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ON THE TRANSLATION FUNCTORS
FOR A SEMISIMPLE ALGEBRAIC GROUP

M. KOPPINEN

Introduction.

Let G be a simply connected semisimple algebraic group over an
algebraically closed field of characteristic p=+0. Assume that the root system of
G is irreducible. In [11] J. C. Jantzen introduced the functors T4, called the
translation functors in [2], between certain categories of rational G modules.
Here 4 and u are weights in the closure of the bottom alcove. In [11] and [2],
the effect of T%4 on the simple modules was given under the assumption that 4 is
inside the bottom alcove; this result was then used, for example, to prove the
translation principle ([11, § 3], [2, 2.5]).

In this paper we extend the result on the simple modules to the cases, where
A is in a facette and u in its closure (Theorem 2.5). As corollaries we obtain
generalizations of (a part of) the translation principle and [8, Theorem 2]; we
also find some composition multiplicities of Weyl modules. Moreover, we
derive analogous results for u,-T modules (cf. [12]).

As an application of the translation functors we generalize [10, Satz 5] as
follows. Let C, be the alcove with (p"—1)g in its upper closure. Here g is the
sum of the fundamental dominant weights. We show that if 4 lies in the closure
of C, or in the alcove immediately below it, then the indecomposable projective
u, module Q(n, /) can be lifted to a G module.

1. Preliminaries.

Let G be a simply connected semisimple algebraic group over an
algebraically closed field of characteristic p+0. Let T be a fixed maximal torus
of G and let u, be the hyperalgebra of the nth infinitesimal subgroup of G (cf. [4,
3.2], [14, 2.1]). We shall freely use the well-known properties of the categories
of (rational) G modules, u, modules and u,-T modules (cf. [4], [6], [7], [12],
and [14]). Moreover, the reader may consult for instance [3], [5], [6], and [8]
for preliminaries concerning the root system R of G, the character group
X =X(T) of T, the hyperplanes, facettes and alcoves in the Euclidean space
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R ® X, as well as the Weyl group Wand the affine Weyl group W, operating in
R ® X. We assume that R is irreducible. Let X * be the set of dominant weights
with respect to a fixed basis of R.

For a weight v we let .#, be the category of the finite dimensional G modules
for which the highest weights of their composition factors lie in W,.v. Let C be
an alcove. Each finite dimensional G module V has for any v € C a unique
maximal submodule V, contained in .#,, and V is the direct sum of these
submodules. Fix two weights 4, u in C. We define a functor T%: .#,— .#, as
follows: if V e #,, then T4V = (V ® E),, where E is the simple G module with
the highest weight in W (u— A). The difference between this definition and the
one in [2, § 2], [11, § 3], and [14, 5.2] is only notational; we allow C to be
any alcove. Clearly T4=T} 4 for we W,

Analogous functors T% for u,— T modules were defined in [14, 5.2]. We
extend the notation as above to encompass weights 4, u in the closure of any
alcove. :

Finally, we mention two important formulas. For a weight v set

S, ={weW,| wv =y}
as in [2]. Let C be an alcove and 4,y e CNX.If we W, and w.A € X*, then
1)) chThV(wd) = Y x(wwp),

weW,
and for any we W,
) ch T4Z(n,w.2) = Y ch Z(n,ww,.0),
w e W,

where W, is a system of representatives for §,/S,NS,. These are the formulas
[14; 5.2(6), (7)], when C is the bottom alcove, and the general case follows
easily from this.

2. T% for L(4) and L(n, ).
First we generalize the character formula (1) of the previous section.

LEMMA 2.1. Let 4, u € X be in the closure of the same alcove and let W, be a
system of representatives for S,/S;NS,. If V is a finite dimensional G module and

chV =Y ayw.i)

weW,

with a,, € Z, then

chTiV= 3% ¥ axww,.p).

weW, weW
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[
Proor. Suppose y(w.A)=0. Then sw.i=w.l for some a e R. Hence

w™ls,w e S,. For each w, in W,, there is a unique w, in W, with w™'s,ww,.u
= w,.u. Putting {(w;)=w,, we get a map {: W, — W, that is injective and
hence bijective. Now

X oxwwew = X x(wl(wy)p)

w,eW, w eW,
= Y glvwin) = — T xwwi).
w,eW, w, e W,

Hence this sum is zero. Therefore we may assume that y(w.A)+0, whenever
a,,+0. Then for each w with a,, =0, there is a 6,, € W with g, w.A e X*. Now
we have

¢chV= ) a,det(s,)chV(,wi.
weW,

Let E be the simple module with the highest weight in W (u— 4). Then
Zéch(V®E Zt z a, det (¢,)ch (V(e, W) @ E), .

