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ASYMPTOTIC COMMUTANTS AND ZEROS
OF VON NEUMANN ALGEBRAS

SZE-KAI TSUI* and STEVE WRIGHT*

1. Introduction.

Let H be a Hilbert space, S a subset of B(H), the algebra of all bounded
linear operators on H. An operator T € B(H) asymptotically commutes with § if
for any bounded net {s,} S which converges to zero in the weak operator
topology (WOT), we have || Ts,—s,T| — 0. T is a left (right) asymptotic zero of
S if for any bounded net {s,} S for which s, — 0 (WOT), we have ||Ts,|
— 0 (||s,T|| — 0). We say that S has the asymptotic commutant property (ACP)
if every operator which asymptotically commutes with S in fact commutes with
S, and we say that S has the asymptotic zero property (AZP), if every left and
right asymptotic zero is zero. We determine all von Neumann subalgebras of
B(H) with the ACP and AZP (Theorem 2.5); they are essentially the von
Neumann subalgebras of B(H) with no finite-dimensional direct summands.

An operator Te B(H) is in the asymptotic commutant of a WOT-closed
subspace S of B(H) if and only if the mapping s — Ts—sT, s € S, is compact,
and Tis a left (right) asymptotic zero of S if and only if the mapping s — Ts (s
— sT), s € S, is compact. This is the point of view that will predominate in our
study of asymptotic commutants and zeros. In fact, we will apply our main
results (Theorems 2.8 and 2.12) to give a complete description of all compact
derivations of a C*-subalgebra of B(H) into B(H) (Theorem 3.1). The present
paper may be thought of as a continuation of work by C. A. Akemann and the
second author ([1], [2]), and the first author ([12]). We might also mention
the papers [8], [9], [11], and [13], where other types of asymptotic
phenomena are studied.

Most of our notation and terminology is standard and requires no
explaination. Throughout the paper H denotes a Hilbert space, WOT the weak
operator topology on B(H), SOT the strong operator topology on B(H). Z,
and C will denote the positive integers and complex numbers, respectively. If X
and Y are Banach spaces, then B(X, Y) denotes the space of all bounded linear
transformations of X into Y, and we set B(X)=B(X,X). If Te B(X,Y), we
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define the mappings I;: B(X) — B(X,Y) (respectively, rr: B(Y) —» B(X,Y))
by I7: A - TA, A € B(X) (respectively, rr: A —» AT, A € B(Y)). If Te B(X),
then ad;: B(X) — B(X) is the mapping A - TA— AT, A € B(X). We set
Ball X ={x € X: ||x||=1}. All subspaces and subalgebras of B(H) are assumed
to contain the identity operator I on H.

2. The main results.

Our first task is to determine those von Neumann subalgebras of B(H) with
the AZP and ACP. The following lemma, for all practical purposes, reduces
consideration to only the AZP.

2.1. LEMMA. Let R be a von Neumann subalgebra of B(H). Suppose R has the
AZP. Then R has the ACP,

Proor. Assume R has the AZP, and suppose T e B(H) asymptotically
commutes with R. We may take T to be self-adjoint, and it then suffices to
show that (I — P)TP =0 for each projection P of R. Fix a projection P € R, and
let {a,} be a bounded net in R which converges to zero (WOT). Since

a,I-P)TP = —(ady (a,(I—P)P
we conclude that
la,(I-P)TP| = |adr(a,(I-P)| — 0.
Thus (I—-P)TP is a left asymptotic zero of R, and so (I—P)TP=0.

2.2. LEMMA. Suppose R is a von Neumann subalgebra of B(H) with no non-zero
minimal projections. Then R has the AZP in B(H).

Proor. By a theorem of Dye ([7], Theorem 1), the unitary group of R is
WOT-dense in Ball (R). Thus, we may choose a net {u,} of unitaries in R
converging to 0 (WOT). Let T be an asymptotic zero of R. Then ||u,T| — O,
and since |T| =|u,T|, for all «, it follows that |T|, and hence T, is zero.

The next lemma is undoubtedly well-known, but we prove it for
completeness’ sake.

