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A RESULT ON TWO
ONE-PARAMETER GROUPS OF AUTOMORPHISMS

A. B. THAHEEM, A. VAN DAELE, and L. VANHEESWLJCK
Abstract.

Let {o, | te R} and {B, | t € R} be strongly continuous one-parameter
groups of *-automorphisms of a von Neumann algebra M, and suppose that o,
+a_,=p,+p_, forallt e R.If M is a factor we show that either o, = f, for all
teR oro=p_, for all t € R. In general we show that there exists a central
projection p in M which is invariant under o and § and such that o,(x)=,(x)
for all t € R, when x € Mp, and o,(x)=f_,(x) for all r € R, when x € M (1 —p).

1. Introduction.

Let M be a von Neumann algebra and {o, ] t € R} a strongly continuous
one-parameter group of *-automorphisms of M. The associated maps
{o,+o_, | t € R} occur naturally in various situations. Our original motiv-
ation for considering these maps was the new proof of the Tomika-Takesaki
theorem as formulated in [8]. In that proof an important role was played by
the integrals

2
‘”:Jﬁ—e——w"rd"

where {a,| t € R} was the modular automorphism group. And the question
arose how much ¢ was determined by . In fact recently Haagerup and Skau in
their paper on the geometric aspects of the Tomita—Takesaki theory ([2])
exactly met the same problem. A relatively simple L'-functional calculus shows
that  determines ¢,+0_, for all t € R. Moreover in this paper we prove a
result showing that to a great extent o itself is determined by all those maps.

Our theorem.is formulated as follows. Let {a, | t e R} and {B, | t € R} be
two strongly continuous one-parameter groups of *-automorphisms of a von
Neumann algebra M such that o, +0._,=f,+ _, for all ¢ € R, then there exists
a central projection p in M such that o,(p)=p and ,(p)=p for all t € R and
such that
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o (x) = B,(x) for all t when x € Mp and
o,(x) = f_,(x) for all t when x € M(1—p).

The theorem was first proved by the first author in the case where o, and f,
were commuting automorphisms for all ¢ [7]. This original proof can be
slightly simplified and then becomes much simpler than the proof of the
general case which we present here. Also Haagerup obtained a proof of the
general case independently, but in fact Haagerup and Skau only use the result
in the commuting case. The full proof we give here in this paper can be
considered as a very nice application of Arveson’s theory of spectral subspaces.

Our result may also be of interest in the theory of Jordan algebras. On the
one hand recently Haagerup discovered an analogue of the Tomita-Takesaki
theory for Jordan algebras, and while it is not possible to find operators like J
and 4, it turns out that the mappings {o,+0_, | t € R} have generalization in
this theory [3]. On the other hand the decomposition we obtain from M is
similar to the one obtained by Kadison for Jordan isomorphisms [4].

Finally we remark that our result can also be formulated in terms of squares
of derivations and that also here it might be of interest.

We would like to thank U. Haagerup for discussions on this subject and R.
Wyseur for providing us with the main ideas for the proof of proposition 2.5
below.

2. The main result.

Let M be a von Neumann algebra and let {o, l teR} and {B,|teR} be
strongly continuous one-parameter groups of *-automorphisms of M.
Throughout this section we will assume that

o+ou_, = B +p-,

for all t € R.

Recall that in this context o is called strongly continuous if for all x € M the
map t — o,(x) is continuous from R to M, when M is considered with one of
the weaker topologies. In fact we will all the time use the o-weak operator
topology which is the weak topology ¢(M, M) induced by the unique predual
M, of M. The main tool will be Arveson’s theory of spectral subspaces [1]. We
will use the formulation of [9].

2.1. DeriNITION. Denote by M (a, b) the spectral subspace for « associated to
the open interval (a,b) in R. Recall that M (a, b) is the g-weak operator closed
subspace of M generated by the vectors
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T (f)x = Jf (D)o, (x)dt ,

where x e M and fe L'(R) and has a Fourier transform f with compact
support in (a, b). Similarly by N(a, b) we denote the spectral subspace for § of
the interval (a,b). Here we will use 7, for the map defined by

n(f) = Jf(t)ﬁtdt

when fe LY(R).
We will frequently use the following result on spectral subspaces.

