ON THE TRANSLATION FUNCTORS FOR A SEMISIMPLE ALGEBRAIC GROUP

M KOPPINEN

Introduction.

Let G be a simply connected semisimple algebraic group over an algebraically closed field of characteristic $p \neq 0$. Assume that the root system of G is irreducible. In [11] J. C. Jantzen introduced the functors T^{μ}_{λ} , called the translation functors in [2], between certain categories of rational G modules. Here λ and μ are weights in the closure of the bottom alcove. In [11] and [2], the effect of T^{μ}_{λ} on the simple modules was given under the assumption that λ is inside the bottom alcove; this result was then used, for example, to prove the translation principle ([11, § 3], [2, 2.5]).

In this paper we extend the result on the simple modules to the cases, where λ is in a facette and μ in its closure (Theorem 2.5). As corollaries we obtain generalizations of (a part of) the translation principle and [8, Theorem 2]; we also find some composition multiplicities of Weyl modules. Moreover, we derive analogous results for u_n -T modules (cf. [12]).

As an application of the translation functors we generalize [10, Satz 5] as follows. Let C_n be the alcove with $(p^n-1)\varrho$ in its upper closure. Here ϱ is the sum of the fundamental dominant weights. We show that if λ lies in the closure of C_n or in the alcove immediately below it, then the indecomposable projective u_n module $Q(n, \lambda)$ can be lifted to a G module.

1. Preliminaries.

Let G be a simply connected semisimple algebraic group over an algebraically closed field of characteristic $p \neq 0$. Let T be a fixed maximal torus of G and let u_n be the hyperalgebra of the nth infinitesimal subgroup of G (cf. [4, 3.2], [14, 2.1]). We shall freely use the well-known properties of the categories of (rational) G modules, u_n modules and u_n -T modules (cf. [4], [6], [7], [12], and [14]). Moreover, the reader may consult for instance [3], [5], [6], and [8] for preliminaries concerning the root system R of G, the character group X = X(T) of T, the hyperplanes, facettes and alcoves in the Euclidean space

218 M. KOPPINEN

 $R \otimes X$, as well as the Weyl group W and the affine Weyl group W_p operating in $R \otimes X$. We assume that R is irreducible. Let X^+ be the set of dominant weights with respect to a fixed basis of R.

For a weight v we let \mathcal{M}_v be the category of the finite dimensional G modules for which the highest weights of their composition factors lie in $W_p.v$. Let C be an alcove. Each finite dimensional G module V has for any $v \in \overline{C}$ a unique maximal submodule V_v contained in \mathcal{M}_v , and V is the direct sum of these submodules. Fix two weights λ, μ in C. We define a functor $T^\mu_\lambda : \mathcal{M}_\lambda \to \mathcal{M}_\mu$ as follows: if $V \in \mathcal{M}_\lambda$, then $T^\mu_\lambda V = (V \otimes E)_\mu$, where E is the simple G module with the highest weight in $W(\mu - \lambda)$. The difference between this definition and the one in $[2, \S 2]$, $[11, \S 3]$, and [14, 5.2] is only notational; we allow C to be any alcove. Clearly $T^\mu_\lambda = T^{w.\mu}_{w.\lambda}$ for $w \in W_p$.

Analogous functors T_{λ}^{μ} for $u_n - T$ modules were defined in [14, 5.2]. We extend the notation as above to encompass weights λ, μ in the closure of any alcove.

Finally, we mention two important formulas. For a weight v set

$$S_{v} = \{ w \in W_{n} \mid w.v = v \}$$

as in [2]. Let C be an alcove and $\lambda, \mu \in \overline{C} \cap X$. If $w \in W_p$ and $w \cdot \lambda \in X^+$, then

(1)
$$\operatorname{ch} T_{\lambda}^{\mu} V(w.\lambda) = \sum_{w_1 \in W_1} \chi(ww_1.\mu) ,$$

and for any $w \in W_p$

(2)
$$\operatorname{ch} T^{\mu}_{\lambda} \widehat{Z}(n, w.\lambda) = \sum_{w_1 \in W_1} \operatorname{ch} \widehat{Z}(n, ww_1.\mu),$$

where W_1 is a system of representatives for $S_{\lambda}/S_{\lambda} \cap S_{\mu}$. These are the formulas [14; 5.2(6), (7)], when C is the bottom alcove, and the general case follows easily from this.