2.3. LEMMA. Let R be a von Neumann algebra whose center Z has no nonzero
minimal projections. Then R has no nonzero minimal projections.
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Proor. Let # and 2, denote respectively the set of all projections and
central projections in R. Suppose P € £ is minimal in Z. If E € #,, then

(*) either EP =0 or P<E.

Let C(P)=central cover of P. If C(P)=0, then P=0 and we are done, so
suppose C(P)#0. By definition of C(P) and (*), each F € #, with F<C(P) is
orthogonal to P. Since Z has no nonzero minimal projections,

C(P) = sup{Fe ?,: F<C(P)},
and so P=PC(P)=0, whence C(P)=0, a contradiction.

In every von Neumann algebra R, there is a unique central projection p
which is the supremum of all central projections g of R with the property that
qR is a direct sum of finite-dimensional algebras. We call this central projection
p the purely discrete support of R, and note that pR is also a direct sum of finite-
dimensional algebras.

2.4. LEMMA. Let R be a von Neumann subalgebra of B(H) whose purely discrete
support is zero. Then R has the AZP and ACP in B(H).

Proor. By Lemma 2.1, we need only verify that R has the AZP in B(H). Now
by the classical structure theory, R is a direct sum of algebras of type I with
either no nonzero minimal projections or of infinite degree of homogeneity,
and algebras of type II and type III (some of these summands may, of course,
be absent). Since type II and type IIl algebras have no nonzero minimal
projections, we conclude by Lemma 2.3 that the only direct summands of R
with nonzero minimal projections are type I factors of infinite degree of
homogeneity. But each one of these has a subalgebra without nonzero minimal
projections, and so we conclude that R has a von Neumann subalgebra with no
nonzero minimal projections. Thus by Lemma 2.2, this subalgebra, and hence
R, has the AZP in B(H).

Now, let R be an arbitrary von Neumann subalgebra of B(H) with purely
discrete support p. By Lemma 2.4, (I—p)R has the ACP and AZP in
B((I—-p)(H)). Since pR is a direct sum of finite-dimensional algebras, it
hence follows that R does not have the AZP if pR + (0), and R does not have the
ACP if pR#{Ap: A € C}. All of this, therefore, implies the following theorem:

2.5. THEOREM. Let R be a von Neumann subalgebra of B(H), with purely
discrete support p. Then R has the asymptotic commutant property (respectively,
the asymptotic zero property) if and only if pR={Ap: A € C} (respectively, p=0).
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2.6. COROLLARY. Suppose R is a factor. Then R has the asymptotic commutant
property (respectively, the asymptotic zero property) if and only if R is infinite
dimensional or R={4I: 4 € C} (respectively, R is infinite dimensional).

Thus the purely discrete support of a von Neumann subalgebra of B(H) is its
only obstruction to having the ACP or AZP.

We turn next to the problem of determining the aymptotic commutant and
asymptotic zeros of a given von Neumann algebra R. Theorem 2.5 shows that
this essentially involves studying the problem only for purely discrete R.

Suppose then that the von Neumann algebra R on H has a decomposition of
the form @32, M, (Z,), where Z, is a purely atomic abelian von Neumann
algebra. By compressing R to each of the minimal projections in the center of
R, we see that R=@ {M, : a € o/}, where « — n, is positive integer-valued and
M, is isomorphic to the n, xn, complex matrices. For each a € o, set P,
=minimal central projection in R supporting M, . Let 2 denote the family of
all finite subsets of &/, and set

P,=®{P,: aeg} forcelX.

If Z is directed by inclusion then {P,: ¢ € 2} becomes an increasing net of
central projections converging in the strong operator topology to the identity
operator on H. We call this net the central supporting system of R, and denote it
by S(R). We say that an operator T e B(H) is refined by S(R) from the right
(respectively, left) if lim, || TP,— T| =0 (respectively, lim, |P,T— T| =0).

2.7. LEMMA. Let R be a purely discrete von Neumann subalgebra of B(H), with
central supporting system S(R). Let Te B(H). Then T is a left (right) asymptotic
zero of R if and only if T is refined by S(R) from the right (left).

