CONDITIONS FOR TWO SELF-ADJOINT OPERATORS TO COMMUTE OR TO SATISFY THE WEYL RELATION

BENT FUGLEDE

E. Nelson has given a striking example of two self-adjoint operators X and Y on a separable Hilbert space which commute on a common core without having commuting spectral measures [3, § 10]. Other examples serving the same purpose were given later in [2], [7], [6], [5]. (I take this opportunity to correct a minor error in [2], where -i(f,g) should be replaced by i(f,g) in Theorem 1 and elsewhere — an error of no consequence.)

I show that the simpler version of Nelson's example adopted in [8] has the further property that the common core in question is a core for the *product XY* as well. This answers a question posed to me by P. Masani.

Following a suggestion by K. Schmüdken, I show more generally that if p denotes a polynomial of degree ≤ 2 in two variables and with real coefficients, then the above core is a core for the symmetric operator p(X, Y) if and only if p is non-elliptic (Theorems 2 and 1).

Next I obtain a similar result for the Heisenberg commutation relation PQ - OP = -i (Theorems 3 and 1).

For the polynomial $p(\xi, \eta) = \xi^2 + \eta^2$, Theorem 1 is due to Nelson [3, p. 603] in the commuting case, see also A. E. Nussbaum [4] for a simpler proof; and to J. Dixmier [1] in the case of the Heisenberg commutation relation.

I wish to thank Palle T. Jørgensen for useful comments.

1. Extension of theorems of Dixmier and Nelson.

Throughout the present paper, p will denote a polynomial of degree ≤ 2 in two variables and with real coefficients. If X and Y are symmetric operators on a Hilbert space having the same domain of definition, then p(X, Y) denotes the symmetric operator obtained from $p(\xi, \eta)$ by replacing the variables ξ, η by the operators X, Y, respectively, with the understanding that the product $\xi \eta$, if it occurs in $p(\xi, \eta)$, shall give rise to the Jordan product $\frac{1}{2}(XY + YX)$, which is a symmetric operator.

The polynomial p is called *elliptic* if the terms of degree 2 form a definite quadratic form, say (strictly) positive definite.

As mentioned in the introduction the case $p(\xi, \eta) = \xi^2 + \eta^2$ of the following theorem is due to Nelson [3] (cf. Nussbaum [4]) in the case $\varepsilon = 0$, and to Dixmier [1] in the case $\varepsilon = 1$. Our proof will consist in a reduction to these known results.

Theorem 1. Let X_0 , Y_0 be symmetric operators on a complex Hilbert space \mathcal{H} , with a common dense domain \mathcal{D} invariant under both. Given $\varepsilon = 0$ or 1, suppose that

$$(X_0Y_0 - Y_0X_0)u = -i\varepsilon u, \quad all \ u \in \mathscr{D}.$$

Finally, let p denote a real, <u>elliptic</u>, second degree polynomial in two variables, and suppose that the symmetric operator

$$p(X_0, Y_0)$$

is essentially self-adjoint. Then the closures X, Y of X_0 , Y_0 , respectively, are self-adjoint, and

$$e^{isX}e^{itY} = e^{iest}e^{itY}e^{isX}, \quad all \ s, t \in \mathbb{R}$$
.

REMARK. The invariance of \mathcal{D} may be replaced, as in [3] and [4], by the weaker hypothesis that \mathcal{D} be contained in the domain of X_0^2 , X_0Y_0 , Y_0X_0 , and Y_0^2 .

PROOF OF THEOREM 1. Changing ad lib the constant term, the elliptic polynomial p may be given the form

$$p(\xi, \eta) = (a\xi + b\eta + k)^2 + (c\xi + d\eta + m)^2$$
,

where a, b, c, d, k, and m are real constants, and $ad - bc \neq 0$. We may assume that

$$ad - bc = 1$$
.

The symmetric operators

(1)
$$P_0 = aX_0 + bY_0 + k, \quad Q_0 = cX_0 + dY_0 + m,$$

then satisfy $P_0 \mathcal{D} \subset \mathcal{D}$, $Q_0 \mathcal{D} \subset \mathcal{D}$, and

$$(P_0Q_0 - Q_0P_0)u = -i\varepsilon u, \quad \text{all } u \in \mathcal{D},$$

 $P_0^2 + Q_0^2 = p(X_0, Y_0).$

By assumption this latter operator is essentially self-adjoint. It therefore

follows from the quoted results by Dixmier and Nelson that P_0 and Q_0 have self-adjoint closures (= adjoints) P and Q such that

$$e^{isP}e^{itQ} = e^{i\epsilon st}e^{itQ}e^{isP}$$
, all $s, t \in \mathbb{R}$.

