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BASS NUMBERS AND GOLOD RINGS

LUCHEZAR L. AVRAMOYV and JACK LESCOT

Two series — one homological and the other cohomological — of numerical
invariants often carry considerable information on a commutative unitary
noetherian local ring R with maximal ideal m and residue field k= R/m. On the
homological side, much attention has been paid to the Poincaré series

Pr(t) = Y bi' e Z[(]

where the Betti number b; of R is defined to be the rank of the ith module in a
minimal free resolution X, of the R-module k (it is well-known that X _ is
unique up to isomorphism, and that b;=dim, Tor® (k, k)). In particular, Serre
has remarked that there always is a coefficientwise inequality of formal power
series (denoted by the symbol «<):

Ly

n
1— Z it
i=1

where n=dim, (m/m?) is the embedding dimension of R, and ¢; is the
k-dimension of the ith homology group of the Koszul complex K=KR
constructed on a minimal set of generators of m; (up to isomorphism, the
graded skew-commutative k-algebra H(K) is independent of the choice of the
generating system). In 1962, E. S. Golod [6] published the proof of the
following:

(0.1) Pr(t) <

’

THeOREM. Equality holds in (0.1) if and only if for every k22 and every system
hy,...,h, of homogeneous elements of H(K) of positive degree, the Massey
product {hy,...,h) is defined.

Rings satisfying the condition of the theorem are called Golod rings; for the
definition of Massey products cf. [7].

Our purpose in this paper is to establish in general a coefficientwise upper
bound on the cohomological series
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I = ¥ ut' € Z[:

and to show that, somewhat unexpectedly, it is precisely the Golod rings that
are characterized by the extremal property in this context also. Here y;, the ith
Bass number of R, is defined as being the number of direct summands
isomorphic to the injective envelope E=Eg(k), forming the m-primary
component of the ith module in a minimal injective resolution I* of the R-
module R; (it has been proved by Bass [3], extending the results of Matlis [8],
that I* is unique up to isomorphism, and that u;=dim, Extk (k, R)).
We can now state our

THEOREM. Every non regular local ring satisfies the coefficientwise inequality
n—1 .
Z c"_itt__tn+l
=
0.2) Ip(t) < - -
1— Z citi+1

i=1

Equality holds in (0.2) if and only if R is a Golod ring, which is not regular.

The plan of the paper is as follows. In the first section we substitute a
homological problem to the cohomological one, and explicit the H(K)-module
structure of H(KE), KE=K®gE; this material is “well-known”, but
unavailable for direct reference. Section 2 contains a proof of the inequality,
very much in the spirit of Serre’s argument for (0.1). In section 3 the equality is
established for Golod rings, using Golod’s R-free resolution of k, and in section
4 it is proved that equality implies the Golod condition, by using a spectral
sequence introduced in [1]. In a short final section we show how our result
yields the Poincaré series of the canonical module of some rings with
determinantal relations, and compare it to the previously available information
on the Bass numbers.

All the notation introduced to this point is kept for the rest of the paper.

1. Preliminaries.

LemMA (1.1). For all i € Z, one has natural isomorphisms
TorR (k, E) = Exti (k,R)*

where * denotes k-vector space dual.

Proor. Since Extk (k,R) (i € Z) is finite dimensional over k, it suffices to
prove that Extk (k,R)=TorR (k,E)*. This follows from the sequence of
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isomorphisms, due to the injectivity of E and the equivalence of Hom, (—,k)
and Homg (—, E) on k-modules:

TorR (k, E)*

I

Homg (TorR (k, E), E)

I

Hompy (H,(X ®y E), E)
H,(Homg (X ® E, E))
H (Homg (X, R))

Extk (k, R)

Extk (k, R)

[

I

11

IR

(here R is the m-adic completion of R, and we have used the natural
isomorphism R =~Homg (E, E), cf. [8]).

Lemma (1.2) [2]. For every R-module M and every i € Z, there is an exact
sequence

0 — Extk (K;_,/B;-,K}) - H,_(K™) 4> Hom, (H,(K),H,(K")) —
— Extk (B,_;, KM) — Extk (K;/B;, KM) — Extk (H,(K), KM) —
— Extk (B, KMy ...,

where B;,_;=d(K,), and A is induced by the multiplication map:
H, (KM)x H(K) — H,(K").

Proor. The one given for [2, Proposition 2] for the case M =R works with
notational changes only.