2. T^{μ}_{λ} for $L(\lambda)$ and $\hat{L}(n,\lambda)$.

First we generalize the character formula (1) of the previous section.

LEMMA 2.1. Let $\lambda, \mu \in X$ be in the closure of the same alcove and let W_1 be a system of representatives for $S_{\lambda}/S_{\lambda} \cap S_{\mu}$. If V is a finite dimensional G module and

$$ch V = \sum_{w \in W_p} a_w \chi(w.\lambda)$$

with $a_w \in \mathbf{Z}$, then

ch
$$T^{\mu}_{\lambda}V = \sum_{w \in W_p} \sum_{w_1 \in W_1} a_w \chi(ww_1, \mu)$$
.

PROOF. Suppose $\chi(w.\lambda)=0$. Then $s_{\alpha}w.\lambda=w.\lambda$ for some $\alpha \in R$. Hence $w^{-1}s_{\alpha}w \in S_{\lambda}$. For each w_1 in W_1 , there is a unique w_2 in W_1 with $w^{-1}s_{\alpha}ww_1.\mu = w_2.\mu$. Putting $\zeta(w_1)=w_2$, we get a map $\zeta:W_1 \to W_1$ that is injective and hence bijective. Now

$$\begin{split} & \sum_{w_1 \in W_1} \chi(ww_1.\mu) = \sum_{w_1 \in W_1} \chi(w\zeta(w_1).\mu) \\ & = \sum_{w_1 \in W_1} \chi(s_\alpha ww_1.\mu) = - \sum_{w_1 \in W_1} \chi(ww_1.\mu) \;. \end{split}$$

Hence this sum is zero. Therefore we may assume that $\chi(w.\lambda) \neq 0$, whenever $a_w \neq 0$. Then for each w with $a_w \neq 0$, there is a $\sigma_w \in W$ with $\sigma_w w.\lambda \in X^+$. Now we have

ch
$$V = \sum_{w \in W_{-}} a_{w} \det (\sigma_{w}) \operatorname{ch} V(\sigma_{w} w. \lambda)$$
.

Let E be the simple module with the highest weight in $W(\mu - \lambda)$. Then

$$\sum_{v \in C} \operatorname{ch} (V \otimes E)_v = \sum_{v \in C} \sum_{w \in W_n} a_w \det (\sigma_w) \operatorname{ch} (V(\sigma_w w.\lambda) \otimes E)_v.$$

Clearly the characters of modules belonging to different categories \mathcal{M}_{v} . $v \in \overline{C}$, are linearly independent. Hence

$$\operatorname{ch} T^{\mu}_{\lambda} V = \sum_{w \in W_{p}} a_{w} \operatorname{det} (\sigma_{w}) \operatorname{ch} T^{\mu}_{\lambda} V(\sigma_{w} w.\lambda)$$

$$= \sum_{w \in W_{p}} \sum_{w_{1} \in W_{1}} a_{w} \operatorname{det} (\sigma_{w}) \chi(\sigma_{w} ww_{1}.\mu)$$

$$= \sum_{w \in W_{m}} \sum_{w_{1} \in W_{1}} a_{w} \chi(ww_{1}.\mu)$$

by (1) of section 1.