Solving (1) for X_0, Y_0 , we obtain

$$X_0 = \alpha P_0 + \beta Q_0 + \kappa, \quad Y_0 = \gamma P_0 + \delta Q_0 + \mu,$$

where α , β , γ , δ , \varkappa , and μ are real constants, and

$$\alpha\delta - \beta\gamma = 1.$$

Writing

$$Z_0 = -\beta P_0 + \alpha Q_0,$$

we obtain

$$(X_0 - \kappa)^2 + Z_0^2 = (\alpha^2 + \beta^2)(P_0^2 + Q_0^2) ,$$

$$(X_0 - \kappa)Z_0 - Z_0(X_0 - \kappa) = -i\varepsilon(\alpha^2 + \beta^2) .$$

From the known case of Theorem 1 it therefore follows that the symmetric operator $(\alpha^2 + \beta^2)^{-\frac{1}{2}}(X_0 - \kappa)$ is essentially self-adjoint, and hence X_0 and similarly Y_0 have self-adjoint closures X and Y, respectively.

In the case $\varepsilon=0$, P and Q are self-adjoint and commute. It follows by the operational calculus that $\alpha P + \beta Q + \varkappa$ ($\supset X_0$) and $\gamma P + \delta Q + \mu$ ($\supset Y_0$) have self-adjoint and commuting closures which extend, hence are equal to X and Y, respectively.

In the case $\varepsilon=1$, \mathscr{H} decomposes into the Hilbert sum of minimal subspaces $\mathscr{H}^{(j)}$ reducing P and Q, hence reducing $\alpha P + \beta Q + \kappa$ and $\gamma P + \delta Q + \mu$ as well. We proceed to show that these latter operators (extending X_0 and Y_0 , respectively) have self-adjoint extensions which satisfy the Weyl relation, and which obviously extend, and hence are equal to X and Y, respectively.

For the stated purpose it suffices to work in each of the minimal reducing subspaces $\mathcal{H}^{(j)}$. We may therefore assume from the beginning that the solution P,Q to the Weyl relation is irreducible (in \mathcal{H}). By unitary equivalence we may further suppose that $\mathcal{H} = L^2(\mathbb{R})$, and that

$$P = -i\frac{d}{dx}, \quad Q = x,$$

both acting in the distribution sense on $L^2(\mathbb{R})$, the operator Q being multiplication by the independent variable x. If $\alpha \neq 0$ it follows that

$$\alpha P + \beta Q \subset \alpha U^{-1} P U ,$$

where U denotes the following unitary multiplication operator on $L^2(R)$:

$$U = \exp\left(\frac{i\beta}{2\alpha}x^2\right).$$

Similarly, if $\gamma \neq 0$,

$$\gamma P + \delta Q \subset \gamma V^{-1} P V$$

where

$$V = \exp\left(\frac{i\delta}{2\gamma}x^2\right).$$

Summing up, if $\alpha \neq 0$ and $\gamma \neq 0$, then the closures of X_0 and Y_0 are the following self-adjoint operators X and Y, respectively:

$$X = \alpha U^{-1}PU + \varkappa, \quad Y = \gamma V^{-1}PV + \mu.$$

Consequently,

$$e^{isX} = e^{isx}U^{-1}e^{is\alpha P}U, \quad e^{itY} = e^{it\mu}V^{-1}e^{it\gamma P}V.$$

where $e^{is\alpha P}f(x)=f(x+s\alpha)$, etc. It is now straightforward to verify the Weyl relation for X, Y.

If, e.g., $\gamma = 0$, then $\alpha \neq 0$, and $Y = \delta Q + \mu$ is already self-adjoint with $e^{itY} = e^{it\mu}e^{it\delta x}$. Again the Weyl relation for X, Y is easily verified.

We proceed to show that the hypothesis in the above theorem that $p(X_0, Y_0)$ be essentially self-adjoint for at least one *elliptic* second degree polynomial p cannot be replaced by the essential self-adjointness of $p(X_0, Y_0)$ for *all non-elliptic* polynomials p of degree ≤ 2 . For this purpose we shall use the version of Nelson's example adopted in [8].

2. The commuting case for non-elliptic p.

Nelson's example, as in [8, p. 273], uses the Riemann surface of the square root. In other words, let M denote the (non-trivial) two-fold cover of $R^2 \setminus \{0\}$ endowed with the measure corresponding to Lebesgue measure, so that the projection pr: $M \to R^2 \setminus \{0\}$ becomes locally measure preserving. By (x, y) we denote the generic point of $R^2 \setminus \{0\}$, and also the standard local coordinates on M (instead of writing $(x \circ pr, y \circ pr)$). On the complex Hilbert space $\mathcal{H} = L^2(M)$ we have the self-adjoint operators

$$X = -i\partial/\partial x$$
, $Y = -i\partial/\partial y$,

acting in the sense of distributions on M. They commute on the dense linear subspace $\mathcal{D} = C_0^{\infty}(M)$:

$$XYu = YXu$$
 for every $u \in \mathcal{D}$.

Nelson showed that the restrictions X_0 and Y_0 of X and Y to \mathcal{D} are essentially self-adjoint, but their closures X and Y do *not* have commuting spectral measures.

THEOREM 2. The symmetric operator $S_0 = p(X_0, Y_0)$ is essentially self-adjoint if (and only if) p is non-elliptic.

