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CONDITIONS FOR TWO SELF-ADJOINT
OPERATORS TO COMMUTE OR TO
SATISFY THE WEYL RELATION

BENT FUGLEDE

E. Nelson has given a striking example of two self-adjoint operators X and Y
on a separable Hilbert space which commute on a common core without
having commuting spectral measures [3, § 10]. Other examples serving the
same purpose were given later in [2], [7], [6], [5]. (I take this opportunity to
correct a minor error in [2], where —i(f;g) should be replaced by i(f,g) in
Theorem 1 and elsewhere—an error of no consequence.)

I show that the simpler version of Nelson’s example adopted in [8] has the
further property that the common core in question is a core for the product XY
as well. This answers a question posed to me by P. Masani.

Following a suggestion by K. Schmiidken, I show more generally that if p
denotes a polynomial of degree <2 in two variables and with real coefficients,
then the above core is a core for the symmetric operator p(X, Y) if and only if p
is non-elliptic (Theorems 2 and 1).

Next I obtain a similar result for the Heisenberg commutation relation PQ
—QP= —i (Theorems 3 and 1).

For the polynomial p(¢, n)= &% + 52, Theorem 1 is due to Nelson [3, p. 603]
in the commuting case, see also A. E. Nussbaum [4] for a simpler proof; and to
J. Dixmier [1] in the case of the Heisenberg commutation relation.

I wish to thank Palle T. Jorgensen for useful comments.

1. Extension of theorems of Dixmier and Nelson.

Throughout the present paper, p will denote a polynomial of degree <2 in
two variables and with real coefficients. If X and Y are symmetric operators on
a Hilbert space having the same domain of definition, then p(X, Y) denotes the
symmetric operator obtained from p(&, ) by replacing the variables £, 1 by the
operators X, Y, respectively, with the understanding that the product &, if it
occurs in p(&,n), shall give rise to the Jordan product (XY + YX), which is a
symmetric operator.
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The polynomial p is called elliptic if the terms of degree 2 form a definite
quadratic form, say (strictly) positive definite.

As mentioned in the introduction the case p(&,1)=¢E%+n? of the following
theorem is due to Nelson [3] (cf. Nussbaum [4]) in the case ¢=0, and to
Dixmier [1] in the case é=1. Our proof will consist in a reduction to these
known results.

THEOREM 1. Let X, Y, be symmetric operators on a complex Hilbert space H,
with a common dense domain 9 invariant under both. Given ¢=0 or 1, suppose
that

(XoYo—YoXou = —ieu, all ue2.

Finally, let p denote a real, elliptic, second degree polynomial in two variables,
and suppose that the symmetric operator

p(X,, Yo)

is essentially self-adjoint. Then the closures X, Y of X, Y,, respectively, are self-
adjoint, and

eisXeilY — eicsteitYeisX, all s,te R.

ReMARK. The invariance of 2 may be replaced, as in [3] and [4], by the
weaker hypothesis that 9 be contained in the domain of X2, X,Y,, Y,Xo,
and Y32

ProoF oF THEOREM 1. Changing ad lib the constant term, the elliptic
polynomial p may be given the form
p(&n) = (a+bn+k)?*+(cC+dn+m),

where q, b, ¢, d, k, and m are real constants, and ad —bc+0. We may assume
that

ad—bc = 1.
The symmetric operators
1) Py = aXy,+bYy+k, Qf = cXo+dYy+m,
then satisfy P,2 <92, 0,2 <9, and
(PoQo —QoPou
P3+0Q3 = p(Xo, Yo) -

—ieu, allueg,

I

By assumption this latter operator is esséntially self-adjoint. It therefore
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follows from the quoted results by Dixmier and Nelson that P, and Q, have
self-adjoint closures (=adjoints) P and Q such that

eisPeitQ — eissteithisP, all s,te R.
Solving (1) for X, Y,, we obtain
Xo = aPo+PQo+x% Yo = yPe+30Q0+u,

where o, B, 7, §, x, and p are real constants, and

ab—fy =1.
Writing
Z, = —pPy+aQ,,
we obtain
(Xo—2+23 = (@*+p*)(P5+0Q7),
(Xo=%)Zo—Zo(Xo—x) = —ic(a?+p?).

From the known case of Theorem 1 it therefore follows that the symmetric
operator (a?+ B2~ ¥(X,—x) is essentially self-adjoint, and hence X, and
similarly Y, have self-adjoint closures X and Y, respectively.