Ve

Clearly the characters of modules belonging to different categories .#,. v € C,
are linearly independent. Hence

chT4V = 3 a,det(s,)ch T4V (o,w.4)
we W,

Z Z ay det (O'w)X (wawl‘.u)

weW, w eW,

ST aulve

weW, w, eW,

I

by (1) of section 1.

Let A, u € X be in the closure of the same alcove. In [14, 5.3], Jantzen
showed that if a G module V € .#; has a filtration by Weyl modules, then so
has T4V. Moreover, [ 14, 5.1] gives the corresponding result for u,— T modules
and Z filtrations (see [12, 3.3]). Hence the formulas (1) and (2) of section 1 give
immediately the following two lemmas (cf. [11, § 3]). Lemma 2.2 is contained
in [2, 2.1c], too.

LEMMA 2.2. Let F be a facette, i€ FNX"* and ne FNX. Then T4V (4)
=V (y) for pe X+, while T4V (4)=0 for u¢ X .

LEMMA 2.2". Let F be a facette, s € FNX and pe FNX. Then T4Z(n, 1)
=Z(n,p).
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L]

We use the sign T for the strong linkage relation as in [9, § 6]. From [15]
we get the following result.

LemMMA 2.3. Let F,F’ be facettes, Ac FN X" and ¢ e FNX™. Assume that
FONF+ @, E1 iand that £ Tt 1 A implies 1 € X*. Then [V (4):L(£)] 0.

Set Cy={x € R®X| {(x+0,07>>0 Ya e R*}. For a facette F let F be
its upper closure (cf. [8]).

COROLLARY 2.4. If F is a facette, we W,, Ae FNX* and FN (w.F) NG,
%+ @, then [V(A): L(w.A)] *0.

ProoF. Let F, be a facette in FN (w.F) NE, and C an alcove with wFcC
([8, Satz 4]). Clearly F, < C. In the notation of [9, p. 137], C and w™~'.C belong
to K(F,). By [9, Lemma 6] C1w~.C; hence w.A1 A

Now let w.A 111 A There is a chain wiA<swiA<...<s...§;WA=r1,
where each s, is a reflection, k =20. The chain gives C 1 C', where C' =s,. . .s,.C
and t € C. Similarly, the relation 7 1 4 gives an alcove C” with C’' 1 C” and
4 e C". Then C,C” € K(F,). By [9, Lemma 6], C' € K(F,). Hence F,< C’ and
Sc-..5.FocC. Therefore Fy=s,...s,.F,<F, where F'=s,...sw.F.
Hence t € F'£,. Now the assertion follows from lemma 2.3.

We prove analogous results for u,— T modules.

LeEMMA 2.3". Let F, F’ be facettes and 4 € FNX, ¢ e FNX. If FNF + & and
E1 A, then [Z(n,4): L(n,&] 0.

Proor. For x € X, we let T(x) be the translation in R® X by x. Choose an
integer m. According to [12, 2.8]
[Z(n,2):L(n,&)] = [Z(n,A+mp"g): L(n,&+mp")] .

Hence we may replace 4,&, F and F' by A+mp"e, E+mp", T (mp"g)(F) and
T (mp"g)(F’), respectively. Taking m large enough, we can therefore assume that
if A1 v1&or [Z(nA):L(nv)]+0, then ve X*. Now 2.3 implies [V (4): L(£)]
£0. On the other hand, by [14, 3.1(5)] we have

chv(d) = Y Y [Z(na):Lnpv+olch V() chL(z).

veX* 1eX,

Here X,=X,(T) (cf. [12, 1.4]). Put é=p"p+1, T € X,. Then
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0[V(4):L(©)] = 2;( [Z(n,4): Ln,pv+0I[V(): L] -
ve
Let v be a weight giving a non-zero term on the right hand side. Then n 1 v and

(p"v+1) 7 4 by the strong linkage principle [1, cor. 3] and its counterpart [14,

3.3]. In particular v=#. This implies easily (p"p+1) T (p"v+1). Hence & 1 (p"v
+1) 1 A

