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ON THE COMPOSITION FACTORS
OF WEYL MODULES

M. KOPPINEN

Introduction.

Let G be a connected reductive algebraic group over an algebraically closed
field k of characteristic p+0. Let B be a Borel subgroup of G and, T a maximal
torus in B with character group X (T). Assume that half the sum of the roots of
B lies in X (T). Fix the set of dominant weights in X (7T) with respect to the
Borel subgroup opposite to B. In this paper we prove a result that generalizes
[5, Satz 11] and is also closely related to [2, Theorem 3.1]. Let y, 4 be two
dominant weights in facettes F, F’, respectively. Assume that FNF £, A1y
(cf. section 1) and that any weight ¢ satisfying A1 £ 1 x is dominant. Let w be an
element of the Weyl group W. Then the composition multiplicity of the simple
module M, in H'(G/B, L(w.y)) is non-zero if and only if i=¢(w), and in this
case it is independent of w. We derive this result by imitating the proof of [2,
3.1] and using certain facts from alcove geometry established by Jantzen [5].

1. Preliminaries.

Let G, B, and T be as above. Let R be the root system of G and R, the set of
positive roots so that — R, is the root system for B. The corresponding set of
simple roots is denoted by S and the set of dominant weights in X = X(T) by
X,. In general, we follow the notation of [1] and [2] with one essential
exception: the sign 7 is used for the strong linkage relation as in [5, § 6]. For
preliminaries concerning alcoves, facettes etc., we refer to [3], [4], and [5].

Let w, be the longest element in Wand wy=sg .. .sg, a reduced expression
for it, B; € S. We keep this expression fixed for the rest of the paper unless
otherwise stated. For a dominant weight y write Xj=5g,--- g% OSj=N.
The following two long exact sequences were derived in [1] and [2] for 1<)
<N:

) 0 — HO(Xj) — 0 > HO(VLJ) >
(@)

R Hi“(xj) — Hi(xj_l) — H"“(I_/l,j) - ...
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and
(ii) 0 - H°(C,) > H(V,) - 0 -
N HHI(CX,,') N HHI(I—/X,,-) — Hi(Qx,j) L
Here we have written Vx, »Cypand Q. ; short for the B modules Vg;_lﬂ,(—“Q),
C%-.w(‘@), and Qg]{Al+ o(—0), respectively. Moreover, the weights of C, ; and
QN. are
{x;+mpB; ‘ 0O<mp<{B;xj-1+e>};

their multiplicities equal 1.

2. The theorem.
We shall consider the following condition for pairs of weights (x,4):

(*) yeFNX,, Ae FNX,, F and F' are facettes with FNF + &,
¢ e X, whenever A1E1y.

LEMMA 2.1. Assume that (y,1) satisfies (*). Let 1<j< N, 0<np<<B;, 1;-1
+0) and we W. Put E=w.(x;+npB;). Then &1 x and E=+y. If in addition A1¢,
then w=sg ...sp  and {=s,.x+npo, where a=sp ... sﬁ‘_l(ﬁj); moreover,
np<<aSx+e>=<Byxj-1+e><(n+1p.

PROOF. Set w'=wsp  ...sp5 € W and a=sp ... s,;rl(ﬁj). Then o € R, by
[3, p. 158]. A direct calculation gives &=w'.(s,.x+npa) and {a,y+0)
=<ﬁ; Xj-1+0>. As in the proof of [2, 3.1], we see that if w'(x)>0, then

&= Sy W) +npw (@ Tw.x Ty,
where £+w' .y, and if w'(a) <0, then
&= ws,.x+npwia)tws,.xTx,

where E+ws,. 1. B

Now assume that A1 & Let F, and F” be facettes with Foc FN F'and & e F”.
From [5, Lemma 6] it follows easily that F, < F". Now [5, Lemma 7] implies
that w' =1 and that s,.x +npa=x for any x in F,. Hence w=sp ...sp . Since
x€F, FocF, and &E=s5,.x+npa<y, we also have np<{a,x+e><(n+1p.

From the proof we get

CoROLLARY 2.2. If (x, 4) satisfies (*), LSjSN,0<np<{B ;- +ed, we W
and A1 E=w.(x;+npB;), then (¢, 1) satisfies (*), too.
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The following lemma combined with [2, 2.3] gives an improvement of
[2, 2.5].

LEMMA 2.3. Assume that (y, A) satisfies (*). f 0OSiSN, we W and i/ (w),
then [H(w.x): M,;]=0.

Proor. We consider first the case i>7#(w). Let 4 be fixed and assume that
there exists x such that (x, 4) satisfies (*) and [H(w.y): M,;]=+0 for some i,w
with i>/(w). Assume further that y is minimal with respect to 1 with this
property. Set n=/¢(w). Since £(wwgy)=N —n by [3, p. 158], we can find for w, a
reduced expression sg, . .. sg, such that w=sg ... sg. We may assume that this
is the expression used above. Then w.y=yx,. Now HN*i="(y,)=0, since N +i
—n>N=dim G/B. Hence [2, 1.3] implies that [H%(y;., +mpf;.;): M,;]+0
for some g, j, m with g=i+j—n=iand O<mp<{Bj,y,xj+1+0D-

Set {=wy.(xj+1+mpB;s,) € X, —0, w, € W. Then by [1, Theorem 1], (*)
and Lemma 2.1, we have A1& 1y, {+x and wy=s; ... s;. By Corollary 2.2,
(&, A) satisfies (*); hence [H"(w;'.&): M,]1=0 for any r>¢(w,)=j. However,
this is a contradiction since g=i+j—n>j.