CoroLLARY (1.3). For all i € Z, the pairings
H, (KF)x H,(K) — H,(K)
give rise to isomorphisms
H, (K" = H,(K)*
through the identification H,(KF)=(0:m)g=k.
RemArk (1.4). The corollary can be restated by saying that there is an
isomorphism

H(K®) = Ey)(s"k)
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of graded H(K)-modules, where for any graded module N the suspension
functor s is defined by setting

(SN); = N,_, (ieZ).
CoroLLARY (1.5). The following conditions are equivalent, for IH(K)
=Ker (H(K) - k):

@ (IH(K)?=0; and
(b) H,(K5).H(K) =0 for i+j%n.

PRrOOF. Assuming (a), suppose there exist f € H j(KE), h € H;(K), such that fh
+0. By (1.3) we can choose ' € H,_;_;(K)=IH(K), such that (fh)h'+0,
contradicting the assumption that hh'=0. Reversing the argument we see that
(b) implies (a).

For ease of reference we also quote the well-known:

LeEmMMA (1.6). Set d=depth R. Then H,(K)=0 if and only if 0Si<n—d, and
H,_,(K)=Ext% (k, R).

2. The inequality.
Filtering the double complex K ® g L, where L denotes an R-free resolution

of E, one obtains a first-quadrant homological spectral sequence with
E2, = Tory (H,(K),E) = H,, (KP).

From (1.1) and (1.6) it follows that E2 =0 when either p<d=depthR, or
g <0, or g>n—d. Combining with (1.3) one also gets the natural isomorphisms.

Torf (k,E) = Ext§ (k,R)* = H,_,(K)* = H,(K5).
In particular, they give rise to a commutative (at least— up to sign) diagram:

H,(K)®Tor{ (k, E) = Ej, <> H,.,(K")
|= I
H,(K)® H,(KF) . Hyio(KP)

where e is the edge homomorphism E} , — E3, = H,, (K"), and m is the
product map.
Hence, by (1.3) once imore:

H,(KE) ~ k, when p=d
21 iy =
@1) Evin-» { 0 otherwise .
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Setting

u, = rank (d": E, o > E,_,,_1),

when r22, and u, =0 for r=0, 1, one has for every p=0 the equality
P

(2.2) dimE;, = Y u,+dimEY, .
r=0

According to (1.1), the left-hand side equals p, for all p € Z. When p+n, n+1,
to obtain an upper bound for the right-hand side we use the trivial inequality

: 2
u:z é dlrnEp—r‘r—l = :up—rcr—l (rgz) >

the fact that by (1.1)-and (1.6)

n+1

P
Z M‘p—rcr—l = z ”p—rcr—l ’
r=2 r=2

and the relation

dimEY, < dimH,(K®) = ¢,_,,

implied by (1.3). Altogether we get:

n+1

Pp S Y Mp_yCpoyt+C,_, for pEn, n+l.
r=2
On the other hand, since R is not regular, one has d +n, hence by (2.1) dim E?,
=0, and
uriitt < dimE;L A -1 S dimE], -1 = pye,_4—1.

Bounding u}, as above for (r,p)* (n—d+1,n+1), we obtain from (2.2):

n+1

HUn é z Hn—rCr -1
r=2

n+1

Byt é Z aun+1—rcr—l—1’
r=2

Forming the power series 3 u,tP gives

n n—1
Ig(t) < IR(t)(Z cit"“>+ Y ¢, tt—1tt

i=1

which is just another way to write (0.2).
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3. Golod rings.

A Golod ring is usually introduced by the requirement that the Massey
product <h,,...,h,> be defined [7] for every system of homogeneous elements
in IH(K). However, it is easily seen, and noted already in [6], that this
condition can be put in the following stronger form:

(3.0). There exists a basis S={h,,. . ., h,} of IH(K), consting of homogeneous
elements, and a function y defined on the disjoint union [ 3%, $" and taking
values in the set of homongeneous elements of IK, such that:

(1) vy(h)=z, where z; is a cycle representing h;;

m—1
(i) dy(h;,....h) =Y F(h,.. oh)yh e hy)

i=1
Here and below IK=Ker(e: K — k), and a=(—1)4@+lg for any

homogeneous element a.
The following is proved in [6]:

THeOREM (3.1). Let R be a Golod ring, and h,,. .., h, be a basis of IH(K)
satisfying the conditions (3.0). Let N be a free graded R-module with
homogeneous basis u,,...,u,: degu,=degh,+1 (1<i<t). Then the R-module
X =K®pg T(N), with T denoting the tensor algebra, becomes a minimal R-free
resolution of k, when it is given the usual grading, and the differential:

dx®@[ul. . .u, 1) = dx®[u|. . .lu; 1
- Z xy(hips. - b)) Luy, |- w1
k=1
(We write [u;].. .|y, ] for u; ® ... ®u;, and [-] for 1 € T(N).)