Let C be an alcove with 4 € C. As in the proof of 2.4 we can find alcoves C’
and C” with C'1C"1C, pv+1€ C’,and ¢ € C. Let F, be a facette in FNF'.
Then C,C" and C" are in K(F,) by [9, Lemma 6]. Set F”' =w.F’, where w is the
element of W, with C”=w.C'. Now F,< C'NC". Therefore w.F,=F,. On the
other hand p"v+1te C'N (W,.&) and w. € C"; s0

T(p"(v=—n)l = p'vt+t = wi.
This implies that T(p"(v—n)) and w coincide on F’, and therefore on F,. Hence
T(p"(v—n)).Fy = wFy = F, .

So we actually have v=#. This proves the lemma.

COROLLARY 2.4". If F is a facette, we W,, Ae FNX and FN(w.F) +(,
then [Z(n,A): L(n,w.]=0.

Now we are ready to prove the main results of the paper.

THEOREM 2.5. Let F be a facette, 7. € FNX* and pe FNX. If pe F, then
THL(4)=L(u); otherwise T4HL(2)=0.

THEOREM 2.5'. Let F be a facette, + € FNX and pe FNX. If pe F, then
T*L(n, )= L(n, p); otherwise T#L(n,2)=0.

PrOOF. Let F be a facette, 2 € FNX* and pue FNX. We get the first
assertion of 2.5 as in [11]: Write

1) = ) a(w,)x(w.4)
weW,
as in [8, p. 130]. Then [8, Theorem 1] and Lemma 2.1 imply
chL(p) = Y awA)xwp = chT4L(4).

weW,

Hence THL(A)=L(u).
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Next let F and 4 be as above and pe (FNF)NX. If u ¢ X*, then T“L(J) is
zero by 2.2, since it is a quotient of T4V(4). Therefore we may assume that
ue X*. From [8, Satz 4] one easily sees that p is in the upper closure of w.F
for some w € W,. Put x=[V(4): L(w.4)]. By Corollary 2.4, x+0. Then w.A %4,
and V() has L(4) once and L(w.4) x times as a composition factor. Operating
with T% to a composition series of V' (1), we get a filtration for T4V (4)= V() in
which T%L(4) occurs once, and T4L(w.2) x times as a quotient. By the first part
of the proof T4L(w.4)=L(n). Now T4L(4) is a quotient of T4V(4) =V (u); so if
it were not zero, it would have L(u) as a quotient. This would imply
[V(:L(w]=1+x=2. Hence T4L(4)=0. Note too that we actually get x=1.
This gives a part of Corollary 2.6.

Now let us consider Theorem 2.5". We prove only the first assertion; the rest
of 2.5 can be derived in a way entirely analogous to the proof of 2.5. So let F be
afacette, e FNXandue FNX.If A € X,, then u € X, and by 2.5 we get (see
[14, 5.2])

T4L(n,2) = THLDl,-1) = (T4LA)u,-1 = Lnp) .

Next let A=A —p"v with A’ € X,. Put y'=p—p"vand F' =T(—p")(F). Then F’
is a facette, A € F'N X and y' € F' N X. Using a result analogous to [14, 5.2(8)]
we have

T4L(n,2) =~ T4(L(n,pv)@L(n, 1))
>~ Lin,p"vW®THL(,A) = Ln,p) .

COROLLARY 2.6. Let F,i and w be as in 2.4 (respectively 2.4'). Then
[V(A): L(w.A)] (respectively [Z(n,A): L(n,w.A)]) equals 1.

Now 2.2 and 2.5 imply the following generalization of (a part of) the
translation principle (cf. [2, 2.5], [10, Satz 7], [11, §3]):

COROLLARY 2.7. Let F be a facette, i€ FNX*, pe FNX*, we W, and
assume that w.A € X*. Then [V(w.A): L(A)] equals [V (w.p): L(w)] for wue X+
and O for wu & X*.

CoROLLARY 2.7, Let F be a facette, i € FNX, p € FNX, and w € W, Then
[Z(n,w.A): L(n,A)] equals [Z(n,w.p): L(n, ).

Theorem 2.5 can also be used to generalize [8, Theorem 2] in the following
way (see also [2, 2.4]).