In the case ¢=0, P and Q are self-adjoint and commute. It follows by the
operational calculus that aP+ BQ +x (> X,) and yP+6Q +u (= Y,) have self-
adjoint and commuting closures which extend, hence are equal to X and Y,
respectively.

In the case =1, # decomposes into the Hilbert sum of minimal subspaces
#'Y reducing P and Q, hence reducing aP+BQ +x and yP+38Q + u as well.
We proceed to show that these latter operators (extending X, and Y,
respectively) have self-adjoint extensions which satisfy the Weyl relation, and
which obviously extend, and hence are equal to X and Y, respectively.

For the stated purpose it suffices to work in each of the minimal reducing
subspaces #Y). We may therefore assume from the beginning that the solution
P, Q to the Weyl relation is irreducible (in ). By unitary equivalence we may
further suppose that s =L?(R), and that

.d
P = —io Q=x,
both acting in the distribution sense on LZ?*(R), the operator Q being
multiplication by the independent variable x. If « =0 it follows that

aP+BQ < «U'PU ,
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where U denotes the following unitary multiplication operator on L2(R):
if
U = 2
xp (Zozx )

yP+6Q < yV~1PV,

V = exp (%f) .

Summing up, if a+0 and y=0, then the closures of X, and Y, are the
following self-adjoint operators X and Y, respectively:

Similarly, if y+0,

where

X = aU 'PU+x, Y= 9yV PV+pu.
Consequently,
eisX — eist-leisaPU’ eirY — eituV—leityPV,

where ¢**Ff(x)=f(x+sa), etc. It is now straightforward to verify the Weyl
relation for X, Y.

If, e.g, y=0, then «+0, and Y=6Q+pu is already self-adjoint with e*¥
=e'*ei®* Again the Weyl relation for X, Y is easily verified.

We proceed to show that the hypothesis in the above theorem that p(X,, Y;)
be essentially self-adjoint for at least one elliptic second degree polynomial p
cannot be replaced by the essential self-adjointness of p(X,, Y,) for all non-
elliptic polynomials p of degree <2. For this purpose we shall use the version
of Nelson’s example adopted in [8].

2. The commuting case for non-elliptic p.

Nelson’s example, as in [8, p. 273], uses the Riemann surface of the square
root. In other words, let M denote the (non-trivial) two-fold cover of RZ\ {0}
endowed with the measure corresponding to Lebesgue measure, so that the
projection pr: M — R2\ {0} becomes locally measure preserving. By (x,y) we
denote the generic point of RZ\ {0}, and also the standard local coordinates on
M (instead of writing (xopr, yopr)). On the complex Hilbert space # = L*(M)
we have the self-adjoint operators

X = —id/ox, Y= —id/dy,
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acting in the sense of distributions on M. They commute on the dense linear
subspace 2 =C{(M):

XYu=YXu foreveryue@.

Nelson showed that the restrictions X, and Y, of X and Y to & are essentially
self-adjoint, but their closures X and Y do not have commuting spectral
measures.

THEOREM 2. The symmetric operator Sy =p(X,, Y,) is essentially self-adjoint if
(and only if) p is non-elliptic.

PrOOF. A linear bijection of R? onto itself with determinant 1 induces a
measure preserving bijection of M onto itself and hence in turn a unitary
transformation of # = L2(M) onto itself, leaving 2 invariant. In this way one
easily reduces to the case where the principal part of the non-elliptic
polynomial p has one of the forms &, €2, or £. In the last case we have p(£)=¢
+ ¢ (c constant), and hence S, = X, + ¢, which is essentially self-adjoint because
X, is so, as mentioned above. In the cases of degree 2 we apply a unitary
transformation W of the form

Wu(x,y) = e““*Muy(x,y), ueH,
where a and b are real constants. Then W maps 2 onto itself, and WX W !
=X,—a, WY,W~!=Y,—b, whence

Wp(Xo, YW ™' = p(Xo—a, Yo—b).

This allows us to reduce S,=p(X,, Y,) to one of the standard forms (after a
change of the constant term)

XY, or XitcY,,

where ¢ is a (real) constant.