Let $\lambda, \mu \in X$ be in the closure of the same alcove. In [14, 5.3], Jantzen showed that if a G module $V \in \mathcal{M}_{\lambda}$ has a filtration by Weyl modules, then so has $T_{\lambda}^{\mu}V$. Moreover, [14, 5.1] gives the corresponding result for $u_n - T$ modules and Z filtrations (see [12, 3.3]). Hence the formulas (1) and (2) of section 1 give immediately the following two lemmas (cf. [11, § 3]). Lemma 2.2 is contained in [2, 2.1c], too.

LEMMA 2.2. Let F be a facette, $\lambda \in F \cap X^+$ and $\mu \in \overline{F} \cap X$. Then $T^{\mu}_{\lambda}V(\lambda) \cong V(\mu)$ for $\mu \in X^+$, while $T^{\mu}_{\lambda}V(\lambda) = 0$ for $\mu \notin X^+$.

LEMMA 2.2'. Let F be a facette, $\lambda \in F \cap X$ and $\mu \in \overline{F} \cap X$. Then $T^{\mu}_{\lambda} \hat{Z}(n, \lambda) \cong \hat{Z}(n, \mu)$.

We use the sign \uparrow for the strong linkage relation as in [9, § 6]. From [15] we get the following result.

LEMMA 2.3. Let F, F' be facettes, $\lambda \in F \cap X^+$ and $\xi \in F' \cap X^+$. Assume that $\overline{F} \cap \overline{F'} \neq \emptyset$, $\xi \uparrow \lambda$ and that $\xi \uparrow \tau \uparrow \lambda$ implies $\tau \in X^+$. Then $\lceil V(\lambda) : L(\xi) \rceil \neq 0$.

Set $\mathfrak{C}_0 = \{x \in \mathbb{R} \otimes X \mid \langle x + \varrho, \alpha \rangle > 0 \ \forall \alpha \in \mathbb{R}^+ \}$. For a facette F let \hat{F} be its upper closure (cf. [8]).

COROLLARY 2.4. If F is a facette, $w \in W_p$, $\lambda \in F \cap X^+$ and $\overline{F} \cap (w.F) \cap \mathfrak{C}_0 \neq \emptyset$, then $[V(\lambda): L(w.\lambda)] \neq 0$.

PROOF. Let F_0 be a facette in $\overline{F} \cap (w.F) \cap \mathfrak{C}_0$ and C an alcove with $w.F \subseteq \widehat{C}$ ([8, Satz 4]). Clearly $F_0 \subseteq \widehat{C}$. In the notation of [9, p. 137], C and $w^{-1}.C$ belong to $\mathfrak{R}(F_0)$. By [9, Lemma 6] $C \uparrow w^{-1}.C$; hence $w.\lambda \uparrow \lambda$.

Now let $w.\lambda \uparrow \tau \uparrow \lambda$. There is a chain $w.\lambda < s_1w.\lambda < \ldots < s_k \ldots s_1w.\lambda = \tau$, where each s_i is a reflection, $k \ge 0$. The chain gives $C \uparrow C'$, where $C' = s_k \ldots s_1.C$ and $\tau \in \overline{C'}$. Similarly, the relation $\tau \uparrow \lambda$ gives an alcove C'' with $C' \uparrow C''$ and $\lambda \in \overline{C''}$. Then $C, C'' \in \Re(F_0)$. By [9, Lemma 6], $C' \in \Re(F_0)$. Hence $F_0 \subseteq \overline{C'}$ and $s_k \ldots s_1.F_0 \subseteq \overline{C'}$. Therefore $F_0 = s_k \ldots s_1.F_0 \subseteq \overline{F'}$, where $F' = s_k \ldots s_1w.F$. Hence $\tau \in F' \subseteq \mathfrak{C}_0$. Now the assertion follows from lemma 2.3.

We prove analogous results for $u_n - T$ modules.

LEMMA 2.3'. Let F, F' be facettes and $\lambda \in F \cap X$, $\xi \in F' \cap X$. If $\overline{F} \cap \overline{F'} \neq \emptyset$ and $\xi \uparrow \lambda$, then $\lceil \widehat{Z}(n,\lambda) \colon \widehat{L}(n,\xi) \rceil \neq 0$.

