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PROJECTIVE MODULES
WITH KRULL DIMENSION

S. JONDRUP

In this note we consider projective modules with Krull dimension and if M is
a right module with Krull dimension, then we denote the Krull dimension of M
by |M|. We prove for a commutative ring A and a projective module M that if
M has Krull dimension, then M is finitely generated. We also obtain a positive
result for non-commutative rings.

By examples of Jategaonkar we know that projective modules over right
noetherian right fully bounded rings can have all submodules projective and
have arbitrary Krull dimension [4] and [3, Example 10.3]. We prove that if A
is a left and right noetherian ring and P a projective module with Krull
dimension having all submodules projective, then the Krull dimension of P is
at most one.

We start with an easy result.

PRrOPOSITION 1. Let P be a projective module with Krull dimension. If the ring
A modulo the prime radical is left goldie, then P is finitely generated.

Proor. We let N denote the prime-radical of A. If we can prove that P/NP is
finitely generated, then P is finitely generated by [6, Proposition 2.1]. Since |P|
exists, also |P/N P| exists, and moreover P/NP is a projective 4/N-module, thus
without loss of generality we let A be a left goldie ring, which is semiprime and
P a projective left A-module with Krull-dimension. Let Q denote the
semisimple left quotient ring of A. Since P has Krull-dimension, P has finite
uniform dimension. Thus P has a finitely generated essential submodule, P,
it is easily seen that Q ® 4P, is an essential submodule of Q ® 4P, since Q is
semisimple we conclude that Q ® 4P is finitely generated. If we write P as a
direct summand of a free module, then it follows that P is a direct summand of
a finitely generated free module, so P itself is finitely generated and the result is
proved.
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For commutative rings we don’t have to assume any sort of chain conditions
on the ring A/N. Before stating and proving the commutative result we recall a
few results concerning the trace ideal of a projective module.

Let P be a projective module over a commutative ring, then the trace ideal of
P is denoted by t(P), A/t(P) is a flat module, since all its localizations are 0 or
A. Note that for all multiplicatively closed sets S, ¢ (P,) =t(P),. Because 4/t(P)is
flat, ¢(P) is a so called pure ideal in particular ¢(P) has the property that for
each element a there exists an a’ in t(P) such that aa’ =a and also for each finite
set of elements a,,. . .,q,, in t(P) there exists an element @' in ¢(P) such that a;a’
=g, for all j. It now follows that if t(P) is not finitely generated there exists a
strictly ascending chain of principal ideals (a,)& ... £ (a,) & ... in t(P) such
that a,=a,a;,, for all i, for a more detailed discussion see [5].

THEOREM 1. Let R be a commutative ring and P a projective module with Krull
dimension, then P is finitely generated.

Proor. Let I denote the annihilator of P, P is still projective as an R/I-
module and with zero annihilator, thus without loss of generality we assume
that Ann (P)=0. If t(P) is a finitely generated ideal, then we get from our earlier
discussion that R/t(P) is flat and finitely presented, hence projective so ¢(P) is
generated by an idempotent, now since P=t¢(P)P and P has zero annihilator
this idempotent must be 1, hence we have an epimorphism from P” to R, hence
R has Krull-dimension. Since a semiprime ring with Krull-dimension is a
semiprime goldie ring [3], we can use Proposition 1 to conclude that P must be
finitely generated.

We do now assume that t(P) is not finitely generated and we prove that P
has infinite uniform dimension. We have a strictly ascending chain of principal
left ideals in ¢(P)

(@) E .- § @ g,

where a,a,,,=a, for all n. From our assumptions we get (a,,,—a,)P+0 for
all n, we claim

(ay—ay)P+(as—a )P+ ...+
is an infinite direct sum inside P. If not we have
0 = (ay—a)pi+(as—a)p,+ ...+ (@243, =1 +3n— A1 +30)Pn+1 -
We multiply this equation by a, and get (a, —a,)p, =0, next multiply by az and

so on, thus the sum is direct. The proof of Theorem 1 is now completed.

Next we consider projective modules with Krull-dimension having all
submodules projective.



PROJECTIVE MODULES WITH KRULL DIMENSION 229

THEOREM 2. Suppose A is a left and right noetherian ring and P is a module
with Krull dimension having all submodules projective, then |P|<1.

Proor. By Proposition 1, P must be finitely generated. Using [3, 1.1 (i)], and
induction on the number of generators, we may reduce the proof to the case in
which P is a cyclic left A-module, so P is isomorphic to Ae, where e is
idempotent. Let us also notice that for modules Q, and Q, both having all
submodules projective, then also all submodules of Q, @ Q, are projective. By
noetherian induction we can assume the result for all proper factor rings. If
Ann (P)#0, then every submodule of P/Ann (P)P is A/Ann (P)-projective,
hence |P|<1. Thus we assume without loss of generality that Ann (P)=0.

We will prove that Ae as a right ede-module is noetherian.
Suppose we are given an ascending chain of e4e submodules of Ae

IL,g...gl,c..

then
llAc .. c A< ...,

is an ascending chain of right ideals of A4, hence it terminates. If we multiply
each term in the last chain by e on the right hand side and note that for all k,
I,=I,e=1I,eAe=1,Ae, then our claim follows.

Let T=eAde and write P=p, T+ ... +p,T, then

Ann, (P) = ( Ann(p) = 0,
j=1

hence we have an embedding of A4 into
A/Ann (p)@® ... @ A/Amn (p,),

which is isomorphic to Ap, @ ... ® Ap,, which is a submodule of P
Combining this with our earlier remarks we get that 4 is left hereditary. It now
follows from a result of Chatters [2, Theorem 2.2] A has Krull dimension at
most one and hence |P|<1.

One might also notice that in general A/Ann (P) is hereditary.

The author will like to thank T. Lenagan for showing how to remove the
assumption that A was left fully bounded from our first version of the paper. In
fact the last part of the argument is due to him.

In case our ring was a commutative ring, then Proposition 1 follows
immediately from a result by Bass [1], which says that a projective module
over a commutative noetherian ring is a direct sum of finitely generated
submodules. We do not know whether or not Bass’s result also holds in the
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non-commutative case. Moreover in the commutative case we need no chain
condition to prove Theorem 2, in fact one can easily prove the following:

PROPOSITION 2. Let R be a commutative ring and P a projective module with
Krull-dimension having all submodules projective. Then |P|<1.

The following is also easy to prove.

ProrosiTION 3. Let M be a right module with Krull-dimension and S a right
Ore set. If Mg denotes the module of right quotients of M, then |Mg| exists and
Mg <M.

For commutative rings most “dimensions” can be computed as supremum
over local ones. Clearly this is not true for Krull-dimension. But if our module
has Krull-dimension, then we have a positive result.

THEOREM 3. Let A be a commutative ring and M a module with Krull-
dimension, then |M|=sup,, |M,,|, where m runs through all maximal ideals.

Proor. By [7, corollary] we may assume that M is a cyclic module and
consequently we can assume M is the ring. Now by [3, Corollary 7.5], we can
take A to be an integral domain. We now use induction on |A4|. Using [3,
Proposition 6.1] and the induction we get for all ideals I (I +0)

Al = sup {J4/I|+1} < sup{|4,/1,)+1} < supld, .
1 m, 1 m

The result is now proved. The last argument could also be replaced by a
reference to [3, Theorem 8.12].

One might also note that Proposition 2 is a corollary of Theorem 3.

The authors wishes to thank the referee for simplifying the proof of Theorem
3.
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