A. The hyperbolic case Sq=X,Y, (=Y,X,). The adjoint of So=X,Y, is
the operator

62
= —--a—’xa—y

acting in the sense of distributions on M. To prove that S, is essentially self-
adjoint we consider any u € dom S (the domain of S) such that Su=iu, that is:

u

@) “axdy

iu,
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or equivalently: u should be orthogonal to the range of S, +i. Since S, is real, it
suffices to prove that any such vector u must be 0.
We begin by working in the upper half-plane

R = {(x,y) e R?*| y>0}

in one of the sheets of M. Let v denote the partial Fourier transform of u in the
x-direction:

1 .
U(iy)’) = —ﬁ;— J‘R u(x’y)e—lxcdx s

that is,

() = Flu(-,y),
where generally F and F~! denote the Fourier transforms on the Schwartz
space &' =%'(R) of tempered distributions on R. Here y>0 is supposed to be
such that u(-,y) € L2(R) (this holds for a.e. y). By Fubini’s theorem and the
Parseval identity, v is of class L2(R2%). The differential equation (2) transforms
into

(&) _

(&) ¢ 3y —v(&y).

Let us show that this relation even holds for a.e. £ € R when dv(¢,y)/dy is
interpreted as the distribution derivative of v(&, -) € L2(R ).
Let o®y € C¥(R2), ie, @ € CT(R) and ¢ € CF(R.). By assumption,

(ul (So+i)(e®Y)) = 0,
that is,

H , 4 (=9 (W ) +ie(x)y () dxdy = 0.

+

Taking partial Fourier transforms F~! in the x-direction, and writing @
=F~1¢, we obtain by Fubini and Parseval:

® U o VGO W +i0 (Y () dEdy = 0.

The functions w; and w, defined a.e. on R by

R

wy (&) = L D&)Ay,  wy(é) = j o(&, ) () dy

are in L2(R) because v(-, ) is a Hilbert-Schmidt kernel. The locally integrable
function
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w(g) = wi(Q)—Ew, (&)

is therefore a tempered distribution on R: w € &', and we get from (4)

L w(E)p(&) dE = J ) (w1 (&)= Ew,(E)@(&) dE = 0,
and hence

<FWs¢> = <W’F¢> =0

in the duality between &’(R) and #(R). Varying ¢ € C¥(R), we infer that Fw
=0, and hence w=0 a.e. For almost every ¢ € R, we thus have

r ENWO) &V 0)dy = 0.

0

Finally, put ¢ =y, where the sequence (y,)=Cg(R.) is chosen so that the
pairs (Y, ¥,) form a dense sequence in the graph of the operator d/dy acting on
CF(R,), this graph being viewed as a subset of the separable Hilbert space
L2(R,)x L%*(R,). This allows us to conclude that there is a single null set on R
outside of which the above relation holds for all ¥ € CJ(R). And that just
means that the function v(, ) e L2(R,)=Li(R,) satisfies (3) in the
distribution sense on R, for almost every & € R.

From (3) follows then that dv(&, y)/0y likewise is of class Lic(R ), and hence
that v(¢, -) is locally absolutely continuous on R, for a.e. £ € R. Consequently,
v(&, +) is a solution in the classical sense to the ordinary differential equation
(3), and so

(5.) o(E,y) = f—fle-”i

y >0,

for a.e. £ € R. In our case the arbitrary function f must be Lebesgue measurable
(being equal to v(&,y)ée*’s for any fixed y>0). Moreover,

L (€ yI*dE = L Lf(QIE2e™ 20 dE

is integrable over R, with respect to y, because v € L?(R%). Consequently, by
Fubini,
() = 0 forae. £<0,
(6.) /
l f 1M f (@) dE < oo,
R

and so in particular f € &' (R)N L&(R).
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Similarly, when working instead in the lower half-plane R2 in one of the
sheets of M, we obtain for the partial Fourier transform v of u with respect to x
for y<0:

@.e-w:

(-) v(&.y) = z » ¥y<0,

where g € #'(R)N Lf,c(R) and
[g(é) =0 forae £>0,

6.)
l j ) 11~ g @)1Pdé < oo .

We may assume that the upper and lower half-planes considered above fit
together along the positive x-axis so as to belong to one and the same sheet of
M. Now consider the right half-plane x >0 of that sheet, and choose this time
¢ € CY(R,), ¥ € CF(R). Inserting (5) in the analogue of (4) in which we now
integrate over the whole (&, y)-plane, we get from (5), (6)

[7 [ reos@ ] v
o Jo y

0 0 - a
+f~ J_ g(C)@(é)é;(e'y"W(y))dédy =0.

Choosing y so that ¥ (0)+0, we thus obtain

L (f(O)—g@)Fp()dl =0 forall o € CT(R,).

The tempered distributions Ff and Fg on R thus satisfy
(74) Ff=Fg on R,.