2.2. LEMMA. If g,h € L*(R) and §=1 on [a,b] and h=0 on [a,b], then ,(g)y
=y and w,(h)y=0 for all y € M(a,b).

Proor. By continuity it is sufficient to consider vectors y of the form =, (f)x

with x € M and fe L'(R) with f having compact support in (a,b). But
T8 = n,(Am(f)x = m(gxf)x and (gxf) = gf =7
so that
n,(g*xf) = n,(f) and m(ghy = m(f)x =y.

Similarly because hf=0, we get n,(h)y=0.

We will now see what the implications of the relation o, +a_,=8,+f_, for
all t € R are on the spectral subspaces. Apart from Lemma 2.2 we will also use

often that n,(h)=mn,4(h), when h(t)=h(—t) for all t € R. The next two lemma’s
are more or less immediate applications of this result.

2.3. LEMMA. For all a>0 we have

M(—a,a) = N(—a,a)

PRrOOF. Let f € L'(R) such that f has compact support in (—a,a). Choose a
function h e L' (R) such that i=1 on the support of f and satisfies f(t)=h(—1)
for all ¢, but still has its support in (—a, a). Then h*f=f, and for any x € M we
have n,(f)x=mn,(h)m,(f)x. Because also h(t)=h(—¢) for all ¢ also n,(h)=m,(h),
so that

na(f)x = nﬂ(h)na(f)x .
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And since k has its support in (—a,a) by definition, we get 7,(f)x € N(—a,a).
Since N(—a,a) is o-weak operator closed, also

M(—-a,a) < N(—a,a),

and by symmetry we get equality.

2.4. LemMA. If O<a<b, then
M(a,b)+ M(—b, —a) = N(a,b)+N(—b, —a)

PRrOOF. The proof is very similar to the previous one. Again let f € L*(R), and
suppose that the support of f lies in (a,b). Choose a function h € L!(R) such
that again fi=1 on the support of f, and h()="h(—1) for all ¢ and such that A
has support in (—b, —a)U (a,b). Then again for any x € M we have

T (N)x = m, (R, (f)x = my(h)n,(f)x € N(—b, —a)+N(a,b) .

If we can show that N(—b, —a)+ N(qa, b) still is -weak operator closed, then it
will follow that

M(a,b) € N(—b, —a)+N(a,b) .
Similarly also M(—b, —a)c N(—b, —a)+ N(a, b) so that
M(a,b)+ M(—b, —a) € N(—b, —a)+N(a,b)

and by symmetry we would get equality. To prove that N(a,b)+ N(—b, —a)
is closed, we consider a function g € L!(R) such that §=1 on [a, b], but =0
on [—b, —a]. If now {x, | yeTl} and {y, | y € I'} are nets in N(a,b) and
N(—b, —a) such that x,+y, converges, then n;(g)(x,+y,) will also converge,
but by Lemma 2.2 we have m;(g)(x,+y,)=x, so that x, and y, converge.
Therefore N(a,b)+ N(—b, —a) is closed because N(a,b) and N(—b, —a) are
closed.

The two previous results are completely natural in view of our condition on
o and f. The next one is rather unexpected but it is the main step towards the
proof of our theorem. We will use here for the first tome that o, and §, are
*-automorphisms by means of the following two facts about the spectral
subspaces. If x € M(a,b) and y € M(c,d), then x* € M(—b, —a) and xy e
M (a+c,b+d). The first fact is easy to obtain and for the second one an argu-
ment as in [9, Lemma 4.3] must be used. Also these two results on spectral
subspaces for groups of *-automorphisms will frequently be used in what
follows.
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2.5. ProPosSITION. If 0<a<b <2a, then

M(a,b) = M(a,b) N N(a,b)+M(a,b) N N(—b, —a) .

Proor. Let x € M(a,b). By the previous lemma we can write x=x, + X,
where x, € N(a,b) and x, € N(—b, —a). Again by this lemma we can write
X, =y, +y,, where y, € M(a,b) and y, € M(—b, —a). We will show that y,=0
so that x;=y, and x, € M(a,b)N N(a,b). A similar argument gives that
x, € M(a,b))NN(—b, —a).

First consider the formula

x*x = xFx +x3x,+xE¥x, +xFxy .