PROOF. For $x \in X$, we let T(x) be the translation in $\mathbb{R} \otimes X$ by x. Choose an integer m. According to [12, 2.8]

$$[\hat{Z}(n,\lambda):\hat{L}(n,\xi)] = [\hat{Z}(n,\lambda+mp^n\varrho):\hat{L}(n,\xi+mp^n\varrho)].$$

Hence we may replace λ, ξ, F and F' by $\lambda + mp^n \varrho$, $\xi + mp^n \varrho$, $T(mp^n \varrho)(F)$ and $T(mp^n \varrho)(F')$, respectively. Taking m large enough, we can therefore assume that if $\lambda \uparrow v \uparrow \xi$ or $[\hat{Z}(n,\lambda): \hat{L}(n,v)] \neq 0$, then $v \in X^+$. Now 2.3 implies $[V(\lambda): L(\xi)] \neq 0$. On the other hand, by [14, 3.1(5)] we have

$$\operatorname{ch} V(\lambda) = \sum_{v \in X^+} \sum_{\tau \in X_n} [\hat{Z}(n,\lambda) : \hat{L}(n,p^n v + \tau)] \operatorname{ch} V(v)^{Fr^n} \operatorname{ch} L(\tau) .$$

Here $X_n = X_n(T)$ (cf. [12, 1.4]). Put $\xi = p^n \eta + \tau$, $\tau \in X_n$. Then

$$0 + [V(\lambda): L(\xi)] = \sum_{v \in X^+} [\hat{Z}(n,\lambda): \hat{L}(n,p^nv + \tau)][V(v): L(\eta)].$$

Let v be a weight giving a non-zero term on the right hand side. Then $\eta \uparrow v$ and $(p^n v + \tau) \uparrow \lambda$ by the strong linkage principle [1, cor. 3] and its counterpart [14, 3.3]. In particular $v \ge \eta$. This implies easily $(p^n \eta + \tau) \uparrow (p^n v + \tau)$. Hence $\xi \uparrow (p^n v + \tau) \uparrow \lambda$.

Let C be an alcove with $\lambda \in \overline{C}$. As in the proof of 2.4 we can find alcoves C' and C'' with $C' \uparrow C'' \uparrow C$, $p^n v + \tau \in \overline{C''}$, and $\xi \in \overline{C'}$. Let F_0 be a facette in $\overline{F} \cap \overline{F'}$. Then C, C' and C'' are in $\Re(F_0)$ by [9, Lemma 6]. Set $F'' = w \cdot F'$, where w is the element of W_p with $C'' = w \cdot C'$. Now $F_0 \subseteq \overline{C'} \cap \overline{C''}$. Therefore $w \cdot F_0 = F_0$. On the other hand $p^n v + \tau \in \overline{C''} \cap (W_p, \xi)$ and $w \cdot \xi \in \overline{C''}$; so

$$T(p^n(v-\eta)).\xi = p^nv + \tau = w.\xi$$
.

This implies that $T(p^n(v-\eta))$ and w coincide on F', and therefore on F_0 . Hence

$$T(p^{n}(v-\eta)).F_{0} = w.F_{0} = F_{0}$$

So we actually have $v = \eta$. This proves the lemma.

COROLLARY 2.4'. If F is a facette, $w \in W_p$, $\lambda \in F \cap X$ and $\overline{F} \cap (w.F)^{\hat{}} \neq \emptyset$, then $[\widehat{Z}(n,\lambda): \widehat{L}(n,w.\lambda)] \neq 0$.

Now we are ready to prove the main results of the paper.

THEOREM 2.5. Let F be a facette, $\lambda \in F \cap X^+$ and $\mu \in \overline{F} \cap X$. If $\mu \in \widehat{F}$, then $T^{\mu}_{\lambda}L(\lambda) \cong L(\mu)$; otherwise $T^{\mu}_{\lambda}L(\lambda) = 0$.