PROOF. A linear bijection of \mathbb{R}^2 onto itself with determinant 1 induces a measure preserving bijection of M onto itself and hence in turn a unitary transformation of $\mathcal{H} = L^2(M)$ onto itself, leaving \mathcal{D} invariant. In this way one easily reduces to the case where the principal part of the non-elliptic polynomial p has one of the forms $\xi \eta$, ξ^2 , or ξ . In the last case we have $p(\xi) = \xi + c$ (c constant), and hence $S_0 = X_0 + c$, which is essentially self-adjoint because X_0 is so, as mentioned above. In the cases of degree 2 we apply a unitary transformation W of the form

$$Wu(x, y) = e^{i(ax + by)}u(x, y), \quad u \in \mathcal{H}$$

where a and b are real constants. Then W maps \mathcal{D} onto itself, and $WX_0W^{-1} = X_0 - a$, $WY_0W^{-1} = Y_0 - b$, whence

$$Wp(X_0, Y_0)W^{-1} = p(X_0 - a, Y_0 - b)$$
.

This allows us to reduce $S_0 = p(X_0, Y_0)$ to one of the standard forms (after a change of the constant term)

$$X_0 Y_0$$
 or $X_0^2 + c Y_0$,

where c is a (real) constant.

A. The hyperbolic case $S_0 = X_0 Y_0$ (= $Y_0 X_0$). The adjoint of $S_0 = X_0 Y_0$ is the operator

$$S = -\frac{\partial^2}{\partial x \partial y}$$

acting in the sense of distributions on M. To prove that S_0 is essentially self-adjoint we consider any $u \in \text{dom } S$ (the domain of S) such that Su = iu, that is:

$$-\frac{\partial^2 u}{\partial x \partial y} = iu ,$$

or equivalently: u should be orthogonal to the range of $S_0 + i$. Since S_0 is real, it suffices to prove that any such vector u must be 0.

We begin by working in the upper half-plane

$$R_+^2 = \{(x, y) \in R^2 \mid y > 0\}$$

in one of the sheets of M. Let v denote the partial Fourier transform of u in the x-direction:

$$v(\xi,y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} u(x,y)e^{-ix\xi} dx ,$$

that is,

$$v(\cdot,y) = F^{-1}u(\cdot,y),$$

where generally F and F^{-1} denote the Fourier transforms on the Schwartz space $\mathscr{S}' = \mathscr{S}'(R)$ of tempered distributions on R. Here y > 0 is supposed to be such that $u(\cdot, y) \in L^2(R)$ (this holds for a.e. y). By Fubini's theorem and the Parseval identity, v is of class $L^2(R^2_+)$. The differential equation (2) transforms into

(3)
$$\xi \frac{\partial v(\xi, y)}{\partial y} = -v(\xi, y) .$$

Let us show that this relation even holds for a.e. $\xi \in \mathbb{R}$ when $\partial v(\xi, y)/\partial y$ is interpreted as the distribution derivative of $v(\xi, \cdot) \in L^2(\mathbb{R}_+)$.

Let $\varphi \otimes \psi \in C_0^{\infty}(\mathbb{R}^2_+)$, i.e., $\varphi \in C_0^{\infty}(\mathbb{R})$ and $\psi \in C_0^{\infty}(\mathbb{R}_+)$. By assumption,

$$(u \mid (S_0 + i)(\varphi \otimes \psi)) = 0,$$

that is.

$$\iint_{\mathbb{R}^2} u(x,y) \overline{(-\varphi'(x)\psi'(y) + i\varphi(x)\psi(y))} \, dx \, dy = 0.$$

Taking partial Fourier transforms F^{-1} in the x-direction, and writing $\hat{\varphi} = F^{-1}\varphi$, we obtain by Fubini and Parseval:

(4)
$$\iint_{\mathbb{R}^2_+} v(\xi, y) \overline{(-i\xi\hat{\varphi}(\xi)\psi'(y) + i\hat{\varphi}(\xi)\psi(y))} \, d\xi \, dy = 0.$$

The functions w_1 and w_2 defined a.e. on R by

$$w_1(\xi) = \int_{\mathbb{R}_+} v(\xi, y) \overline{\psi(y)} \, dy, \quad w_2(\xi) = \int_{\mathbb{R}_+} v(\xi, y) \overline{\psi'(y)} \, dy$$

are in $L^2(\mathbb{R})$ because $v(\cdot, \cdot)$ is a Hilbert-Schmidt kernel. The locally integrable function

$$w(\xi) = w_1(\xi) - \xi w_2(\xi)$$

is therefore a tempered distribution on $R: w \in \mathcal{S}'$, and we get from (4)

$$\int_{\mathbb{R}} w(\xi) \overline{\hat{\varphi}(\xi)} d\xi = \int_{\mathbb{R}} (w_1(\xi) - \xi w_2(\xi)) \overline{\hat{\varphi}(\xi)} d\xi = 0,$$

and hence

$$\langle Fw, \bar{\varphi} \rangle = \langle w, F\bar{\varphi} \rangle = 0$$

in the duality between $\mathscr{S}'(R)$ and $\mathscr{S}(R)$. Varying $\varphi \in C_0^{\infty}(R)$, we infer that Fw = 0, and hence w = 0 a.e. For almost every $\xi \in R$, we thus have