By the preceding remarks we know that x¥x,, x¥x, € N(a—b,b—a) and that
x*x € M(a—b,b—a). By Lemma 2.3, however, those two spaces are the same
so that x*x,x¥x,,x¥x, € N(a—b,b—a). On the other hand x§x, € N(—2b,
—2a), while x¥x; € N(2a,2b). Because of the condition 0 <a < b < 2a, the three
intervals [ —2b, —2a], [a—b,b—a], and [2a,2b] are mutually disjoint. Then
we can find a function h € L'(R) such that =1 on [24, 2b] and vanishes on the
two others. By lemma 2.2 then mz(h) will be 1 on N(2a,2b) and 0 on the other
spaces and if we apply my(h) to the above formula we obtain x¥x, =0.
Similarly, or by taking adjoints we get also xfx,=0. By considering xx* we
would also obtain x;x¥=0 and x,x¥=0.

For the same reason we have y¥y,=y¥y, =y y¥=y,yf=0. All those
relations together give us

(g +x2)x X,

xx¥x,

i

X X¥x,
= yyivi+tyyiy, .
But since y, € M(a,b), we have y,y¥y, € M(2a—b,2b—a), while y, € M(—b,

—a) implies y,y¥y, € M(a—2b,b—2a). On the other hand x € M(a,b) and
x¥x, €e N(a—b,b—a)=M (a—b,b—a) so that xxfx, € M(2a—b,2b—a). So

xx¥xy,y, ¥y € MQ2a—b,2b—a) and  y,yiy, € M(a—2b,b—2a) .

Again because of the condition 0 <a <b<2a the intervals [a —2b,b—2a4] and
[2a—b,2b—a] are disjoint and as before it follows from the relation

xXx¥x; = yoyivi+y2iy,

that y,y*y,=0. Therefore y, =0 and x,; =y, and the proof is complete.
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Simple examples show that the previous result is not true anymore if we do
not require the o, and f, to be automorphisms but just isometries (see example
2.13 below).

The next result show how close Proposition 2.5 brings us already to the
final result.

2.6. PropPOSITION. If O<a<b and x € M(a,b)N\ N(a,b), then a,(x)=B,(x) for
all t e R, while if x € M(a,h))NN(—b, —a), then a,(x)=p_,(x) for all t € R.

Proor. First let x € M(a,b) N N (a,b) and take any f e L!'(R). We will show
that m,(f)x=m,(f)x so that

Jf 0o (x) =B, (x))dt = 0,

and since this will be true for all f € L!(R), we get o,(x)— B,(x)=0 for all t € R.

Choose g € L'(R) such that g(r)=1 when a<t<b and g(t)=0 if t£0. Let
also g, (t)=g(—1) and f, (t)=f(—1) for all ¢, and define further h=f*g+f *xg,.
Because §=1 on [a,b] and x € M(a,b), we have n,(g)x=x by Lemma 2.2, and
because g, =0 on [a,b] we have n,(g,)x=0. As also x € N(a, b) similarly we
have ny(g)x=x and mz(g,)x=0. All together we obtain

T, (f)x (na (f)na (g) + nu(fl)na (gl))x
7, (h)x

I

and similarly 7 (f)x=mn,4(h)x. But n,(h)=m,(h), because h(r)=h(—1) for all ¢
and this completes the proof. The case x € M(a,b)N N(—b, —a) is completely
similar.

So from Propositions 2.5 and 2.6 we see that each subspace M(a,b) with
0<a<b<2acan be decomposed into a part, where o, =, for all t and another
part where o, = _, for all ¢. The condition b < 2a is not very serious. If simply
0<a<b, we can cover [a,b] by a finite union of open intervals

{pa) | i=1,2,...n}

all having the property that 0<p,<gq;<2p;, and if {h; | i=1,...n} are L!-
functions such that 37_, h;=1 on [a,b] and A, has support in (p,q,) (see
appendix A of [9]), then
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i=1

M(aab) = na( Zl hl>M(a’b) = Z na(hi)M(a?b) (-_; Z M(pi’qi)
i= =1

and since each M (p;, q;) can be decomposed, also M(a,b) can.

Of course also the spaces M(a,b) with a<b <0 can be decomposed in the
right way. Then how far are we from a decomposition of all of M? In general it
is not true that M is the smallest o-weak operator closed subspace containing
all the spectral subspaces M(a,b) with a<b<0 or 0<a<b. We will certainly
miss the fixed points. However we can show that o and f§ precisely have the
same fixed points. (Clearly this would follow from our theorem).