THEOREM 2.5'. Let F be a facette, $\lambda \in F \cap X$ and $\mu \in \overline{F} \cap X$. If $\mu \in \widehat{F}$, then $T^{\mu}_{\lambda}\widehat{L}(n,\lambda) \cong \widehat{L}(n,\mu)$; otherwise $T^{\mu}_{\lambda}\widehat{L}(n,\lambda) = 0$.

PROOF. Let F be a facette, $\lambda \in F \cap X^+$ and $\mu \in \widehat{F} \cap X$. We get the first assertion of 2.5 as in [11]: Write

$$\chi_p(\lambda) = \sum_{w \in W_p} a(w, \lambda) \chi(w.\lambda)$$

as in [8, p. 130]. Then [8, Theorem 1] and Lemma 2.1 imply

$$\operatorname{ch} L(\mu) = \sum_{w \in W_n} a(w, \lambda) \chi(w, \mu) = \operatorname{ch} T^{\mu}_{\lambda} L(\lambda) .$$

Hence $T^{\mu}_{\lambda}L(\lambda) \cong L(\mu)$.

Next let F and λ be as above and $\mu \in (\overline{F} \setminus \widehat{F}) \cap X$. If $\mu \notin X^+$, then $T^\mu_\lambda L(\lambda)$ is zero by 2.2, since it is a quotient of $T^\mu_\lambda V(\lambda)$. Therefore we may assume that $\mu \in X^+$. From [8, Satz 4] one easily sees that μ is in the upper closure of w.F for some $w \in W_p$. Put $x = [V(\lambda): L(w.\lambda)]$. By Corollary 2.4, $x \neq 0$. Then $w.\lambda \neq \lambda$, and $V(\lambda)$ has $L(\lambda)$ once and $L(w.\lambda)$ x times as a composition factor. Operating with T^μ_λ to a composition series of $V(\lambda)$, we get a filtration for $T^\mu_\lambda V(\lambda) \cong V(\mu)$ in which $T^\mu_\lambda L(\lambda)$ occurs once, and $T^\mu_\lambda L(w.\lambda)$ x times as a quotient. By the first part of the proof $T^\mu_\lambda L(w.\lambda) \cong L(\mu)$. Now $T^\mu_\lambda L(\lambda)$ is a quotient of $T^\mu_\lambda V(\lambda) \cong V(\mu)$; so if it were not zero, it would have $L(\mu)$ as a quotient. This would imply $[V(\mu): L(\mu)] \geq 1 + x \geq 2$. Hence $T^\mu_\lambda L(\lambda) = 0$. Note too that we actually get x = 1. This gives a part of Corollary 2.6.

Now let us consider Theorem 2.5'. We prove only the first assertion; the rest of 2.5' can be derived in a way entirely analogous to the proof of 2.5. So let F be a facette, $\lambda \in F \cap X$ and $\mu \in \widehat{F} \cap X$. If $\lambda \in X_n$, then $\mu \in X_n$, and by 2.5 we get (see [14, 5.2])

$$T^\mu_\lambda \hat{L}(n,\lambda) \cong T^\mu_\lambda(L(\lambda)|_{\boldsymbol{u}_n-T}) \cong \left(T^\mu_\lambda L(\lambda)\right)_{\boldsymbol{u}_n-T} \cong \hat{L}(n,\mu)\;.$$

Next let $\lambda = \lambda' - p^n v$ with $\lambda' \in X_n$. Put $\mu' = \mu - p^n v$ and $F' = T(-p^n v)(F)$. Then F' is a facette, $\lambda' \in F' \cap X$ and $\mu' \in \widehat{F}' \cap X$. Using a result analogous to [14, 5.2(8)] we have

$$T^{\mu}_{\lambda}\hat{L}(n,\lambda) \cong T^{\mu}_{\lambda}(\hat{L}(n,p^{n}v) \otimes \hat{L}(n,\lambda'))$$

$$\cong \hat{L}(n,p^{n}v) \otimes T^{\mu'}_{\lambda}\hat{L}(n,\lambda') \cong \hat{L}(n,\mu).$$

COROLLARY 2.6. Let F, λ and w be as in 2.4 (respectively 2.4'). Then $[V(\lambda): L(w.\lambda)]$ (respectively $[\hat{Z}(n,\lambda): \hat{L}(n,w.\lambda)]$) equals 1.