In this section we shall assume R is a Golod ring which is not regular. In
particular, the homology of X ®gxE is TorR (k,E). We shall identify this
complex with KE® g T(N) as graded modules, which for the differential gives
the formula:

(3.2) dy®[u;]...Ju, 1) = d)®[ul. . |u;]

- Z .}7?( (TLRI hu)®[“|g+|| . "ui,,,] .

k=1

Next we introduce a filtration {F?} by setting:

(FP); = {Z y®Lul...lu, 1| m<p, deg(v)+§: deg (ui,.)=i}
j=1
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and look at the resulting spectral sequence.
Since ES ,= (FP/FP™Y),,,= (KE®y N®P)
of N imply:

E!, = (HKH®rN®),,, = (HKE®,IH(K)®)

ptq

d'(f@Lhl...1h]) = —fh, ®[hyl. .. Ik ] .
Since by (3.0 (ii)) for m=2 we see that, IH(K)?>=0, it follows from (1.5) that:

p+¢ formula (3.2), and the freeness

rtq

(3.3) dE, ., , = e®IH(K)®?,

e denoting a generator of the one-dimensional vector space H,(KE). From the
exact sequences of graded vector spaces and degree zero maps

0 —dE, , «—E.,  —2Z), «—0
0 Epy —Zpy—dE,, <0
one gets the equality
|ES, (W) = [H(K®)|(u): [H (K)|(u)]? —w[TH (K)| )17~ —u"[IIH (K)| ()]? ,

where the notation |W|(u) stands for the Hilbert series 3" dim, (W)u' of the
graded vector space W. From (1.3) this can be explicited as

(3.4 |E2 l(w) = ("_1 c,,_iu‘)( i ciu‘>p - u"( i ciui)P_ l
i=0 i=1 i=1

which gives for the series in two variables |EZ,|(t,u)=3 dim (EZ )tPu? the
closed formula
n—1 .
Y et —tu"
[E2, (e, u) = =2

Our claim that for the Golod ring R equality holds in (0.2) is now seen to be an
immediate consequence of the following

Fact (3.5). In the spectral sequence introduced above, the differentials

dn: E;-q - E;—r.qﬂ—l
are trivial for r=2.
Indeed, once this is established, by (1.1) we have Ix(t)=|TorR (k, E)|(¢), while
from the convergence of the spectral sequence to H(X ®gE)=TorR (k, E)
follow the equalities:
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n—1 .
C,,_,'tl—tn+1
[Tor® (k, E)|(t) = |ES,l(6,0) = |E3,\(t.0) = “=—
1— z ittt
i=1

Fixing in JH(KE)=Ker (H(KE) - H,(KF) a homogeneous basis fi,...,f,
such that —fh; =4, (cf. (1.3) and (1.5)), we first note that a homogeneous
basis of EZ , is given by the classes of the following elements of E} :

j}@[hl‘l"'hlp]7 lé.]éta lzt:ll
f;‘@[hj‘hh" . “hi,] _fj+1®[hj+1‘hi1" . -lhip], 1gjst-1,

where in both cases 1 i <t for s=1,2,...,p. Indeed, by (1.5) they are cycles,
and they are linearly independent modulo boundaries by (3.3). Hence their
classes span in EJ , a graded linear subspace, whose Hilbert series is seen by
direct count to equal the right-hand side of (3.4), which establishes our claim.

By the very definition of a spectral sequence associated to a filtered complex,
(3.5) is now seen to be equivalent to the following statement (For details cf. e.g.
the treatment of spectal sequences by R. Godement, Topologie algébrique et
théorie des faisceaux, Hermann, Paris, 1958, or pp. 138-139 in D. Kraines and
C. Schochet, Differentials in the Eilenberg—Moore spectral sequence, J. Pure
Appl. Algebra 2 (1972), 131-148)

Let x, be any of the elements:

y1®[zi,|- . -|Zi,J
Yj®[zjlzi2|- . 'lzi,,] _yj+1®[zj+llzi2" . -|Zi,,]

with y; a homogeneous cycle in the class of f;, z; as in (3.0 (i)), and the same
restrictions on j and the i, as above. Then there exist x, € KE® T(N),, 0<k<p
—1, such that d(x,+x,_;+...+x)=0.