2.7. LeMMA. If x € M and o,(x)=x for all t € R, then also B,(x)=x for all
teR.

ProoF. Since in fact {x e M | o, (x)=x for all t} is the spectral subspace for o
associated to the closed set {0}, which is by definition M,,, M(—a,a), the
result immediately follows from Lemma 2.3. We can also give the following
more direct proof.

Assume f3,(x)+ f_,(x)=2x for all t € R. Then

(B=17x = By (x)=2B,(x)+x = 0.
Put y=p,(x)—x so that B,(y)=y and B,(x)=x+y. Then also
ﬁzz(x) = ﬁr(x)+y = x+2y,
and by induction B,,(x)=x+ny for all n=1,2,3.... But

nlyll = 1B (x)—x| = 2|x]
for all n so that y=0 and B,(x)=x.

Still in general it is not true that the whole space is generated by the fixed
points, i.e. the spectral subspace of {0}, and the spaces M (a, b) with a<b<0 or
O<a<b. In our special situation however this can be proved as we do
essentially in the following proposition.

2.8. ProPOSITION. The fixed points and the spaces M(a,b) with a<b<0 or
O<a<b span a o-weak operator dense subspace of M.

PRrOOF. Suppose that ¢ is an element in the predual M, of M such that ¢(x)
=0, when x is a fixed point under o, and when x € M(a,b) with a<b<0 or
with 0 <a<b. We will show that ¢=0.
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Because R\ {0} is the union of intervals (a,b) in R\ {0}, the spectral
subspace of R\ {0} is the o-weak operator closure of the linear span of the
spaces M(a,b) with (a,b) = R\ {0}. Therefore also ¢ (x)=0 if x is an element of
the spectral subspace of R\ {0}. But then ¢ is a fixed point for the dual action,
i.e. @ is invariant under a, see e.g. [9, page 223].

Now let @ =u|¢p| be the polar decomposition of ¢ (see [5, p. 32]). Then by
the invariance of ¢ and the uniqueness of the polar decomposition, also |¢| and
u will be invariant. But |¢|(uu*)= ¢ (u*)=0 because u* is a fixed point and ¢ is
also zero on fixed points. Finally because uu* is the support of |¢|, it also
follows that |@|=0 and hence ¢ =0.

(We remark that this result is very similar to the one obtained in [6]).

So we have now obtained a decomposition of a dense subspace of the von
Neumann algebra. This is not yet what we want. On the one hand it is not
clear that elements in the closure still can be decomposed. On the other hand
we want a central decomposition. Fortunately we have the following
proposition which is the next main step towards the final result.

2.9. ProrosiTION. If x € M(a,b)NN(a,b) and y € M(c,d)NN(—d, —c) for
some open intervals (a,b) and (c,d) not containing 0, then xy=0.

Proor. We must consider four different cases:
i) O<a<b and O<c<d
i) O<a<b and c<d<O
i) a<b<0 and O<c<d
iv) a<b<0 and c¢<d<0

We will deal with cases iii) and iv) by also proving that yx =0 in cases i) and ii)
which is sufficient by taking adjoints.

On the other hand case ii) can be obtained from case i) if we interchange o
and f. So we may restrict to the case 0<a<b and 0<c<d but we have to
prove that xy=0 and yx=0.

So let x € M(a,b))NN(a,b) and y e M(c,d)NN(—d, —c¢). Then xy and yx
belong to M(a+c,b+d) and to N(a—d,b—c). Also here we must consider
different possibilities. Either a—d<b—c=<0, or a—d<0<b—c but b—c=
d—a, or a—d<0<b—c and d—a<b—c, or 0Sa—d<b—c. In the first two
cases we have (a—d,b—c)S (a—d,d—a) and in the other two we have (a—d,
b—c)< (c—b,b—c). So we have either

N(a—d,b—c) € Na-d,d—a) = M(a—d,d—a)
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or
N(a—d,b—c) € N(c—b,b—c) = M(c—b,b—c).
If now d—c<2a so that d—a<a+c, we get
M(a—d,d—a) N M(a+c,b+d) = {0}

and this would give xy=yx =0 in the first case. If on the other hand b—a<2c¢
so that b—c<a+c, we get

M(c—b,b—c) N M(a+c,b+d) = {0},

and this would imply xy=yx=0 in the second case. So we obtain the result if
d—c<2a and b—a<2c.