Now 2.2 and 2.5 imply the following generalization of (a part of) the translation principle (cf. [2, 2.5], [10, Satz 7], [11, §3]):

COROLLARY 2.7. Let F be a facette, $\lambda \in F \cap X^+$, $\mu \in \widehat{F} \cap X^+$, $w \in W_p$ and assume that $w.\lambda \in X^+$. Then $[V(w.\lambda): L(\lambda)]$ equals $[V(w.\mu): L(\mu)]$ for $w.\mu \in X^+$ and 0 for $w.\mu \notin X^+$.

COROLLARY 2.7'. Let F be a facette, $\lambda \in F \cap X$, $\mu \in \widehat{F} \cap X$, and $w \in W_p$. Then $[\widehat{Z}(n, w.\lambda): \widehat{L}(n, \lambda)]$ equals $[\widehat{Z}(n, w.\mu): \widehat{L}(n, \mu)]$.

Theorem 2.5 can also be used to generalize [8, Theorem 2] in the following way (see also [2, 2.4]).

COROLLARY 2.8. Let F be a facette, $\lambda \in F \cap X^+$ and $\mu \in (\overline{F} \setminus \widehat{F}) \cap X^+$. Write

$$\chi_p(\lambda) = \sum_{w \in W_n} a(w, \lambda) \chi(w.\lambda),$$

where $w.\lambda \in X^+$ if $a(w,\lambda) \neq 0$. Then

$$\sum_{w \in W_p} a(w,\lambda) \chi(w \boldsymbol{.} \mu) = 0.$$

If $w \in W_n$ with $\chi(w,\mu) \neq 0$, then

$$\sum_{w'\in S_{+}}a(ww',\lambda)=0.$$

PROOF. The first claim follows from 2.1 and 2.5.

If $w \in W_p$ with $a(w, \lambda) \neq 0$, then $w \cdot \mu \in X^+$ or $\chi(w \cdot \mu) = 0$. Omitting the terms with $\chi(w \cdot \mu) = 0$ in the sum $\sum_{w} a(w, \lambda) \chi(w \cdot \mu)$ and combining equal characters, we get a linear combination of linearly independent characters. Hence the first part of 2.8 implies the second one.

3. T_1^{μ} for $\hat{Q}(n, \lambda)$.

In this section we use the translation functors to generalize [10, Satz 5]. The following lemma is analogous to [13, Satz 2.24].

LEMMA 3.1. Let F be a facette, $\lambda \in \widehat{F} \cap X$ and $\mu \in F \cap X$. Then $T^{\mu}_{\lambda}\widehat{Q}(n,\lambda) \cong \widehat{Q}(n,\mu)$.

PROOF. The $u_n - T$ module $T^{\mu}_{\lambda} \hat{Q}(n, \lambda)$ is projective (see [14, 5.4]), and hence it is a direct sum of modules of the form $\hat{Q}(n, w.\mu)$, $w \in W_p$. The multiplicity of $\hat{Q}(n, w.\mu)$ in the sum equals the dimension of

$$\operatorname{Hom}_{\mathbf{u},T}(\hat{L}(n,w,\mu),T_{\lambda}^{\mu}\hat{Q}(n,\lambda)) \cong \operatorname{Hom}_{\mathbf{u},T}(T_{\mu}^{\lambda}\hat{L}(n,w,\mu),\hat{Q}(n,\lambda))$$

(cf. [2, §2]) By 2.5' this dimension is 1 if $w.\mu = \mu$, and 0 otherwise.

