MATH. SCAND. 51 (1982), 193-198

TWO REMARKS ON LINEAR FORMS
IN NON-NEGATIVE INTEGERS

OYSTEIN J. RODSETH

Given relatively prime positive integers a,,d,,...,a,, an integer N is
dependent on ay,a,,. . .,q, if there exist non-negative integers x; such that

N = a1x1+a2X2+. . +akxk .

It is well known that every sufficiently large integer is dependent on
a,,a,,. . .,a,. We denote the largest integer not dependent on ay,a,,. . .,a, by
g=gla,a,,...,q,), and the number of non-negative integers not dependent
on ay,d,,...,a; by n=n(ag,a,,. . .,a).

Let

dy =0, d, = a;; d; =gcdl(aya,,...a), 1<isk,

and put

d;-
k“*) v = B+1).

ﬂ=é&(

Brauer [1] showed that g < 8. Similarly, Nijenhuis and Wilf [13] found that
n<y. Brauer also showed that g=p if the following statement holds:
1 4 a;

a
L e _t. <i
Cdd 1Zi<k.

aivq .
S. 1 s dependent on
di+l

Conversely, Brauer and Seelbinder [2] found that g=f implies S.
Similarly, Nijenhuis and Wilf showed that n=7 if and only if S is satisfied.
The proofs given in [1], [2], [13] are rather complicated, and in section 2 we
give a simpler proof of these results.

Denoting the greatest integer function by [ -], we consider in section 3 the
bound

1) g = 2ak_1|:%]-—ak, a < ... <@y < a,
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given by Erdos and Graham [4]. They obtained this result by applying the
profound asymptotic density theorem of Kneser [9]. Kneser himself drew some
consequences of his main theorem, and as remarked by Hofmeister [5], (1)
follows easily from Kneser’s Satz 5.

However, only a special case of Kneser’s Satz 5 is needed to prove (1), and
we indicate in section 3 how to obtain a simple proof of this special case, and
thus a simple proof of (1). Our proof also yields an improvement of (1) in the
case of odd k.

We have

a a,._
), glay,ay,...,a) = dk-l'g<—l,- . ﬂg’ak)'*'ak(dk—l -1);
di-1 di—1

a result due to Johnson [6] and to Brauer and Shockley [3].
In [15] we obtained the similar formula

a a;
() nlayay....a) = d,‘_l-n<ﬁ,...,d“—‘,ak>+%(ak—1)(dk-l—1).
k—1 k—1
Clearly,
ay a; a; 4y ay a;
4 a2 <gld. 2
) g<di, ’di’di+1>_g<df’ ’di>’

where equality holds if a;,,/d;,, is dependent on a,/d,,. . .,a;/d,
Since

d; a, a;
= gcd( ey ),
di+l di+1 di+1

repeated application of (2) and (4) give g<f, and that S implies g=p

(Selmer [17]).
a4 aan)_ (4 4
(ddd) < (dd)

Similarly, since
where equality holds if and only if a,,,/d;,, is dependent on a,/d,,. . .,a;/d; (3)
gives n<7, and also that n=y if and only if S holds.

It remains to be shown that g=p implies S. To this end we need the
following simple observation made by Nijenhuis and Wilf:

If x+y=g, then x and y cannot both be dependent on a,,a,,...,a, Hence
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) nz3g+l).

Now, suppose that g=f. Since n<y, (5) shows that n=};; hence S holds.

Thus the three statements S, g=f§, n=7y are equivalent. If one of these (and
hence all of them) holds, then (5) is valid with equality.

Now one can ask if the converse also holds, that is if n=24(g + 1) implies S, or
perhaps that S holds for some permutation of a,,a,,. . .,a, But as shown by
the sequence 5, 7, 8, 9, this is not true in general.

3

To prove (1) we only need the results below in the case where G is an
additive group of residue classes. However, we prefer to state the results in a
more general form.

Let A,B be finite non-empty subsets of an additively written group G
(commutative or not). We denote by |A| the number of elements in A4, and by
{A) the subgroup generated by A. The sum A+ B is defined to be the set
of all elements of the form a+b, a € A, b € B. The sum of more than two
sets is defined similarly. In particular, for a positive integer r, we write rA for
the r-fold sum A+ A+ ...+ A.