PROOF. (=). Let F,=1—P,, 0 € Z. Suppose Te B(H) is a left asymptotic
zero of R. We assert first that lim, [[I1| gf || =0. For suppose not. Then there
exists 0>0 such that for each o € X, there is a o, € £ with 6¢to, and
a=a,, € Ball (RF,,) for which |Ta|2d. Now for each a € R, Ta=SOT-
lim, TaP,. It follows that we may select a sequence {¢;}<BallR and a
sequence {0} < such that

(@) o, &0y 415 VkeZ,,
(b) a, e RF, NRP, ., VkeZ,, and
(©) [ Taxll z0/2, VkeZ,.

But by (a) and (b), aq, — 0 (WOT), and so we must have ||Ta,|| — 0, which
contradicts (c). This verifies our assertion, and since |TP,—T| < ||l |gf,ll, T is
hence refined by S(R) from the right.
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(<=). Assume now that lim, |TP,—T| =0. Let {a,}<BallR with a, — 0
(WOT). We must show that | Ta,,| — O.

We have a,=®,4a,, € ®,M,. Now q,, — 0 (WOT), if and only if WOT-
lim,, a,,=0, for each a. For each fixed a, a,, is an n, x n, scaler matrix with
n,<oo, and so WOT-lim,, a,,,=0 if and only if lim,, |a,,| =0.

Let ¢>0. Choose ¢ € 2 such that |TP,—T| <¢&/2. We have

P.a, = @{ay: aea},

and thus from the previous paragraph we can find M € Z, such that Ym= M,
|P,a,ll<e/2|T|, whence Vm=M, | Ta,| <e.

The following theorem, our first main result, completely determines the
structure of the asymptotic zeros of a von Neumann subalgebra of B(H).

2.8. THEOREM. Let R be a von Neumann subalgebra of B(H), with purely
discrete support p. Let Te B(H). Then T is a left (respectively, right) asymptotic
zero of R if and only if T has an operator matrix relative to the decomposition
H=pH)® (I —p)(H) of the form

T,; O
<T21 0)

<respectively, <7;;1 ’1;;2>>

where Ty, and T¥ T,, (respectively, T,, and T,,T%,) are both refined from the
right (respectively, left) by the central supporting system of pR.

Proor. This follows straightforwardly from Theorem 2.5 and Lemma 2.7,
upon noticing that if M is any von Neumann subalgebra of B(H) on any
Hilbert space H, if K is another Hilbert space, and if Te B(H, K), then 1| :
M - B(H,K) is compact if and only if T*T is a left asymptotic zero of M. The
“only if” implication is clear, so suppose T*T is a left asymptotic zero of M.
Let V:K — H be a partial isometry whose initial space contains T(H). Let S
=VT.Then S € B(H),and S*S=T*V*VT=T*T, and so lg+s| y: M — B(H) s
compact. Thus be the spectral theorem and polar decomposition of S, Ig| p: M
— B(H) is compact. Since

ISall = |VTal = |Tall, VYaeM,
it follows that Iy|p: M — B(H, K) is compact.

2.9. CorOLLARY. Let R be as in Theorem 2.8 with T e B(H). Then T is both a
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left and right asymptotic zero of R if and only if T has an operator matrix
relative to H=p(H)® ((I — p)(H)) of the form

T,, 0

0 0/’
where Ty, is refined from both the left and right by the central supporting system
of pR.

We turn next to the description of the asymptotic commutant of a purely
discrete algebra R. Let {P,: 0 € 2} be the central supporting system of R as
previously defined, and set F,=1—-P_, g€ 2.

2.10. DerFINITION. An operator Te B(H) almost commutes with R if T
commutes with RF,, for some ¢ € 2. An operator Te B(H) approximately
commutes with R if T is the norm limit of operators which almost commute
with R.

The following lemma now characterizes the asymptotic commutant of R in
terms of Definition 2.10:

2.11. LEMMA. An operator T e B(H) asymptotically commutes with R if and
only if T approximately commutes with R.

Proor. (<=). If Te B(H) almost commutes with R, then ady|z: R — B(H)
has finite rank, and hence if Te B(H) approximately commutes with R,
then ady|z: R — B(H) is compact.