COROLLARY 3.2. Let F be a facette, $\lambda \in \hat{F} \cap X$ and $\mu \in F \cap X$. If $\hat{Q}(n, \lambda)$ extends to a G module, then $\hat{Q}(n, \mu)$ extends, too.

PROOF. If Q is a G module with $Q|_{\mathbf{u}_n-T} \cong \hat{Q}(n,\lambda)$, then $T^{\mu}_{\lambda}Q$ is a G module with $(T^{\mu}_{\lambda}Q)|_{\mathbf{u}_n-T} \cong \hat{Q}(n,\mu)$.

The following theorem shows that the restriction $p \nmid f$ in [10, Satz 5] is superfluous (see also [12; 4.2, 6.1]). For $v \in X$ set

$$S(v) = \sum_{\tau \in W(v)} e(\tau)$$
 and $v^{(n)} = w_0(v) + (p^n - 1)\varrho$.

Here w_0 is the longest element of W. Let C_n be the alcove with $(p^n-1)\varrho$ in its upper closure. Finally, we denote the Steinberg module $V((p^n-1)\varrho)$ by St_n .

THEOREM 3.3. If $\lambda \in \overline{C_n} \cap X^+$, then $\hat{Q}(n,\lambda)$ can be lifted to a G module. Moreover, $\operatorname{ch} \hat{Q}(n,\lambda) = S(\lambda^{(n)}) \operatorname{ch} St_n$.

PROOF. We leave it to the reader to verify that

$$\operatorname{ch} T_{(p^{n}-1)o}^{\lambda} St_{n} = S(\lambda^{(n)}) \operatorname{ch} St_{n}$$

(use formula (1) of section 1 and [10, p. 447(1)]). For $\mu \in X$, we have

$$\operatorname{ch} \widehat{Z}(n,\mu) = e(\mu - (p^n - 1)\varrho) \operatorname{ch} St_n$$

by [12, p. 285]. Hence by [12; 3.7, 3.8] the lowest weight of $\hat{Q}(n,\tau)$, $\tau \in X$, is the lowest weight of $\hat{Z}(n,\tau)$, i.e. $\tau - 2(p^n - 1)\varrho$. Since the projective $u_n - T$ module $T_{(p^n - 1)\varrho}^{\lambda}St_n$ has $w_0(\lambda^{(n)}) - (p^n - 1)\varrho = \lambda - 2(p^n - 1)\varrho$ as its lowest weight, it has $\hat{Q}(n,\lambda)$ as a direct $u_n - T$ summand. Hence

$$\operatorname{ch} \hat{Q}(n,\lambda) = S(\lambda^{(n)}) \operatorname{ch} St_n - \sum_{v \in X} a_v e(v)$$

for some non-negative integers a_{v} . On the other hand, by [12, 3.8]

$$\operatorname{ch} \widehat{Q}(n,\lambda) = \Phi \operatorname{ch} St_n,$$

where

$$\Phi = \sum_{\mu \in X} [\hat{Z}(n,\mu) : \hat{L}(n,\lambda)] e(\mu - (p^n - 1)\varrho).$$

The coefficients in this sum are non-negative; in particular, the coefficient of $e(\lambda - (p^n - 1)\varrho)$ is 1. Now ch $\hat{Q}(n, \lambda)$ is invariant under W as $\lambda \in X_n$ ([14, 5.8]). Then also Φ is invariant under W, since $\mathbf{Z}[X]$ is an integral domain. Hence in the expression above for Φ , some terms form $S(\lambda - (p^n - 1)\varrho) = S(\lambda^{(n)})$. Thus we have

$$\operatorname{ch} \hat{Q}(n,\lambda) = S(\lambda^{(n)}) \operatorname{ch} St_n + \sum_{v \in X} b_v e(v),$$

where the numbers b_{ν} are non-negative. This implies the asserted character formula. Moreover,

$$(T^{\lambda}_{(p^n-1)\varrho}St_n)|_{\mathbf{u}_n-T}\cong \widehat{Q}(n,\lambda)$$
.