No problem arises for elements of the second type. In fact:

dx) = —(;2;=V;+12+1)® [z . 1z,

p
- Z (yj)’(hj’ i . -,hi,,)“fjﬂ)’(hjw» phip. . h))®Lz,, |- '!Zi,,] .

k=2
Now
cls ()_’jzj—)_’juzju) = (j;'hj‘fjnhjﬂ) =0,

hence y;z;—J;412j41 € dKE, =0. On the other hand, since k=2,
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deg (7 (hj, hiyo. - -, hy)
= deg (y)+deg (h)+Y deg(h)+k—1 > degy,+degh; = n,

hence all the elements in the sum are equal to zero. We have shown that x, is a
cycle in KE®g T(N), hence we can set x,=0 for k=0,1,...,p—1.
Given an element y ® [z;|. . .|z; ] of the first type, we show there always exist

homogeneous elements vy,v,,...,0, € KE such that

k-1
(3.6) do, = ) op(hy,,....h) for 1<k=p, vy=y.

i=0
By induction, we can assume chosen elements v},. . ., v;_, satisfying (3.6) (with
vp=Y). Clearly,

-1
2=Y Tplhy, by
ji=0
is a cycle, and cls (z) belongs to the Massey product {f, h;,,. .., h;> (cf. [7]). We
want to prove that, changing the v/-s if necessary, one can find a v, with dv;=z.
If deg (z) >n, then z=0. If deg (z)=n, then z=uae for some a € k. Let w be a
cycle in K5 _geg (s such that cls (w). b, =e. Then with v,_; =vj_; =vj_, —aw, v,
=y for 1£k=1-2, and v,=0, (3.6) is obviously satisfied for k=1,2,...,L
Finally, supposing deg(z)<n, we shall prove by induction on [ that
{fhi,. .., ;> contains only zero, the case I=1 being handled by (1.5). So let /
>1 and assume cls (z)=g is a non-zero element. The inductive assumption
implies this product is strictly defined. On the other hand, the Golod-condition
gives that Ch;,. .., h;, h) is a strictly defined and trivial product in H(K), where
gh=e=+0 e H,(KE). Now applying [7, (3.2.ili)] we obtain the contradiction

0 * gh (S <.f;hi17" .,hi'>h =]'<Ei|" "’ﬁix!h> = 0 .

Hence we can set v;=v; (1<i<!—1) and choose v, such that dv,=z.

Using formulas (3.2) and (3.6), it is now a straightfoward formal
computation to see that with

Xpok = 0 ®(z4,].-.1z,), 1=k<p,

one has d(x,+x,_,+...+x)=0, hence (3.5) is proved.

4. The equality.

In this section we assume R is a ring for which equality holds in (0.2). It is
trivial to observe that R cannot be regular, i.e. that TH(K) 0, since supposing
the contrary we get the absurd Iz(t)= —t"*!,
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The following result (valid without restrictions on R or E) is a particular
case of [1, Theorem (3.1.1) and Proposition (5.1.1)]:

(4.1). THEOREM. There exists a first-quadrant homological spectral sequence
with

E2, = TorH® (k, H(KE) = Tork, (kE).
Moreover, let p denote the natural projection
H(K®) > H(K®/IH(K).H(K") = E} ,
and let
e: E, — E¥, = Tor® (k, E)

be the edge homomorphism. Then the kernel of the composition o=ep:
H(K%) — TorR (k, E) is the set of all elements of H (KE), decomposable in terms
of matric Massey products.

Writing |W|(t,u)l, 4 ,<, for the polynomial ¥, ., dim, (W, )t*u’, a trivial
majoration of the E2-term of this spectral sequence, using the H(K)-free
resolution provided by the reduced bar-construction, yields:

1
it < B3l (6,0)]p4q<n < IHKB)@ B(H K (6, 1)] 4 <
0

i=
n—1
i=0 Cn—il
i=n i+
1— ,'=1C,~I

h_tn+1‘

1 .
‘ degree <n

From our hypothesis on Ix(t) we see that in fact equality holds throughout,
which in particular implies that in degrees different from n:

H((KY=E,=E,k,=..=E,.
Since E% ,=Coker (H(KE)® IH(K) — H(KE)), we conclude from the first
equality that:
4.2) H(KE.H{K) =0 for i+j*n.

Together with the relation EZ , =EY,, this furthermore implies that (Ker o),
=0 for i<n, hence by (4.1) above we conclude:

(4.3). If the Massey product of f € H(KE) and h,,. . .,h, € IH(K) is defined
and deg{f, hy,...,h,> *n, then {(f,h,,..., h,>={0}.