COROLLARY 2.8. Let F be a facette, . € FNX* and pe (F\ F)NX*. Write
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1A =Y alw,y(w.d),

weW,

where w.i € X* if a(w,A)%0. Then

Z a(w, Jy(w.p) = 0.

weW,

If we W, with x(w.u)#0, then
Y a(ww,i) =0.

weS,
Proor. The first claim follows from 2.1 and 2.5.
If we W, with a(w, 1) %0, then wu € X or y(w.u)=0. Omitting the terms
with y(w.u)=0 in the sum >, a(w, A)y(w.pr) and combining equal characters,

we get a linear combination of linearly independent characters. Hence the
first part of 2.8 implies the second one.

3. T for Q(n, A).
In this section we use the translation functors to generalize [10, Satz 5]. The
following lemma is analogous to [13, Satz 2.24].

LemMA 3.1. Let F be a facette, A€ FNX and pe FNX. Then T*Q(n, 1)
=0 (n, p).

ProoF. The u,— T module T%Q(n, 4) is projective (see [14, 5.4]), and hence it
is a direct sum of modules of the form Q(n, w.u), w € W,. The multiplicity of

~

Q(n,w.u) in the sum equals the dimension of
Hom,, 1 (L(n,w.p), T4Q(n, 2)) = Hom, r(TiL(n,w.p),0(n,4)
(cf. [2, §2]) By 2.5’ this dimension is 1 if w.u=yu, and 0 otherwise.

COROLLARY 3.2. Let F be a facette, i € FNX and u € FNX. If Q(n, /) extends
to a G module, then Q(n, 1) extends, too.

Proor. If Q is a G module with Q|, 7= Q(n, 4), then TQ is a G module with
(T, —1=Q(n, p).

The following theorem shows that the restriction p,l’ f in [10, Satz 5] is
superfluous (see also [12; 4.2, 6.1]). For v € X set

S0) = Y e(® and v = w(W+(p"—1De.
e W(v)
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Here w, is the longest element of W. Let C, be the alcove with (p"—1)g in its
upper closure. Finally, we denote the Steinberg module V((p"—1)g) by St,.

THeOREM 3.3. If Ae C,NX", then Q(n,4) can be lifted to a G module.
Moreover, ch Q(n, ))=S(A™)ch St,.

ProoF. We leave it to the reader to verify that
ch Tfyr_1),St, = S(A™)ch St,,
(use formula (1) of section 1 and [10, p. 447(1)]). For u € X, we have
chZ(n,p) = e(u—(p"—1)g)ch St,

by [12, p. 285]. Hence by [12; 3.7, 3.8] the lowest weight of O(n,7), T € X, is the
lowest weight of Z(n,7), i.e. t—2(p"— 1)o. Since the projective u,— T module
’I:fpn_l)L,St,, has wo(A")— (p"—1)g=4—2(p"—1)g as its lowest weight, it has
Q(n,A) as a direct u,— T summand. Hence

chQ(n,4) = S(A")chSt,— Y a.e(v)

veX
for some non-negative integers a,. On the other hand, by [12, 3.8]
chQ(n,2) = dchSt, ,

where
¢ = ZX [Z(n,w):L(n, )] e(n—(p"—1)e) .
ne

The coefficients in this sum are non-negative; in particular, the coefficient of
e(A—(p"—1)g)is 1. Now ch Q(n, %) is invariant under W as A € X, ([14, 5.8]).
Then also @ is invariant under W, since Z[ X] is an integral domain. Hence in
the expression above for @, some terms form S(4— (p"— 1)¢)=S(A™). Thus we
have
chQ(n,A) = S(A")chSt,+ Y b,e(v),
veX

where the numbers b, are non-negative. This implies the asserted character
formula. Moreover,

(T%P"—l)aStn”u,——T = Q(n,}t) .

Hence Q(n, A) extends to a G module.
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Let C, be as above and let C;, be the alcove immediately below it. That is,
C,=s(C,), where s is the reflection in the hyperplane

{(x e R®X | (x+ox> = plp" *(h—1)-1)},

o, the maximal short root.

COROLLARY 3.4. If A is a weight in C,UC,, then Q(n, ) can be lifted to a G
module.

Proor. By 3.3 we may assume that 4 € C,. Then p=h. Hence there is a
weight in the common wall of C, and C,. Now 3.2 and 3.3 imply the result.

COROLLARY 3.5. If G is of type A,, then each Q(n, A), i € X,, can be lifted to a
G module.

Proor. For n=1 one can use 3.4. Then the general case follows from [16].
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