$$\int_0^\infty v(\xi,y)\overline{(\psi(y)-\xi\psi'(y))}\,dy = 0.$$

Finally, put $\psi = \psi_n$, where the sequence $(\psi_n) \subset C_0^\infty(\mathsf{R}_+)$ is chosen so that the pairs (ψ_n, ψ'_n) form a dense sequence in the graph of the operator d/dy acting on $C_0^\infty(\mathsf{R}_+)$, this graph being viewed as a subset of the separable Hilbert space $L^2(\mathsf{R}_+) \times L^2(\mathsf{R}_+)$. This allows us to conclude that there is a single null set on R outside of which the above relation holds for all $\psi \in C_0^\infty(\mathsf{R})$. And that just means that the function $v(\xi,\cdot) \in L^2(\mathsf{R}_+) \subset L_{\mathrm{loc}}(\mathsf{R}_+)$ satisfies (3) in the distribution sense on R_+ for almost every $\xi \in \mathsf{R}$.

From (3) follows then that $\partial v(\xi, y)/\partial y$ likewise is of class $L_{loc}(\mathbf{R}_+)$, and hence that $v(\xi, \cdot)$ is locally absolutely continuous on \mathbf{R}_+ for a.e. $\xi \in \mathbf{R}$. Consequently, $v(\xi, \cdot)$ is a solution in the classical sense to the ordinary differential equation (3), and so

$$v(\xi, y) = \frac{f(\xi)}{\xi} e^{-y/\xi}, \quad y > 0,$$

for a.e. $\xi \in \mathbb{R}$. In our case the arbitrary function f must be Lebesgue measurable (being equal to $v(\xi, y)\xi e^{y/\xi}$ for any fixed y > 0). Moreover,

$$\int_{R} |v(\xi, y)|^{2} d\xi = \int_{R} |f(\xi)|^{2} \xi^{-2} e^{-2y/\xi} d\xi$$

is integrable over R_+ with respect to y, because $v \in L^2(\mathbb{R}^2_+)$. Consequently, by Fubini,

(6₊)
$$\begin{cases} f(\xi) = 0 & \text{for a.e. } \xi < 0, \\ \int_{\mathbb{R}} |\xi|^{-1} |f(\xi)|^2 d\xi < \infty, \end{cases}$$

and so in particular $f \in \mathcal{S}'(R) \cap L^2_{loc}(R)$.

Similarly, when working instead in the lower half-plane R_{-}^{2} in one of the sheets of M, we obtain for the partial Fourier transform v of u with respect to x for v < 0:

$$v(\xi, y) = \frac{g(\xi)}{\xi} e^{-y/\xi}, \quad y < 0,$$

where $g \in \mathcal{S}'(R) \cap L^2_{loc}(R)$ and

(6_)
$$\begin{cases} g(\xi) = 0 & \text{for a.e. } \xi > 0, \\ \int_{\mathbb{R}} |\xi|^{-1} |g(\xi)|^2 d\xi < \infty. \end{cases}$$

We may assume that the upper and lower half-planes considered above fit together along the positive x-axis so as to belong to one and the same sheet of M. Now consider the *right* half-plane x>0 of that sheet, and choose this time $\varphi \in C_0^{\infty}(\mathbb{R}_+)$, $\psi \in C_0^{\infty}(\mathbb{R})$. Inserting (5) in the analogue of (4) in which we now integrate over the whole (ξ, y) -plane, we get from (5), (6)

$$\int_{0}^{\infty} \int_{0}^{\infty} f(\xi) \overline{\hat{\varphi}(\xi)} \frac{\partial}{\partial y} (e^{-y/\xi} \overline{\psi}(y)) d\xi dy + \int_{-\infty}^{0} \int_{-\infty}^{0} g(\xi) \overline{\hat{\varphi}(\xi)} \frac{\partial}{\partial y} (e^{-y/\xi} \overline{\psi}(y)) d\xi dy = 0.$$

Choosing ψ so that $\psi(0) \neq 0$, we thus obtain

$$\int_{\mathbb{R}} (f(\xi) - g(\xi)) F \bar{\varphi}(\xi) d\xi = 0 \quad \text{for all } \varphi \in C_0^{\infty}(\mathbb{R}_+).$$

The tempered distributions Ff and Fg on R thus satisfy

$$(7_+) Ff = Fg on R_+.$$

Let $\tau: M \to M$ denote the shift between sheets of M (i.e., for any $m \in M$, $\tau(m)$ and m are distinct, but have the same projection on $\mathbb{R}^2 \setminus \{0\}$). Along with any solution $u \in L^2(M)$ to (2), $u \circ \tau$ is likewise a solution to (2). Since τ is involutory we have the decomposition

$$u = \frac{1}{2}(u + u \circ \tau) + \frac{1}{2}(u - u \circ \tau)$$

of an arbitrary solution u into the sum of two solutions, one invariant under τ , the other invariant except for a change of sign. It suffices therefore to show that any solution $u \in L^2(M)$ to (2) such that either $u \circ \tau = u$ or $u \circ \tau = -u$ must be 0.