Hence $\hat{Q}(n, \lambda)$ extends to a G module.

Let C_n be as above and let C'_n be the alcove immediately below it. That is, $C'_n = s(C_n)$, where s is the reflection in the hyperplane

$$\{x \in \mathbb{R} \otimes X \mid \langle x + \varrho, \check{\alpha_0} \rangle = p(p^{n-1}(h-1)-1)\},$$

 α_0 the maximal short root.

COROLLARY 3.4. If λ is a weight in $\overline{C_n} \cup C'_n$, then $\hat{Q}(n,\lambda)$ can be lifted to a G module.

PROOF. By 3.3 we may assume that $\lambda \in C'_n$. Then $p \ge h$. Hence there is a weight in the common wall of C_n and C'_n . Now 3.2 and 3.3 imply the result.

COROLLARY 3.5. If G is of type A_2 , then each $\hat{Q}(n, \lambda)$, $\lambda \in X_n$, can be lifted to a G module.

PROOF. For n=1 one can use 3.4. Then the general case follows from [16].

REFERENCES

- 1. H. Andersen, The strong linkage principle, J. Reine Angew. Math. 315 (1980), 53-59.
- H. H. Andersen, On the structure of the cohomology of line bundles on G/B, Preprint Series No. 26, Aarhus Universitet, 1980.
- N. Bourbaki, Éléments de Mathématique, Groupes et algèbres de Lie, IV-VI, (Act. Sci. Ind. 1337) Hermann, Paris, 1968.
- 4. E. Cline, B. Parshall, and L. Scott, Cohomology, hyperalgebras and representations, J. Algebra 63 (1980), 98-123.
- 5. J. E. Humphreys, Introduction to Lie algebras and representation theory (Graduate Texts in Mathematics 9), Springer-Verlag, Berlin-Heidelberg-New York, 1972.
- 6. J. E. Humphreys, Ordinary and modular representations of Chevalley groups, (Lecture Notes in Mathematics 528), Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- J. E. Humphreys, On the hyperalgebra of a semisimple algebraic group in Contributions to Algebra, A Collection of Papers Dedicated to Ellis Kolchin, pp. 203-210, Academic Press, New York-San Francisco-London, 1977.
- J. C. Jantzen, Zur Charakterformel gewisser Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, Math. Z. 140 (1974), 127–149.
- J. C. Jantzen, Darstellungen halbeinfacher Gruppen und kontravariante Formen, J. Reine Angew. Math. 290 (1977), 117-141.
- J. C. Jantzen, Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra 49 (1977), 441-469.
- J. C. Jantzen, Weyl modules for groups of Lie type, in Finite Simple groups, ed. J. M. Collins, Proceedings of a London Mathematical Society Research Symposium in Finite Simple Groups, pp. 291-300, Durham 1978, Academic Press, London, New York, Toronto, Sydney, San Francisco, 1980.

226 M. KOPPINEN

- 12. J. C. Jantzen, Über Darstellungen höherer Frobenius-Kerne halbeinfacher algebraischer Gruppen, Math. Z. 164 (1979), 271-292.
- 13. J. C. Jantzen, Moduln mit einem höchstem Gewicht (Lecture Notes in Mathematics 750), Springer-Verlag, Berlin - Heidelberg - New York, 1979.
- J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. Reine Angew. Math. 317 (1980), 157-199.
- 15. M. Koppinen, On the composition factors of Weyl modules, Math. Scand. 51 (1982), 212-216.
- S. Donkin, Rationally injective modules for semisimple algebraic groups as direct limits, Bull. London Math. Soc. 12 (1980), 99-102.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TURKU 20500 TURKU 50 FINLAND