(=). By replacing ||| gp |l with ||adr|gp | in the first half of the proof of
Lemma 2.7, we deduce that

lim lady|gp |l = 0.
For each ¢ € X, RF, is a direct sum of finite-dimensional algebras, and is hence
hyperfinite. Thus for each ¢ € Z, RF, has property P of Schwartz ([10],

Definition 1 and Lemma 2). Thus by Theorem 2.3 of [4], the distance of T from
the commutant of RF, does not exceed ||adr|gf ||, for each ¢ € Z. Since

lim|lad7|gr,| = 0,

it hence follows that T approximately commutes with R.

Putting Lemma 2.11 together with our previous information, we obtain our
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second main result, which characterizes the operators in the asymptotic
commutant:

2.12. THEOREM. Let R be a von Neumann subalgebra of B(H), with purely
discrete support p. Let T e B(H). Then T asymptotically commutes with R if and
only if T has an operator matrix relative to the decomposition H=p(H)®

(I —p)(H) of the form
(T“ 0
0 Ty)

where Ty, approximately commutes with pR in B(p(H)) and T,, commutes
with (I—p)R in B((I —p)(H)).

3. An application to derivations.

One of our original motivations for studying the problems in this paper was
the structure of derivations of a C*-subalgebra A of B(H) into B(H). Much
interesting recent progress has been made in this subject, most notably in the
work of Erik Christensen [5], [6]. We will apply the results of Section 2 to the
study of compact derivations of A into B(H). Indeed, the following result in
concert with Theorem 2.12 completely determines the structure of such
derivations. We express a grateful acknowledgement to Erik Christensen for

some remarks which led to its proof.

3.1. THEOREM. Let A be a C*-subalgebra of B(H), 6: A — B(H) a derivation.
Let A~ denote the WOT-closure of A in B(H). Then ¢ is compact if and only if
there exists a T e B(H) asymptotically commuting with A~ such that d=adr| 4.

ProoF. (<=). This is clear.

(=>). We claim first that J extends to a compact derivation of 4~ into B(H).
To see this, notice first that §**: A** — B(H) is a g(A**, A*)-ultraweakly
continuous compact linear extension of d to the enveloping W *-algebra 4** of
A. Let © denote the g(A**, A*)-ultraweakly continuous extension of the
identity representation of A on H to a representation of A** onto A~. From
the o(A**, A*)-density of 4 in A** and the fact that § is a derivation, we
conclude that

3.1 0**(ab) = n(a)d**(b)+**(a)n(b), Va, be A**.

Let 1 —z=central support projection of kern in A**. There is an ultraweak
a(A**, A*)-continuous isomorphism t of A~ onto A**z. Let g=6**o1. By
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(3.1), ¢ is a derivation, it is evidently compact, and since §**(z)=0, which
follows upon evaluating (3.1) at a=b =z, g extends . It is hence the extension
that we seck.

Let R denote the von Neumann subalgebra of B(H) generated by the type
II, component M of A~ and the identity operator. Let a be a fixed self-adjoint
element of M, and let Z be a maximal abelian self-adjoint subalgebra of R

containing a. Z is type I, and so by [3], there is an S € B(H) for which |,
=adsiz. Now

Z=2Z,®{i(l-p: ieC},

where p is the minimal central support of M in A~ and Z, is maximal abelian
in M. Since d|, is compact and Z, has no nonzero minimal projections, we
conclude by Theorem 2.12 that S=U®V, where U € B((1 —p)(H)) and V
commutes with Z, in B(p(H)). Thus 4(a)=0, and since a is an arbitrary self-
adjoint element in M, 0 vanishes on M. We hence conclude by [3] and [5] that
there exists a Te B(H) with 6 =adf|4-. Since d is compact, T asymptotically
commutes with 4~.

3.2. CorOLLARY. Let A be a C*-subalgebra of B(H), and let p denote the
purely discrete support of A~. Then A admits a nonzero compact derivation
into B(H) if and only if pA~ +{Ap: A e C}.

If we combine the characterization of the asymptotic commutant of 4~
given by Theorem 2.12 with Theorem 3.1, we obtain the following corollary,
which answers Question 1 of [14] affirmatively for the case X = B(H).

3.3. CorOLLARY. Every compact derivation of a C*-subalgebra A of B(H) into
B(H) is the norm limit of finite-rank derivations of A into B(H).
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