Consider first the case $u \circ \tau = u$. Then u may be regarded as an element of $L^2(\mathbb{R}^2)$ solving (2) in $\mathbb{R}^2 \setminus \{0\}$. The argument serving to establish (7_+) then shows that Ff = Fg also on \mathbb{R}_- . (Alternatively, just replace u(x, y) by u(-x, y)

-y), which likewise satisfies (2).) We have thus found that F(f-g)=0 in $\mathbb{R} \setminus \{0\}$, showing that f-g is a polynomial, which however must be 0 because $|\xi|^{-\frac{1}{2}}(f(\xi)-g(\xi))$ is of class $L^2(\mathbb{R})$ by (6). It follows that f=g, and indeed that f=g=0 because f=0 on \mathbb{R}_+ and g=0 on \mathbb{R}_+ , by (6).

In the remaining case $u \circ \tau = -u$ we get a change of sign in (5_{-}) when we now pass from the upper half-plane R_{+}^{2} (in the same sheet as before) to the lower half-plane R_{-}^{2} in the *opposite* sheet from before, while crossing this time the x-axis on its *negative* part. In other words, g should be replaced now by -g in (5_{-}) . The computation which led to (7_{+}) carries over in every other respect, when we work instead in the half-plane x < 0 in the sheet just described, and we thus obtain:

$$(7_{-}) Ff = -Fg on R_{-}.$$

Since $f \in L^2_{loc}(R)$ and f=0 on R_- by (6_+) , the convolution f*f is a well-defined, continuous, finite-valued function on R, vanishing on $R_- \cup \{0\}$:

$$(f*f)(x) = \int_0^x f(x-y)f(y) dy.$$

By the Cauchy-Schwarz inequality we have for x>0

$$\frac{1}{x}|(f*f)(x)| \le \frac{1}{x} \int_0^x |f(y)|^2 \, dy = \int_0^x \frac{y}{x} h(y) \, dy$$

where $h(y) := y^{-1} |f(y)|^2$ is integrable over R by (6_+) . It follows by the dominated convergence theorem that

(8)
$$\frac{1}{r}(f*f)(x) \to 0, \quad \frac{1}{r}(g*g)(x) \to 0 \quad \text{as } |x| \to \infty$$

by a similar argument applied to g.

In order to exploit (7) we perform a regularization so as to overcome the difficulty that Ff and Fg are not known to be functions, but only tempered distributions. Choose $k \in C_0^{\infty}(\mathbb{R})$ so that $k \ge 0$, supp k = [-1, 1], and $\int k(x) dx = 1$, and write $\sqrt{2\pi}F^{-1}k = \hat{k}$. Also put

$$k_n(x) = nk(nx), \quad \hat{k}_n(\xi) = \hat{k}(\xi/n)$$

for $n \in \mathbb{N}$. Writing

$$f_n = \hat{k}_n f, \quad g_n = \hat{k}_n g ,$$

we thus have

(9)
$$Ff_n = k_n * Ff, \quad Fg_n = k_n * Fg.$$

The finite and continuous functions f*f and g*g on R are tempered on account of (8), and

(10)
$$f_n * f_n \to f * f, \quad g_n * g_n \to g * g \quad \text{weakly in } \mathcal{S}'$$

by the dominated convergence theorem. From (7) and (9) we obtain

$$F(f_n * f_n) = \sqrt{2\pi} (Ff_n)^2 = \sqrt{2\pi} (Fg_n)^2 = F(g_n * g_n)$$
 in $R \setminus [-1/n, 1/n]$,

since supp $k_n \subset [-1/n, 1/n]$. Inserting this in (10) we get

$$F(f*f) = F(g*g) \quad \text{in } \mathbb{R} \setminus \{0\} \ .$$

It follows that the continuous function f*f-g*g on R is a polynomial. This polynomial must be a constant, on account of (8), and the constant must be 0 because (f*f)(0)=0=(g*g)(0). Since f*f=0 on R₋ and g*g=0 on R₊, we conclude that f*f=g*g=0 on R. It follows that f=g=0 by the Titchmarsh theorem as extended by Schwartz [9, theorem XIV]. Consequently, v=0, and finally u=0.

B. The parabolic case $S_0 = X_0^2 + c Y_0$ ($c \in \mathbb{R}$). The adjoint of S_0 is

$$S = -\frac{\partial^2}{\partial x^2} - ic \frac{\partial}{\partial y},$$

acting in the distribution sense on $\mathcal{H} = L^2(M)$. Now (2) is replaced by

$$-\frac{\partial^2 u}{\partial x^2} - ic \frac{\partial u}{\partial y} = iu.$$

(The case of the eigenvalue -i for S is reduced to that of +i when we replace y by -y and u by \bar{u} .) The partial Fourier transform $v(\cdot,y)=F^{-1}u(\cdot,y)$ now satisfies

(12)
$$\xi^2 v(\xi, y) - ic \frac{\partial v(\xi, y)}{\partial y} = iv(\xi, y) .$$

If c=0 this gives at once v=0 in either half-plane y>0 or y<0, and hence u=0. We may therefore assume that c=1. The L^2 -solutions of (12) for $y \neq 0$ have then the form

$$v(\xi, y) = f(\xi) \exp(-y - i\xi^2 y) \quad \text{for } y > 0,$$

whereby $f \in L^2(\mathbb{R})$; and v = 0 for y < 0. Proceeding as in the hyperbolic case we easily get Ff = 0 on $\mathbb{R} \setminus \{0\}$, hence f = 0, v = 0, u = 0.

