PROJECTIVE MODULES
WITH KRULL DIMENSION

S. JØNDRUP

In this note we consider projective modules with Krull dimension and if M is
a right module with Krull dimension, then we denote the Krull dimension of M
by $|M|$. We prove for a commutative ring A and a projective module M that if
M has Krull dimension, then M is finitely generated. We also obtain a positive
result for non-commutative rings.

By examples of Jategaonkar we know that projective modules over right
noetherian right fully bounded rings can have all submodules projective and
have arbitrary Krull dimension [4] and [3, Example 10.3]. We prove that if A
is a left and right noetherian ring and P a projective module with Krull
dimension having all submodules projective, then the Krull dimension of P is
at most one.

We start with an easy result.

Proposition 1. Let P be a projective module with Krull dimension. If the ring
A modulo the prime radical is left goldie, then P is finitely generated.

Proof. We let N denote the prime-radical of A. If we can prove that P/NP
is finitely generated, then P is finitely generated by [6, Proposition 2.1]. Since $|P|$ exists, also $|P/NP|$ exists, and moreover P/NP is a projective A/N-module, thus
without loss of generality we let A be a left goldie ring, which is semiprime and
P a projective left A-module with Krull-dimension. Let Q denote the
semisimple left quotient ring of A. Since P has Krull-dimension, P has finite
uniform dimension. Thus P has a finitely generated essential submodule, P_0,
it is easily seen that $Q \otimes_A P_0$ is an essential submodule of $Q \otimes_A P$, since Q is
semisimple we conclude that $Q \otimes_A P$ is finitely generated. If we write P as a
direct summand of a free module, then it follows that P is a direct summand of
a finitely generated free module, so P itself is finitely generated and the result is
proved.

Received April 28, 1981; in revised form December 18, 1981.
For commutative rings we don’t have to assume any sort of chain conditions on the ring A/N. Before stating and proving the commutative result we recall a few results concerning the trace ideal of a projective module.

Let P be a projective module over a commutative ring, then the trace ideal of P is denoted by $t(P)$, $A/t(P)$ is a flat module, since all its localizations are 0 or A. Note that for all multiplicatively closed sets S, $t(P_S) = t(P)_S$. Because $A/t(P)$ is flat, $t(P)$ is a so called pure ideal in particular $t(P)$ has the property that for each element a there exists an a' in $t(P)$ such that $aa' = a$ and also for each finite set of elements a_1, \ldots, a_m in $t(P)$ there exists an element a' in $t(P)$ such that $a_j a' = a_j$ for all j. It now follows that if $t(P)$ is not finitely generated there exists a strictly ascending chain of principal ideals $(a_1) \subseteq \ldots \subseteq (a_n) \subseteq \ldots \subseteq t(P)$ such that $a_i = a_i a_{i+1}$ for all i, for a more detailed discussion see [5].

Theorem 1. Let R be a commutative ring and P a projective module with Krull dimension, then P is finitely generated.

Proof. Let I denote the annihilator of P, P is still projective as an R/I-module and with zero annihilator, thus without loss of generality we assume that $\text{Ann} (P) = 0$. If $t(P)$ is a finitely generated ideal, then we get from our earlier discussion that $R/t(P)$ is flat and finitely presented, hence projective so $t(P)$ is generated by an idempotent, now since $P = t(P)P$ and P has zero annihilator this idempotent must be 1, hence we have an epimorphism from P^n to R, hence R has Krull-dimension. Since a semiprime ring with Krull-dimension is a semiprime goldie ring [3], we can use Proposition 1 to conclude that P must be finitely generated.

We do now assume that $t(P)$ is not finitely generated and we prove that P has infinite uniform dimension. We have a strictly ascending chain of principal left ideals in $t(P)$

$$(a_1) \subseteq \ldots \subseteq (a_n) \subseteq \ldots,$$

where $a_n a_{n+1} = a_n$ for all n. From our assumptions we get $(a_{n+1} - a_n)P \neq 0$ for all n, we claim

$$(a_2 - a_1)P + (a_3 - a_2)P + \ldots +$$

is an infinite direct sum inside P. If not we have

$$0 = (a_2 - a_1)p_1 + (a_3 - a_4)p_2 + \ldots + (a_{2+3n} - a_{1+3n} - a_{1+3n})p_{n+1}.$$

We multiply this equation by a_3 and get $(a_2 - a_1)p_1 = 0$, next multiply by a_6 and so on, thus the sum is direct. The proof of Theorem 1 is now completed.