We will finally show that the general case can be obtained from this special
case. So assume O<a<b and 0<c<d. Cover the closed interval [a,b] by a
finite number of open intervals (p, q) such that a <p and g — p <c. Do the same
for [c,d] with intervals (r,s) such that 3c<r and s—r<a. Then we will have
0<p<gand O<r<s but also s—r<2p and g— p <2r. By the following lemma
the space M(a,b)N N(a,b) will be spanned by the spaces M(p,q)N N(p,q),
while the space M(c,d)N N(—d, —c) will be spanned by the spaces M(r,s)N
N(—s, —r).

2.10. LemMA. If O0<a<b and [a,b]1cU" | (p;, q;), where also 0<p;<gq;, then
M(a,b) N N(a,b) Z M(p;,q;) 0 N(p;,q)
and

M(a,b) N N(=b, —a) < i M(pug) 0 N(—qu —py) -

Proor. By replacing f, by B _, for all ¢ again it is sufficient to prove only the
first statement. Choose functions { f; | i=1,n} in L'(R) such that "'_, fi=1o0n
[a,b] and f, has support in (p,q;) for all i=1,2,... n. Because Y fi=1o0n [a,b]
we have

n

M(a,b) N N(a,b) = Y m(f)(M(a,b)NN(a,b). -

i=1

But because o, = f, for all t on M(a,b) N N(a,b) we will also have n,(f)=mn;(f)
on M(a,b)N N(a,b) for all i. So

7, (f)(M(a,b) N N(a,b)) = M(p..q)
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but also
na(ﬁ)(M(aa b) n N(a’ b)) = ﬂf‘;(ﬁ)(M(a, b) N N(a’ b)) = N(pi’ QI) .

This completes the proof.
We are now able to prove the main result.

2.11. THEOREM. If {o, l t € R} and {B, | t € R} are strongly continuous one-
parameter groups of *-automorphisms of M such that o,+o_,=f,+p_, for all
t € R, then there exists a projection p in the centre of M such that o,(p)=p and
B.(p)=p for all t and o,(x)=P,(x) for all t if x € Mp and o,(x)=f_,(x) for all t if
xe M(1-p).

Proor. Denote by K, the *-subalgebra of M generated by the spaces
M(a,b)N\ N(a,b) with (a,b) not containing 0, and by L, the *-subalgebra
generated by the spaces M(a,b) N N(—b, —a) with (g, b) not containing 0. Also
denote '

My = {xeM| a(x)=B,(x)=x for all t € R}.

We claim that M K,< K, as well as M,L,<L,. To see this, let x € M,,
y € M, and fe L'(R) such that f has support in an interval (a,b). Then

]

x(m,(f)y) = x J SO0 (y)dt j S (D)o, (xy) dt

so that x(n,(f)y) € M(a,b). So
xM(a,b) < M(a,b) if o,(x) = x forallteR.
Similarly
xN(a,b) < N(a,b) if B, (x)=xforallteR.

And the claim follows easily from this.

By Proposition 2.9, we also know that L,K,={0} and so (K,+ M,
+Lo)Ko < Ko Then by Proposition 2.5, Lemma 2.7, and Proposition 2.8 we
know that Ko+ M,+L, is g-weak operator dense. Therefore the o-weak
operator closure K of K, is a left ideal, and because it is self-adjoint, it is also a
two-sided ideal. Similarly the closure L of L, is a two-sided ideal. Then there
exist central projections p and g such that K= Mp and L= Maq.

Because the spectral subspaces are invariant under the actions, also K, and
Ly will be invariant, and so o,(p)=p,(p)=p and o,(q)=p,(q)=4q for all t € R.
Since o, =, on M(a,b) N N(a,b) and o,=p_,on M(a,b) N N(—b, —a) for all ¢ if
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0 ¢ (a,b) we will also have that o,=f, on K and o,=f _, on L for all t. Because
KoLo={0} also KL={0} and therefore pq=0.

So we arrive to a central decomposition M=Mp+ M(1—p—q)+ Mq of M.
We know that p and q are invariant and that o,=f, on Mp and o,=f_, on Mg
for all . It remains to consider M (1 —p—gq) and because K,+ M, + L, is dense
and M, is closed, we get M(1 —p—q)< M,. Moreover on M, we have o,=f,
=1, and so o,=f_, for all ¢t and this completes the proof.