3. The Heisenberg case for non-elliptic p.

As to the Heisenberg commutation relation we take, following [8, p. 275],

$$P = -i\frac{\partial}{\partial x}, \quad Q = -i\frac{\partial}{\partial y} + x,$$

acting as operators on $\mathcal{H} = L^2(M)$ in the distribution sense (with M as in section 2). Here x stands for the operator of multiplication by the first coordinate x. Thus P and Q are self-adjoint, and we have, in terms of the operators X, Y from section 2.

$$P = X, \quad O \supset Y + X,$$

noting that Y and x commute (in the strict sense). Clearly

$$(PO - OP)u = -iu$$
, all $u \in C_0^{\infty}(M)$.

The restrictions P_0 , Q_0 of P, Q to $\mathcal{D} = C_0^{\infty}(M)$ are essentially self-adjoint, but P and Q do not satisfy the Weyl relation, see [8].

THEOREM 3. The symmetric operator $T_0 = p(P_0, Q_0)$ is essentially self-adjoint if (and only if) p is non-elliptic.

A. The hyperbolic case:

$$p(\xi, \eta) = (a\xi + b\eta + k)(c\xi + d\eta + m)$$

with real constants a, b, c, d, k, and m such that $ad - bc \neq 0$, or equally well

$$ad - bc = 1$$

Leaving out, for simplicity, the subscript 0 indicating restriction to \mathcal{D} , we thus have (on \mathcal{D}):

$$2T = (aX + b(Y+x) + k)(cX + d(Y+x) + m) + (cX + d(Y+x) + m)(aX + b(Y+x) + k).$$

The linear bijection $M \rightarrow M$, defined by

induces a unitary transformation A on $\mathscr{H} = L^2(M)$ leaving \mathscr{D} invariant and transforming aX + bY into $X = (-i\partial/\partial x)$ and cX + dY into $Y = (-i\partial/\partial y)$. Thus T is transformed into $\widetilde{T} = ATA^{-1}$, given on \mathscr{D} by

$$2\tilde{T} = (X + b(ax + cy) + k)(Y + d(ax + cy) + m)$$
$$+ (Y + d(ax + cy) + m)(X + b(ax + cy) + k).$$

Finally we transform \tilde{T} by a unitary multiplication operator of the form

$$U = e^{iq(x, y)}.$$

where q is a real, second degree polynomial in two variables. Again $\mathcal D$ is left invariant, and

$$UXU^{-1} = X - \frac{\partial q}{\partial x}, \quad UYU^{-1} = Y - \frac{\partial q}{\partial y}$$

on D. Taking

$$q(x, y) = \frac{1}{2}bax^2 + bcxy + \frac{1}{2}dcy^2 + kx + my$$

we obtain on \mathcal{D} , since ad - bc = 1.

$$2U\tilde{T}U^{-1} = X(Y+x) + (Y+x)X = PQ + QP$$

The hyperbolic case has thus been reduced to the case $p(\xi, \eta) = \zeta \eta$.

In order to treat this standard case in a manner parallel to that of Case A in Theorem 2, we interchange the coordinates x and y, and thus consider instead the operator T_0 given by

$$2T_0 = Y_0(X_0 + y) + (X_0 + y)Y_0$$

with the adjoint

$$T = T_0^* = -\frac{\partial^2}{\partial x \partial y} - iy \frac{\partial}{\partial y} - i/2$$

acting in the distribution sense on $L^2(M)$. To prove that T_0 is essentially self-adjoint, we consider for a given $\lambda \in \mathbb{R} \setminus \{0\}$, any $u \in \text{dom } T$ such that $Tu = i\lambda u$, that is

$$-\frac{\partial^2 u}{\partial x \partial y} - iy \frac{\partial u}{\partial y} = i(\lambda + \frac{1}{2})u.$$

We shall prove that any such vector u must be 0.