We shall now show that every Massey product <h,,...,h,) is defined and
contains only zero. From (4.2) and (1.5) we can assume by induction the
statement proved for values smaller than p (p = 2). In particular, <hy,...,h,) is
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a strictly defined product in the sense of [7, (1.2) and (1.3)]. Taking
he {hy,.. .,h,>, we want to show h=0, and clearly there is a problem only
when degh=i<n—d (d=depth R <n). Assuming h+0 by (1.3) there exists an
feH j(KE), j=n—1i, such that fh+0. We now note that the Massey products
{fihys. .., h,)y are defined and contain only zero for 1 Em=<p-1. For m=1

this is implied by (4.2), hence {f, h,,...,h,» is strictly defined by induction,
and contains only zero by (4.3): indeed,

m

deg(fihy,.. ., h,> = n—i+ )y deghi+m—1 < n—i+deg<hy,....h,> =n.

i=1

We are now under the hypotheses of [7, (3.2iii)], hence:
fheflhy,....h,y = fihy,...,h,_,Dh, =0,

which gives the required contradiction.

We have now proved that (h,,. . ., h,) is defined (and contains only zero) for
every set of homogeneous elements of IH (K), hence R is Golod. This completes
the proof of the theorem.

ReMARK (4.4). There is an obvious similarity between this argument and the
one at the end of the preceding section. One would not be surprosed after
noticing that the spectral sequence used there coincides from E? on with the
one in (4.1).

5. An application and three remarks.
We start with the application.Let

S = k[{Xij} i<r]

be the polynomial ring in rs indeterminates over the field k, and let I, (X) be the
ideal generated by the maximal mimors of the r x s matrix X = (X)) 2=rss).
Denote by T the ring S/I,(X). It is well known (e.g. [5]) that T is Cohen—
Macaulay (of dimension (r—1)(s+1)), hence it has a canonical module
(isomorphic to Ext{™"*! (T, §)). Denote by b;(€2) the rank of the ith free module
in a minimal graded T-free resolution of the graded T-module 2, and let P2 (1)
=Y b,(Q)t' € Z[t] denote the Poincaré series of Q over T.

Math. Scand. 51 - 14
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COROLLARY (5.1). In the preceding notation, there is equglity:

T (s—i—1 .
t"‘ts_r+2
§0< - ><5_1>
s—r+1 +r__2 s i+1‘
-2 ( r—1 )(L&r—l)t

Proor. The linear forms {X,.j} for1Sigr,15j<s, 1Si—jsr—lors—r+1
Sj—iss—land {X; ;1 — Xisq,i+x+1) fOr 1Sis<s—r+1,0=k<sr—1formin
any order a T-regular sequence of length (r—1)(s+1) [5, (3.9)], hence also an
Q-regular sequence. Denoting by bars the corresponding factor-objects, one
has by standard change of rings the equality Pﬁ(t)=Pg(t). More or less by the
definition of the canonical module, Q= Eg(k), hence Pg(t) = [g(¢) by (L.1). Now
[5, loc. cit.] shows that

R = k[Yl" . "Ys—r+1]/(Y17' ] Ys—r+l)r H

and our formula follows from the theorem and the fact that R is “the” Golod
ring given in the example in [6] with

o = i+r—2 s
U =1 Nidr—1)°

REMARKS (5.2). (i) Bass introduced in [3] the numbers y; in order to
characterize in terms of these invariants the class of Gorenstein local rings:
part of the main result of his paper shows that R is Gorenstein if and only if
I(2) is a polynomial, in which case I(t)=t%™R Another case, in which the
Bass series is known, is given by the rings satisfying edim R —depth R<2 [10].
Since this condition implies that R is either a complete intersection (hence
Gorenstein) or is Golod, Wiebe’s result is contained in our theorem.

PR(D) =

(ii) The inequality (0.2) implies in particular that Ix(t) represents the
development around the origin of an analytic function whose convergence
radius r satisfies 0<r<1 in the non-Gorenstein case. However, this
information can also be established directly.

(iii) Another consequence of our result is that Golod rings have rational Bass
series, a fact which has already been established by Roos [9] who uses different
methods, and does not exhibit an explicit formula. This information has lately
been shown to be non-trivial by Begvad [4], who has been able, by working
with the recent examples of Anick and of Lofwall-Roos of rings with
transcendental Poincaré series, to exhibit an artinian ring with transcendental

Ir(2)
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