It is clear that the decomposition is not unique in general. If e.g. M, contains
a non-zero projection e of the centre of M, then Me is a part on which o, =f,
and o,=f_, for all t.

The theorem is particularly nice in the case of a factor.

2.12. CorOLLARY. If {0, l t € R} and {B, | t € R} are two strongly continuous
one-parameter groups of *-automorphisms of a factor M, then either o, = B, for all
teRoro=p_ foralteR.

We conclude this main section by giving a simple example to show that the
result is not true for general one-parameter groups of isometries.

2.13. ExampLE. Choose two projections p and g on a Hilbert space # such
that any two of the subspaces p#, (1 —p)s#, g# and (1 —q)s# have {0} as
their intersection. Take A>0 and define

u = eimp+e—iul(1 __p)
and
v, = e*q+e *(1—q) forall teR.

This gives two strongly continuous one-parameter groups of unitaries such
that u,+u_,=v,+v_, for all t € R. If now ¢ € # such that u=v/ for all ¢,
then by differentiating we obtain pé— (1 —p)é=q&—(1-¢)¢ and so p&=q&.
But p# N g = {0} so that p=0 and g¢=0. Hence &= (1 —p)¢ = (1 —g)¢, but
as also (1—p)a# N (1—q)# ={0}, we get £=0. Similarly if ué=v_, ¢ for all ¢
we obtain

pE—(1-p¢ = —q+(1-g)

so that pf=(1—gq)¢ and because p# N(1—g)# ={0} and (1—-p)# NgH
={0}, also here we get £=0.

If instead of u, and v, we consider left multiplication on #(#’) by u, and v,
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respectively, we get a counter example, where the underlying space is a von
Neumann algebra.

3. Formulation in terms of derivations.
We now formulate Theorem 2.11 in terms of derivations.

3.1. THEOREM. Let 8, and J, be derivations of a von Neumann algebra which
are generators of a strongly continuous one-parameter group of *-auto-
morphisms. If 62 =63, then &, and 5, have the same domaon and there exists a
central projection p in their common domain such that

i) 6,(p)=0,(p)=0
ii) 8,(xp)=0,(xp)
iii) 8, (x(1=p))=—3,(x(1—p))

for all x in their common domain.

PRrooF. Suppose that d, is the generator of {a, | t € R} and 9§, the generator
of {B, ]t € R}. Since formally o,=e"' and B,=e" we see that o, +0a_,=p,
+p_, should hold for all t € R. We can prove it if we use e.g. that, if A € C and
ImA>0 we have

6, - x = iJ eo_ (x)dt .

0

If we replace o, by o_, for all t we also get

(=6,—=AH 7 'x = ij eo,(x)dt .

0

and so

203327 = (0= AT = (6, + A

if

i Jw e (o, +o_,)(x)dt .

0

Because the same formula holds for f and because 6% =352 we get
j e (o +o,—f—B-)(x)dt = 0
0

for all A € C with ImA>0. In particular, for any ¢ € M, and any a>0 and
s € R we get
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f eSe”f(ndt = 0,
0
where f(t)=@((o, + 2 _,— B, — B _)(x)). As fis continuous, this implies that f=0.
And this is true for all x e M and ¢ € M so that o,+o_,=f,+f_, for all
teR.

Then apply Theorem 2.11. Because p is invariant under o and f§ we have that
p € 2(4,) and p € Z(5,) and 4,(p)=3,(p)=0. Now let x € 2(J,), then also xp
and x(1—p) are in 2(d,). For any t+0 we have

i

1 1 1
E (oz,(x)—x) ;E (oz,(xp)—xp) +E (oz,(x(l _p))—x(l —P))

1
= = (Bxp)—xp) 4 B (x(1=p) = x(1=p)

So by taking the limit for t — 0, we see that also x € 2(d,) and that

0;(x) = 52(xP)"52(x(1“‘P))-

Then by symmetry we get 2(3,)=2(J,), and if we first replace x by xp and
then x by x(1 —p) we get the desired result.

Of course also here, in the case of a factor we get either 6; =0, or ;= —9,.
And even for bounded derivations, this result is far from obvious, although in
that case, because the derivations are inner and using Lemma 2.7, it is easy to
obtain that they must commute.
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