Now let i</ (w). It is easily checked that also the pair (—wqy(x), —wq(4))
satisfies (*). Using Serre duality as in the proof of [1, Lemma 4] we get

Hiw.y) = H " {(=w.x—20)* = HY {(wwy. (= wo(0))* -
Since N —i> N —/(w)=¢(ww,) the first part of the proof gives
0= [HN—i(WW0°("W0(X))): M_,»] = [H'w.y): M,].

Now we are ready to give the main result of the paper.

THEOREM 2.4. If (x,4) satisfies (*) and A1y, then
[H°(0: M1 = [H'(x): M;1 = ... = [HY(n): M1 # 0.

Proor. For A=y the assertion follows from [2, 2.6]. We fix 4 and use
induction on y with respect to 1.

Let Ic{1,...,N} be the set of those i’s for which there exist w; € W and
n; € Z such that 0<np<{B;,xi-1 +0) and 1T w;. (x; +n;pB,). By lemma 2.1 the
elements w; and n; are unique for each i in I; in fact w;=sg ...sp  and np
<<Bisti-1+e> < (m+1)p.

We check first that I is not empty. As 4=+ y we can find a weight & of the form
S, x+npu,a€ R,,neZ, withit &l yand E+y. Then ¢ € X, ;hence (a, y+0)
>np>0. By [3, p. 158], a=sg ... sg_ (B) for some i. Setting w=sg ...sp ,
we get
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§ = s,.x+npa = w.(x;+npp)

and

Bati-i+ed = a,x+e) > np > 0.

Hence i € I.
Consider the chain

HY () 25 HY (v ) 2=t L s HO(y)

where the homomorphisms y; are as in (i). This chain played a crucial role in
the proof of [2, 3.1].

We show that [Kery;: M;]=[Cokery;: M;]=0 for je {1,...,N}\ L
Assume on the contrary that one of these multiplicities is non-zero. By the
sequence (i), [H%(V, ;) : M;]+0 for some ¢=0. The sequence (ii) implies
that the same is true with V, ; replaced by C, ; or Q, ; As we know the
weights, and hence the composition factors, of the modules C, ; and Q, ; we
find that [H%(x;+mpp;): M,;]+0 for some ¢ =0, 0<mp<<B;,xj_1 +90>. Then
ATw.(x;+mpp;) for some w e W. Hence j € I, which is a contradiction.

Now let iel. We claim that [Kery;: M,]=[Cokery;: M;]+0. Set
E=w;. (x;+npB;). Then AT1ETy and &%y By Corollary 2.2 we can use the
induction hypothesis to get [H’(¢;): M,;]+0 for each j. Hence it is enough to
prove

[Cokery;:M,] = [H'"'(&_):M,] = [Kery;:M,].

We only show the first equality; the other one can be treated analogously.
Lemma 2.3 gives [H'*!(y;): M,]1=0. Hence by the sequences (i) and (ii), it is
enough to prove

(a) [HHQ,.): M1 = [HT'(¢&-y): M,],
(b) [H/(C,):M;] =0 for j=ii+1.
Since np<<{B;, xi—; +0)> <(n;+1)p, the weights of Q,.: are {x;+mpp; | O<m

<n,;}. In particular, y;+ n;pB; is the highest weight and its multiplicity is 1. We
get an exact sequence

0— Ql - Qx,i - kx.+mpﬂ, -0 ’

where the weights of Q' are {y;+mpp; l 0<m<n;}. If M, were a composition
factor of HY(Q') for some g0, then it would also be a composition factor of
H4(y,+mpp;) with 0<m<n; This would imply ATw.(x;+mpp;) for some
w € W, and hence m=n,. Therefore [H%(Q’): M,]1=0 for g=i—1,i and

[H'NQ,.): M1 = [H™' (ri+nipB): M,] .
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Now (a) follows since y;+npB;=sg _ ...sp .E=&;_,. To prove (b) we proceed
as above and get

[Hj(Cx’,-):MA] = [Hj(‘fi—t):M).] .

By Lemma 2.3 the right hand side is zero for j=i,i+1.
Now we have [Cokery;: M,]=[Kery;:M,] for each j=1,...,N. This
implies

[HY(w): M) = ... = [H°(0):M,].
Finally, for i e I we get
[H ™ '(x;-1):M,] = [Cokery;:M;] + 0.

The theorem follows.

In particular, the theorem gives information of the composition factors of
Weyl modules (see [1, p. 55]).
Combining Lemma 2.3 and Theorem 2.4 we get

COROLLARY 2.5. Assume that (x,7) satisfies (*), ATy and we W. Then
[Hiw.y):M,1#0 if and only if i=¢((w). Moreover, [H'™(w.x):M,] is
independent of w.
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