Proceeding as in the proof of Case A in Theorem 2 we consider separately the upper and lower half-planes R_+^2 and R_-^2 in one of the sheets of M. The partial Fourier transform v of u in the x-direction satisfies

(14)
$$(\xi + y) \frac{\partial v}{\partial y} = -(\lambda + \frac{1}{2})v.$$

The solutions $v \in L^2(\mathbb{R}^2_+)$ to (14) for y>0 may be written

$$(15_{+}) v(\xi, y) = \frac{f(\xi)}{\xi} \left| 1 + \frac{y}{\xi} \right|^{-\lambda - \frac{1}{2}} \text{for } 0 < y < \begin{cases} \infty & \text{if } \xi > 0, \\ -\xi & \text{if } \xi < 0; \end{cases}$$

and v=0 elsewhere (for y>0). Here

(16₊)
$$\begin{cases} f(\xi) = 0 & \text{for } \lambda \xi < 0 \\ \int_{\mathbb{R}} |\xi|^{-1} |f(\xi)|^2 d\xi < \infty . \end{cases}$$

The solutions $v \in L^2(\mathbb{R}^2_+)$ to (14) for y < 0 may be written

(15_)
$$v(\xi, y) = \frac{g(\xi)}{\xi} \left| 1 + \frac{y}{\xi} \right|^{-\lambda - \frac{1}{2}} \quad \text{for } 0 > y > \begin{cases} -\infty & \text{if } \xi < 0, \\ -\xi & \text{if } \xi > 0; \end{cases}$$

and v=0 elsewhere (for v<0). Here

(16_)
$$\begin{cases} g(\xi) = 0 & \text{for } \lambda \xi > 0 \\ \int_{\mathbb{R}} |\xi|^{-1} |g(\xi)|^2 d\xi < \infty . \end{cases}$$

Assuming that the upper and lower half-planes fit together along the positive x-axis so as to belong to one sheet of M, we proceed as in the proof of Theorem 2. Again we arrive at (7_+) : Ff = Fg on R_+ (in either case $\lambda > 0$ or $\lambda < 0$). As before, we reduce to the case where $u \circ \tau = -u$, and in that case we have (7_-) : Ff = -Fg on R_- . In view of (16) we conclude as before that f = g = 0, and hence v = 0, u = 0.

B. The parabolic case and the linear case:

$$p(\xi,\eta) = (a\xi + b\eta + k)^2 + c\xi + d\eta,$$

$$T_0 = (aX_0 + bY_0 + bx + k)^2 + cX_0 + dY_0 + dx.$$

1°) ad-bc = 0, say ad-bc = 1. The unitary operator induced by (13) as in Case A transforms T_0 into

$$\tilde{T}_0 = (X_0 + b(ax + cy) + k)^2 + Y_0 + d(ax + cy)$$
.

Next the unitary operator $U = e^{iq}$ with q as in Case A (now with m = 0) transforms \tilde{T}_0 into the final form

$$U\tilde{T}_0U^{-1} = X_0^2 + Y_0 + x = P_0^2 + Q_0$$

corresponding to the standard parabolic polynomial $\xi^2 + \eta$. We shall prove that this final operator $T_0 = X_0^2 + Y_0 + x$ is essentially self-adjoint. Its adjoint is

$$T = T_0^* = -\frac{\partial^2}{\partial x^2} - i\frac{\partial}{\partial y} + x$$

acting in the distribution sense on $L^2(M)$. Let $u \in \text{dom } T$ satisfy Tu = iu or Tu = -iu, that is,

$$-\frac{\partial^2 u}{\partial x^2} - i\frac{\partial u}{\partial y} + xu = iu$$

or -iu. We shall deduce that u=0. For this purpose it suffices to consider the case of the eigenvalue +i for T, since this case is transformed into that of -i, when we replace v by -v and u by \bar{u} .

Proceeding as in the proof of Theorem 2 we obtain for the partial Fourier transform v of u in the upper or lower halfplane in one of the sheets of M:

$$\xi^2 v - i \frac{\partial v}{\partial v} + i \frac{\partial v}{\partial \xi} = i v ,$$

the L^2 -solutions of which are

(17)
$$v(\xi,y) = f(\xi+y)\exp\left(\xi+\frac{i}{3}\xi^3\right) \quad \text{for } y>0 ,$$

and v=0 for v<0. Here f is subject to

(18)
$$\int_{\mathbb{R}} e^{2s} |f(s)|^2 ds < \infty.$$

Working in the right or the left half-plane in the sheet continuing the upper half-plane just considered, we find, by the method leading to (7), for any $\varphi \in C_0^{\infty}(\mathbb{R}_+)$, respectively $\varphi \in C_0^{\infty}(\mathbb{R}_-)$, and for any $\psi \in C_0^{\infty}(\mathbb{R})$

$$0 = (u \mid (T+i)(\varphi \otimes \psi))$$

$$= (u(x,y) \mid -\varphi''(x)\psi(y) - i\varphi(x)\psi'(y) + (x+i)\varphi(x)\psi(y))$$

$$= (v(\xi,y) \mid \xi^2 \hat{\varphi}(\xi)\psi(y) - i\hat{\varphi}(\xi)\psi'(y) + i\hat{\varphi}'(\xi)\psi(y) + i\hat{\varphi}(\xi)\psi(y)).$$

Inserting (17) for y > 0, and v = 0 for y < 0, and substituting y = s - t, $\xi = t$, we obtain after a reduction

$$0 = -i \iint_{s>t} f(s) \frac{\partial}{\partial t} \left[\overline{\hat{\varphi}(t)\psi(s-t)} \exp\left(t + \frac{i}{3}t^3\right) \right] ds dt$$
$$= -i \overline{\psi(0)} \int_{\mathbb{R}} f(s) \overline{\hat{\varphi}(s)} \exp\left(s + \frac{i}{3}s^3\right) ds.$$

Choosing ψ so that $\psi(0) \neq 0$, we infer that

$$F\left(f(s)\exp\left(s+\frac{i}{3}s^3\right)\right)=0$$
 on $\mathbb{R}\setminus\{0\}$,

showing that the L^2 -function $s \mapsto f(s) \exp(s + (i/3)s^3)$ (cf. (18)) is zero, and so f=0, v=0, u=0.