Let t: M — M denote the shift between sheets of M (i.e., for any m € M,
7(m) and m are distinct, but have the same projection on R\ {0}). Along with
any solution u € L2(M) to (2), uot is likewise a solution to (2). Since 7 is
involutory we have the decomposition

u = f(u+uot)+4(u—uor)

of an arbitrary solution u into the sum of two solutions, one invariant under 7,
the other invariant except for a change of sign. It suffices therefore to show that
any solution u € L2(M) to (2) such that either uot=u or uor= —u must be 0.

Consider first the case uot=u. Then u may be regarded as an element of
L*(R?) solving (2) in RZ\ {0}. The argument serving to establish (7,) then
shows that Ff=Fg also on R_. (Alternatively, just replace u(x,y) by u(—x,
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—y), which likewise satisfies (2).) We have thus found that F(f—g)=0 in
R\ {0}, showing that f—g is a polynomial, which however must be 0 because
[E™ ¥ (f(&)—g(&)) is of class L2(R) by (6). It follows that f=g, and indeed that
f=g=0 because f=0 on R_ and g=0 on R, by (6).

In the remaining case uot= —u we get a change of sign in (5_) when we now
pass from the upper half-plane R% (in the same sheet as before) to the lower
half-plane R2 in the opposite sheet from before, while crossing this time the x-
axis on its negative part. In other words, g should be replaced now by —g in
(5_). The computation which led to (7.) carries over in every other respect,
when we work instead in the half-plane x <0 in the sheet just described, and we
thus obtain:

(72) Ff= —Fg onR_.

Since fe L3.(R) and f=0 on R_ by (6,), the convolution f*f is a well-
defined, continuous, finite-valued function on R, vanishing on R_ U {0}:

(f+N)x) = j Sx=yfydy .
0
By the Cauchy-Schwarz inequality we have for x>0

1 1 X X
;Udmngffuvww=f3%mw
X Jo

ox

where h(y):=y ! f(y)]* is integrable over R by (6,). It follows by the
dominated convergence theorem that

1 1
® SN0 —(gxg)¥) >0 as|xl - o0

by a similar argument applied to g.

In order to exploit (7) we perform a regularization so as to overcome the
difficulty that Ff and Fg are not known to be functions, but only tempered
distributions. Choose k € CJ(R) so that k=0, suppk<[—1,1], and jk(x) dx
=1, and write |/2nF ~'k=k. Also put

ka(x) = nk(nx),  k,(&)=k(&/n)

for n e N. Writing
fn = knf’ g = E,,g ’
we thus have

©) Ff, = k,«xFf, Fg, = k,+Fg.
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The finite and continuous functions f*f and g*g on R are tempered on
account of (8), and

(10) forfo = f*f,  g,*%8, — gxg  weakly in &’

by the dominated convergence theorem. From (7) and (9) we obtain

F(fuxf) = V2n(Ff) = |/2n(Fg,)* = F(g,*g)  in R\[~1/n,1/n],
since supp k,=[ —1/n,1/n]. Inserting this in (10) we get

F(fxf) = F(g*g) in R\{0}.

It follows that the continuous function f*f—g=*g on R is a polynomial. This
polynomial must be a constant, on account of (8), and the constant must be 0
because (f*f)(0)=0=(g*g)(0). Since fxf=0 on R_ and g+xg=0 on R, we
conclude that f* f=g*g=0 on R. It follows that f=g=0 by the Titchmarsh
theorem as extended by Schwartz [9, theorem XIV]. Consequently, v=0, and
finally u=0.

B. The parabolic case So=X}+cY, (c € R). The adjoint of S, is

o2 .0
S = Tox? oy
acting in the distribution sense on # =L2?(M). Now (2) is replaced by
o*u ou
11 - —ic— = iu.
(11) pwe ic 3 iu

(The case of the eigenvalue —i for S is reduced to that of +i when we replace y
by —y and u by i) The partial Fourier transform v(-,y)=F'u(-,y) now
satisfies

(1) o -ie U -

iv(s,y) .

