < +,
=1

contradicting the assumption that A satifies P(%, u) since this assumption

implies that
flxg |l +ry dr
J Q,’f(O,r)—r— = 4+00.

0

Hence, there exists a B € 4, such that x,=0 € B, and the proof is complete in
this case.
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If there exist points x,,,...,X,, such that

“xn” > "xn+1” = ... = "xn+p” > ”xn+p+1“ ’

condition ii) above is replaced by

iv) choose r,,y = ... = r,,,, such that

”xn”_rn > ”xn+1”+rn+l > ”xn+1”—.ru+l > ”xn+p+1”+rn+p+l .

Some of the terms in the estimate above then drop out, and we still get our
contradiction.

ExampLE 3. We shall by an example show that (16) is more or less necessary
for the validity of a packing theorem of the considered type. In fact, we shall
construct an atomic measure p on R, for which (16) is not fulfilled, and we shall
define a system of closed intervals # and a set A, such that u(4)>0, 4 satifies
P(%, u), and AN B=F for every B € 4, so 4 cannot be u-packed with intervals
from 4.

Let x,=0 and x,=2"" and consider the measure

+001

B= 00+ Z ) -
Then M =1+n?%/6. It follows 1rnmed1ately that

+ o0

to
Y. aoa,llogx,| = log?2: Z - =
n=1

oy

so (16) is not satisfied for x,,.
Let I,=[272""%,27"]. Then a small computation shows that

1
> —
.u(In) = 2"

Let #={[%41}U{l,| ne N}, and let A=A, (#)={0}. Then u(4)=1 and
ANI,=AN[L,4]1=¢, so A cannot be p-packed.
Finally, we prove that A= {0} satisfies P(4, u). We note that

1
0,(027") = u(l,) 2 n
and

1 gpu-2772""]) = 1+M,

SO
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v dr [P 00 1 dr
J , GO loge, OIS = 2 j o W(L=nr]) Tloge, 0. 7

n=1
St 1 1 FTdr log2 Y1
z X 1+M 2n log(2n) |-n-+ r 14+ M= 2nlog(2n)

n=1

=+,
and A satisfies P(4%, u).

ExampLE 4. Let x,=0 and {x, | ne N}=10,1]1NQ. Let # be as in Example
3. Construct

+ o0

l’l = 6(0)"" Zl ané(x”) 3

such that u(I,)=3%2+*1//% and such that a,>0 for each n. Then Example 3
shows that 4={0} satisfies P(%, u) and that # does not cover A. The set W,
introduced in section 4 is in this case given by W, =[0,1]1NQ=V,, hence W,
=V, for ke N. Especially, po=pd,=...=pd,=..., and (14) becomes
trivial. This example shows, why we must have an extra condition on the
geometrical structure in definition 13 and definition 14.

6. Applications and limits of the theory.

The applications of Vitali type theorems have already been mentioned in [5]
and [4]. They are connected with the characterization of some class of u-
nullsets and the generalization of Lebesgue’s differentiation theorem. The class
of p-nullsets is described by the class 3 of B-meagre sets defined by

Ze3 = (2,2)eB,

where B is a Vitali system for which the packing theorem holds. We may
choose any class of closed balls # and look at A< A (#). If A satisfies
P(%, u), then [4] and the results in this paper describe some class of u-nullsets,
since Z and the sets in Z are disjoint and we have a packing result.

In the same way, when we have a packing result for a Vitali system B, we
may use the general result in [4], namely Proposition 1, to get a differentiation
theorem with respect to u. The results of this paper have thus extended the
class of measures for which it is possible to achieve such results.

By introducing regularity (cf. [2]) we may extend the results to classes # of
closed sets B, where each B satisfies a suitable regularity condition with respect
to the balls in RV, As this follows a known pattern, we shall not repeat the
construction here.
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Though the class of well-behaved measures and the class of weakly well-
behaved measures are fairly extensive, especially when compared with our
starting point the Lebesgue measure in RV, they do not cover all possible
measures on RY, since we had to introduce some geometrical limits. It is not
known what happens, when for instance supp u, is a curve without double
points for which 4, (supp p;) >0 (say, Osgood’s curve), or if supp y, is a Cantor
set. Also, the case where y:ZqEQaqé(q) and u(B)< + oo for B bounded is not
included in the theory. In all three cases we see that there is “something wrong”
with the geometry of suppp,. The assumption that u; should be strongly
continuous with respect to the induced measure 4; on V; seems to be a minor
obstacle, which always can be avoided by considering fi=Ay+Ay_;+ ...+ 4}
+ A instead. However, we here again assume that the V; are of class C' or at
least C! except for a nullset. It would be interesting if one could allow the
manifolds V; to satisfy a still weaker condition, say some kind of Holder
continuity.

The author wishes to thank Ole Jersboe for helpful discussions.
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