Next we consider projective modules with Krull-dimension having all submodules projective.
Theorem 2. Suppose A is a left and right noetherian ring and P is a module with Krull dimension having all submodules projective, then $|P| \leq 1$.

Proof. By Proposition 1, P must be finitely generated. Using [3, 1.1 (i)], and induction on the number of generators, we may reduce the proof to the case in which P is a cyclic left A-module, so P is isomorphic to Ae, where e is idempotent. Let us also notice that for modules Q_1 and Q_2 both having all submodules projective, then also all submodules of $Q_1 \oplus Q_2$ are projective. By noetherian induction we can assume the result for all proper factor rings. If $\text{Ann}(P) \neq 0$, then every submodule of $P/\text{Ann}(P)P$ is $A/\text{Ann}(P)$-projective, hence $|P| \leq 1$. Thus we assume without loss of generality that $\text{Ann}(P) = 0$.

We will prove that Ae as a right eAe-module is noetherian.

Suppose we are given an ascending chain of eAe submodules of Ae

$$I_1 \subseteq \ldots \subseteq I_k \subseteq \ldots,$$

then

$$I_1A \subseteq \ldots \subseteq I_kA \subseteq \ldots,$$

is an ascending chain of right ideals of A, hence it terminates. If we multiply each term in the last chain by e on the right hand side and note that for all k, $I_k = I_k e = I_k eAe = I_k Ae$, then our claim follows.

Let $T = eAe$ and write $P = p_1 T + \ldots + p_n T$, then

$$\text{Ann}_A(P) = \bigcap_{j=1}^{n} \text{Ann}(p_j) = 0,$$

hence we have an embedding of A into

$$A/\text{Ann}(p_1) \oplus \ldots \oplus A/\text{Ann}(p_n),$$

which is isomorphic to $Ap_1 \oplus \ldots \oplus Ap_n$, which is a submodule of P^n. Combining this with our earlier remarks we get that A is left hereditary. It now follows from a result of Chatters [2, Theorem 2.2] A has Krull dimension at most one and hence $|P| \leq 1$.

One might also notice that in general $A/\text{Ann}(P)$ is hereditary.

The author will like to thank T. Lenagan for showing how to remove the assumption that A was left fully bounded from our first version of the paper. In fact the last part of the argument is due to him.

In case our ring was a commutative ring, then Proposition 1 follows immediately from a result by Bass [1], which says that a projective module over a commutative noetherian ring is a direct sum of finitely generated submodules. We do not know whether or not Bass's result also holds in the
non-commutative case. Moreover in the commutative case we need no chain condition to prove Theorem 2, in fact one can easily prove the following:

Proposition 2. Let \(R \) be a commutative ring and \(P \) a projective module with Krull-dimension having all submodules projective. Then \(|P| \leq 1 \).

The following is also easy to prove.

Proposition 3. Let \(M \) be a right module with Krull-dimension and \(S \) a right Ore set. If \(M_S \) denotes the module of right quotients of \(M \), then \(|M_S| \) exists and \(|M_S| \leq |M| \).

For commutative rings most "dimensions" can be computed as supremum over local ones. Clearly this is not true for Krull-dimension. But if our module has Krull-dimension, then we have a positive result.

Theorem 3. Let \(A \) be a commutative ring and \(M \) a module with Krull-dimension, then \(|M| = \sup_m |M_m| \), where \(m \) runs through all maximal ideals.

Proof. By [7, corollary] we may assume that \(M \) is a cyclic module and consequently we can assume \(M \) is the ring. Now by [3, Corollary 7.5], we can take \(A \) to be an integral domain. We now use induction on \(|A| \). Using [3, Proposition 6.1] and the induction we get for all ideals \(I \) (\(I \neq 0 \))

\[
|A| = \sup_I \{|A/I| + 1\} \leq \sup_m \{|A_m/I_m| + 1\} \leq \sup_m |A_m|.
\]

The result is now proved. The last argument could also be replaced by a reference to [3, Theorem 8.12].

One might also note that Proposition 2 is a corollary of Theorem 3.

The authors wishes to thank the referee for simplifying the proof of Theorem 3.

References

DEPT. OF MATHEMATICS
UNIVERSITY OF COPENHAGEN
UNIVERSITETSPARKEN 5
2100 COPENHAGEN Ø
DENMARK