If ¢ =0 this gives at once v=0 in either half-plane y >0 or y <0, and hence u=0.
We may therefore assume that ¢=1. The L2-solutions of (12) for y+0 have
then the form

v(&y) = f()exp (—y—i?y) for y>0,

whereby f € L2(R); and v=0 for y<0. Proceeding as in the hyperbolic case we
easily get Ff=0 on R\ {0}, hence f=0, v=0, u=0.
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3. The Heisenberg case for non-elliptic p.
As to the Heisenberg commutation relation we take, following [8, p. 275],

. o
P = —15, Q= —15+x,

acting as operators on J# =L2(M) in the distribution sense (with M as in
section 2). Here x stands for the operator of multiplication by the first
coordinate x. Thus P and Q are self-adjoint, and we have, in terms of the
operators X, Y from section 2,

P=X Q> VY+x,
noting that Y and x commute (in the strict sense). Clearly
(PQ—QPu = —iu, all ue CT(M).
The restrictions Py, Q, of P,Q to 2 =Cg (M) are essentially self-adjoint, but P
and Q do not satisfy the Weyl relation, see [8].

THEOREM 3. The symmetric operator Ty =p(P,, Q) is essentially self-adjoint if
(and only if) p is non-elliptic.

A. The hyperbolic case:
p(&n) = (al+bn+k)(cE+dn+m)
with real constants a, b, ¢, d, k, and m such that ad —bc+0, or equally well
ad—bc = 1.

Leaving out, for simplicity, the subscript 0 indicating restriction to 9, we
thus have (on 2):

2T = (aX +b(Y+x)+k)(cX +d(Y+x)+m)
+(cX+d(Y+x)+m)(aX +b(Y+x)+k).
The linear bijection M — M, defined by

x ac\(x
) (y> "~ (b d)(y) ’
induces a unitary transformation 4 on ) = L2?(M) leaving 2 invariant and

transforming aX +bYinto X (= —id/0x) and cX +dY into Y (= —id/dy). Thus
T is transformed into T=ATA™!, given on 2 by
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2T = (X +b(ax+cy)+k)(Y+d(ax+cy)+m)
+(Y+d(ax+cy)+m)(X +b(ax +cy) +k) .
Finally we transform T by a unitary multiplication operator of the form
U = éa=n

where ¢ is a real, second degree polynomial in two variables. Again 9 is left
invariant, and

UXU! = X—%, UYU ™! = Y——
O0x Jy

on 2. Taking
q(x,y) = tbax®+bexy +4dey® +kx +my
we obtain on 9, since ad—bc=1,

2UTU! = X(Y+x)+(Y+x)X = PQ+QP

The hyperbolic case has thus been reduced to the case p(&,n)=y.

In order to treat this standard case in a manner parallel to that of Case A in
Theorem 2, we interchange the coordinates x and y, and thus consider instead
the operator T, given by

2T, = Yo(Xo+y)+ (Xo+ )Y,
with the adjoint
0? 0

T = Ta‘ = -"5;6—})—-1.}’5

—i2

acting in the distribution sense on LZ(M). To prove that T, is essentially self-
adjoint, we consider for a given 4 € R\ {0}, any u € dom T such that Tu=iiu,
that is

o*u —i ou
OxCy yay

= i(A+du .

We shall prove that any such vector u must be 0.

Proceeding as in the proof of Case A in Theorem 2 we consider separately
the upper and lower half-planes R2 and R2 in one of the sheets of M. The
partial Fourier transform v of u in the x-direction satisfies

d
(14) (§+Y)£ = —(A+dw.
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The solutions v € L*(R%) to (14) for y>0 may be written

mAtt oo if¢{>0,

SOy
(15,) vy = : ‘1+§ —¢& if £<0;

for0<y<{

and v=0 elsewhere (for y>0). Here
lf(é) =0 for Aé<0

(16.)
L €SP dE < 0.

The solutions v € L*(R%) to (14) for y<0 may be written

(9] y
1 = el
(15.) v(¢,y) ¢ 1+€

and v=0 elsewhere (for y<0). Here

TAc% —-oo if <0,

¢ if ¢£>0;

for0>y>{

g =0 for if >0

(16.)
L €17 g d& < oo .

Assuming that the upper and lower half-planes fit together along the positive
x-axis so as to belong to one sheet of M, we proceed as in the proof of Theorem
2. Again we arrive at (7,): Ff=Fg on R, (in either case A1>0 or i<0). As
before, we reduce to the case where uot = —u, and in that case we have (7_): Ff
= —Fg on R_. In view of (16) we conclude as before that f=g=0, and hence
v=0, u=0.

B. The parabolic case and the linear case:

p&,n) = (@l+bn+ky+cl+dn,
T, = (@Xo+bYy+bx+ky>+cXo+dYy+dx .

1°) ad ~bc +0, say ad—bc=1. The unitary operator induced by (13) as in
Case A transforms T, into

To = (Xo+b(ax+cy)+kP + Y, +d(ax+cy) .