LemMma 1 (Mann [10], [12, Theorem 1.1, p. 1]). If G is finite, then A+ B=G,
or

|Gl Zz |A[+[B] .

LemMaA 2 (Kemperman [7], Wehn). If
|A+B| = |A|+|Bl—¢,

then every element c € A+ B has at least ¢ representations as a sum c=a+b,
ac A, beB.

Lemma 3 (Olson [14]). If O € A, then rA={A) or
r4l 2 |Al+ (r— Do,
where

o = [3(41+1)].

If there are positive integers r satisfying r4={A), we denote the smallest
of these r by h=h(A).

PRrOPOSITION. If 0 € A and A generates the finite group G, then
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2 if 2|41>16],

h £ 1
[& (|G|“2lA|)]+3 if 2|4|£1G|.

Proor. If 2|4|> |G|, then 2A=G by Lemma 1.
Suppose that 2|4| <|G|. If h<2, we are finished. Therefore assume that h= 3.
We have G+ (h—1)A=A+ (h—2)A, and Lemma 1 gives

|Gl 2 |Al+[(h—2)A] .
Thus, by Lemma 3,
|Gl

[I\Y

2|A1+ (h—3) ,

which completes the proof of the Proposition.

Now, suppose that G is Abelian. Then Lemma 2 is easily proved by a slight
modification of the argument used by Scherk [16].

By a simple argument, Olson deduced Lemma 3 from Lemma 2. In our case
(G Abelian) his argumentation does in fact give

6) |[A+B| = 3|4|+|B] or A+B =<A>+B (0eA),

which implies Lemma 3 (by induction on r).

If G in addition to being Abelian, also is finite, 0 € 4 and A4 generates G, then
(6) is also an easy consequence of a result implicitly contained in Mann [11]
(which is Corollary 1.2.1 on p. 2 in [12]). In this case the Proposition is
essentially a special case of Satz 5 of Kneser [9] (with a slight improvement if
|A| is odd).

For relatively prime positive integers a,,d,,...,a, we now consider g
=g(ay,ay. . .,a,). Let G be the additive group of residue classes modulo a;,
and let 4 be the subset of G consisting of the residue classes a; (mod a,). Then
0Oe A4, and (A)=0G.

We also assume that ay, a,,. . ., a, are incongruent modulo a,; that is, |4|=k.
As remarked by Selmer [17], this is no restriction.

Now, given an integer [, there are non-negative integers x; such that

k
Z a;x;
i=1

k
I (moda,), Y x; =h.
i=1

Hence

IIA

max ) ax;—a .
2xshi>y

Assuming a,=max;,, a;, we thus have
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g < agh—a,.

By the Proposition we now have

@) g = 2ak[i—‘] —a,,

which is the result of Erdds and Graham [4] as modified by Selmer [17] and
Hofmeister [5].
The Proposition also gives

< 2ak[%]—al, k odd .

As an example let us consider the arithmetic sequence k+ 1,k+2,...,2k
(k=2). We have

glk+1,k+2,...,2k) = 2k+1.
Following Erdés and Graham, we put a, =2k. Then g, =2k — 1, and (7) gives
g < 6k—4.
Following Selmer, we put a, =k+ 1. Then a, =2k, and (7) gives
g < 3k—-1.
Hofmeister’s choice would be a; =2k — 1. Then q, = 2k, and in this case (7) gives
g = 2k+1.

Thus (7) is “sharp”.
This example is, however, rather special. Usually, (7) gives the best result by
naming the g; such that a, =mina; (that is, using Selmer’s choice of a,).

If
®) [A+B| = |A|+|B|-1 or A+B =G,

for an arbitrary non-empty subset B of G, then we get better bounds for g.
Sufficient conditions on a,,a,,. . .,q; for (8) to hold, have been given by Vitek
[18]. In particular, if each of a,,...,a, is prime to a,, then (8) holds (the
Cauchy-Davenport—Chowla theorem).

More generally, for an Abelian group G, the structure of those pairs (4, B)
for which

|A+B| < |A|+|B|

has been determined by Kemperman [8].
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