2°) ad - bc = 0, $a \neq 0$; say a = 1, hence d = bc. In place of (13) we now use the bijection $(x, y) \mapsto (x, bx + y)$ to obtain

$$\tilde{T}_0 = (X_0 + bx + k)^2 + c(X_0 + bx)$$

= $(X_0 + bx + k + \frac{1}{2}c)^2 + \text{constant}$.

Taking $U = e^{iq}$ with $q = \frac{1}{2}bx^2 + (k + \frac{1}{2}c)x$, we obtain $UT_0U^{-1} = X_0^2 + \text{constant}$. The real, symmetric operator X_0^2 is essentially self-adjoint because 0 is the only L^2 solution to $-\partial^2 u/\partial x^2 = iu$ in either half-plane y > 0 or y < 0.

3°)
$$ad - bc = 0$$
, $a = 0$, $b \neq 0$; say $b = 1$. Thus $c = 0$, and

$$T_0 = (Y_0 + x + k)^2 + d(Y_0 + x)$$
.

Taking $U = e^{iq}$ with q = xy + (k + (d/2))y, we obtain $UT_0U^{-1} = Y_0^2 + \text{constant}$, which is essentially self-adjoint just like X_0^2 .

 4°) (a, b) = (0, 0). Leaving out the constant k^2 , we have

$$T_0 = cX_0 + d(Y_0 + x) .$$

Since X_0 is known to be essentially self-adjoint, we may suppose that $d \neq 0$, say d = 1. The linear bijection $(x, y) \mapsto (x + cy, y)$ transforms T_0 into

$$\tilde{T}_0 = Y_0 + x + cy$$
.

Taking $U = e^{iq}$ with $q = xy + \frac{1}{2}cy^2$, we obtain $U\tilde{T}_0U^{-1} = Y_0$, which is likewise known to be essentially self-adjoint.

4. The case of a polynomial p with complex coefficients.

One might ask what happens in the case of a second degree polynomial $p(\xi, \eta)$ with complex coefficients. Instead of asking for essential self-adjointness of $S_0 = p(X_0, Y_0)$ (in Theorem 2) and of $T_0 = p(P_0, Q_0)$ (in Theorem 3), one should now ask whether the closure of this minimal operator S_0 , respectively T_0 , is the corresponding maximal operator

$$S = p\left(\frac{1}{i}\frac{\partial}{\partial x}, \frac{1}{i}\frac{\partial}{\partial y}\right), \quad T = p\left(\frac{1}{i}\frac{\partial}{\partial x}, \frac{1}{i}\frac{\partial}{\partial y} + x\right).$$

Unlike the situation with p real, the answer to this question cannot be expressed solely in terms of the principal part of p when p is complex. A simple

178 BENT FUGLEDE

example, pointed out to me by Palle T. Jørgensen, is the maximal operator $S = -(\partial/\partial x - 1)(\partial/\partial y - 1)$ on $L^2(M)$, corresponding to the non-elliptic polynomial $p(\xi, \eta) = (\xi + i)(\eta + i)$. This operator S is not the closure of its restriction to $\mathcal{D} = C_0^{\infty}(M)$ because $(X + i)(Y + i)\mathcal{D}$ is not dense in $L^2(M)$. Thus p behaves in the present context like an elliptic polynomial, although the principal part $\xi \eta$ of p is hyperbolic and covered by Theorem 2, being real.

REFERENCES

- 1. J. Dixmier, Sur la relation i(PQ-OP)=1, Compositio Math. 13 (1958), 263-269.
- 2. B. Fuglede, On the relation PQ OP = -iI, Math. Scand. 20 (1967), 79-88.
- 3. E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572-615.
- A. E. Nussbaum, A commutativity theorem for unbounded operators in Hilbert space, Trans. Amer. Math. Soc. 140 (1969), 485–491.
- 5. W. J. Phillips, On the relation PQ OP = -iI, Pacific J. Math. 95 (1981), 435-441.
- 6. N. S. Poulsen, On the canonical commutation relations, Math. Scand. 32 (1973), 112-122.
- 7. R. T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85-124
- 8. M. Reed and B. Simon, Functional Analysis in Methods of Modern Mathematical Physics I, Academic Press, New York and London, 1972.
- 9. L. Schwartz, *Théorie des distributions*, II (Act. Sci. Ind. Publ. Inst. Math. Univ. Strassbourg 1122 No. 10), Hermann & Cie, Paris, 1951.

MATEMATISK INSTITUT KØBENHAVNS UNIVERSITET UNIVERSITETSPARKEN 5 2100 KØBENHAVN Ø DENMARK