Next the unitary operator U=¢e" with q as in Case A (now with m=0)
transforms T, into the final form

UT, U™ = X3+ Yy+x = P34+Q,,

corresponding to the standard parabolic polynomial £2+#. We shall prove
that this final operator T,= X3+ Y, + x is essentially self-adjoint. Its adjoint is
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o* 0
T = T* = - — ] — C
0 Fe) l 6y +x
acting in the distribution sense on L2(M). Let u € dom T satisfy Tu=iu or Tu=
—iu, that is,
Gu iau+xu = iu
ox% Oy B
or —iu. We shall deduce that u=0. For this purpose it suffices to consider the
case of the eigenvalue +i for T, since this case is transformed into that of —i,
when we replace y by —y and u by a.
Proceeding as in the proof of Theorem 2 we obtain for the partial Fourier
transform v of u in the upper or lower halfplane in one of the sheets of M:

ézv—i%+i2—§ = iv,
the L?-solutions of which are
(7 o(Ey) = [(E+y)exp (¢+§¢3) for y>0,
and v=0 for y<0. Here f is subject to
(18) [R e f(s)%ds < 0.

Working in the right or the left half-plane in the sheet continuing the upper
half-plane just considered, we find, by the method leading to (7), for any
@ € CY¥(R,), respectively ¢ € CF(R_), and for any y € CJ(R)

0 = (ul(T+i)(e®Y)
= (u(x, )] =" (W) —ie (W' (V) + (x + Do (x)y ()
= (VNI GOV —ip (Y ) +i¢' (Y 1) +id (Y () -

Inserting (17) for y>0, and v=0 for y<0, and substituting y=s—t, { =t, we
obtain after a reduction

—i J:[ f(s)gz[q‘)(t)ll/(s —t)exp <t+ -; t’)] dsdt

“im f f(s);@—(s—)exp(s+§s3) ds .
R

0

I

I

Choosing y so that /(0)=+0, we infer that
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F(f(s)exp(s+%s3>) =0 onR\{0},
showing that the L2-function s + f(s)exp (s+ (i/3)s®) (cf. (18)) is zero, and so

f=0, v=0, u=0.

2°) ad —bc=0, a+0; say a=1, hence d =bc. In place of (13) we now use the
bijection (x,y) + (x,bx +y) to obtain

To = (Xo+bx+k)?+c(X,+bx)
= (Xo+bx+k+%c)*+constant .

Taking U =e¢" with q=4bx?+ (k+1c)x, we obtain UT,U ! = X2+ constant.
The real, symmetric operator X3 is essentially self-adjoint because 0 is the only
L? solution to —@%u/dx*=iu in either half-plane y>0 or y<0.

3°) ad—bc=0, a=0, b+0; say b=1. Thus ¢=0, and
Ty = (Yo+x+k2+d(Yy+Xx).

Taking U=¢" with g=xy+ (k+ (d/2))y, we obtain UT,U ! = Y2 +constant,
which is essentially self-adjoint just like X3,

4°) (a,b)=(0,0). Leaving out the constant k2, we have
TO = CXO+d(Y0+x) .

Since X, is known to be essentially self-adjoint, we may suppose that d +0, say
d=1. The linear bijection (x,y) + (x+cy,y) transforms T, into

To = Yo+x+cy.
Taking U=e¢' with g=xy+1cy? we obtain UT,U ! =Y, which is likewise
known to be essentially self-adjoint. '
4. The case of a polynomial p with complex coefficients.

One might ask what happens in the case of a second degree polynomial
p(&,n) with complex coefficients. Instead of asking for essential self-adjointness
of So=p(X,, Yy) (in Theorem 2) and of To=p(Py, Q) (in Theorem 3), one
should now ask whether the closure of this minimal operator S, respectively
T,, is the corresponding maximal operator

101090 10 10
S=P(m"{a'y>’ T=P(75;’7@+*)-

Unlike the situation with p real, the answer to this question cannot be
expressed solely in terms of the principal part of p when p is complex. A simple
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example, pointed out to me by Palle T. Jorgensen, is the maximal operator S=
— (8/6x—1)(6/8y—1) on L?(M), corresponding to the non-elliptic polynomial
p(&, 1) = (E+i)(+i). This operator S is not the closure of its restriction to
2 =CZ (M) because (X +i)(Y+i)2 is not dense in L?(M). Thus p behaves in
the present context like an elliptic polynomial, although the principal part &x
of p is hyperbolic and covered by Theorem 2, being real.
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