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A NOTE ON THE CHARACTERS OF
THE PROJECTIVE MODULES FOR
THE INFINITESIMAL SUBGROUPS OF A
SEMISIMPLE ALGEBRAIC GROUP

STEPHEN DONKIN

Let G be an affine, connected, semisimple, simply connected algebraic group
over an algebraically closed field k of characteristic p+0. Let T be a maximal
torus of G and, for a positive integer n, let u, be the nth hyperalgebra of G
(introduced in [5]). The representations of u, correspond naturally to the
rational representations of the infinitesimal subgroup G, of G (see § 2 of [8]). In
a recent paper, [7], Jantzen considers a category of modules for u, and T
simultaneously —the category of u,-T-modules. (We assume of the reader
familiarity with the basic theory of u,-T-modules, as developed in [7].) In
particular he shows (Satz of § 4 of [7]) that each projective indecomposable u,-
module has naturally the structure of a u,-T-module. It is our purpose here to
show that the characters of these modules’ are characters of rational G-
modules. When p is large each projective indecomposable u,-module may be
given the structure of a rational G-module (see [1] and § 4 of [8]), so our result
may be seen as grounds for the hope that this is the case in all characteristics.

The result is obtained as a corollary to the following.

THEOREM. Let M be a finite dimensional rational G-module with a
decomposition M=Q@®R as a u,-T-module. Suppose that the u,-socle of Q is
simple and is a G-submodule of M. Then the character chQ of Q is a proper
character.

By a proper character we mean the character of a rational G module.

In section 1 we deal with some general properties of proper characters. We
begin section 2 with a construction of a group G* from the decomposition M
=Q@®R of the theorem. The group is very similar to that considered by Cline
in § 1 of [2]. Indeed, it is clear that such a construction is possible for a much

Received October 7, 1980.



A NOTE ON THE CHARACTERS OF THE PROJECTIVE MODULES... 143

wider class of algebraic groups and representations of (not necessarily reduced)
closed normal subgroups than those considered here. However, we decided to
sacrifice this generality in favour of concreteness and brevity. We conclude
with a proof of the theorem and of its corollary.

The author was a visitor at The University of Turku, Finland whilst this
paper was written. I wish to thank the Department of Mathematics for
hospitality and The Royal Society and The Science Research Council of Great
Britain, The Academy of Finland and The University of Turku for financial
support.

1. Characters.

Let k be an algebraically closed field. All varieties considered here (in
particular algebraic groups) are affine varieties over k. For an algebraic group
G we denote by .# the category of finite dimensional rational G-modules.

Let T be a torus. We denote by X (T) the set of one dimensional rational
representations considered as an additive abelian group. We write 4(T)
=2ZX(T), the integral group ring of X(T); 4(T) has a canonical basis
{e(A): A€ X(T)} with multiplication satisfying e(l)e(A)=e(A+1). Any
rational T-module V is completely reducible; we have

V= YO y*,
1eX(T)

where
V*={veV: w=ithy forallteT}.
For Ve .#; we define the character ch V of V by

chv= Y (dim,V¥e(d),
AeX(T)

if V is not zero and define the character of the zero module to be the zero
element of 4(T).
If

0>V ->V->V'—-0
is a short exact sequence of modules in .# 1 we have
(1.1) chV=chV'+chV"”.

Further, for Y,Z € .# 1 we have ch (Y®Z)=ch Y.ch Z. It is now easy to see
that 4(T) is isomorphic to the Grothendieck ring of the category ..
Suppose that T, and T, are tori and ¢: T; — T, is a morphism of algebraic
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groups. Then ¢ determines a ring homomorphism ¢: 4(T,) — %4(T,); for
A € X(T), ¢(e(A)=e(u), where u()=A(p(t)) for all t € T,. If T} is also a torus
and y: T, — T, is a morphism of algebraic groups, then it is easy to see that
(o) =doy.

Now suppose that the torus T is a closed subgroup of an algebraic group G.
For Ve # we define chy (V) (or simply ch V if confusion seems unlikely) to
be the character of V considered as a T module. We let

WG(T) = {ChV: Ve .//{G} ,

a subset of %(T) which is closed under addition and multiplication. The
elements of 2(T) will be called proper characters.

Let ¢: G — H be a morphism of algebraic groups, T, a torus in G and T, a
torus in G containing ¢ (T,). For Ve .#y, we define V¢ € .# ¢ to be the k-space
V on which G acts according to the rule gp=¢(gvforve V,ge G. Ifa: Y Z
is a morphism of finite dimensional rational H-modules, then the same map
o: Y — Z?is a morphism of G-modules. Thus ¢ determines an exact functor
’/”H i ;/”(;.

It is easy to check that

(1.2) @(chr,(V)) = chr (V7).

Here ¢ (strictly speaking § where 6: T, — T, is the map obtained by
restricting the domain and codomain of ¢) is the ring homomorphism %(T,)
— %(T,) obtained from ¢. Thus we obtain a map

0z: Pu(T,) — P(T))

by restricting the domain and codomain of ¢.

Lemma 1. If ol Ty > T, is an epimorphism, then ¢ and @5 are
monomorphisms. If ¢|1,: Ty — T, is a monomorphism, then ¢ is an epimorphism.

This may be verified without difficulty.

LeEMMA 2. Let G be an algebraic group, R,(G) the unipotent radical of G, let H
=G/R,(G) be the quotient group, ¢: G — H the natural map, let T, be a torus in
G and let T,=@(Ty). Then ¢: 4(T,) — 4(T,) and @p: Py(T,) — Ps(T,) are
bijections.

Proor. Since T,NR,(G)=1, o|7,: Ty — T, is an isomorphism. Hence, by
Lemma 1, ¢ is an isomorphism and ¢4 is a monomorphism. It remains to
show that ¢ is surjective. For Ve .# ; we must show that ch V= ¢(y) for some
x € Zy(T,). By (1.1) and induction on the dimension of ¥V it suffices to consider
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the case in which V is simple. Then, by Clifford’s Theorem, V is completely
reducible as an R,(G) module. But the only simple rational module for a
unipotent algebraic group is the trivial module (see the theorem of § 17.5 of
[3]). Thus R,(G) acts trivially on V, that is, each element of R,(G) fixes each
element of V.

We define Ve .#y to be the k-space V on which H acts by xv=gv (x € H,
v € V), where g is any element of G such that ¢(g)=x. Thus V= V? and so, by
(1.2),

chy, (V) = ¢(chr, (V)

and chr, (V) is in the image of ¢,.

2. The group G*.

Now suppose that G is a connected, semisimple, simply connected algebraic
group over k and that the characteristic of k is p+0. Let T be a maximal torus
and let M, Q, and R be as in the statement of the theorem. We define A4 to be
the endomorphism ring End, (Q) of Q. Since the socle of Q is simple, Q is
indecomposable and A/J (A)~ k, where J(A) denotes the Jacobson radical of A.
An element a of A has a unique expression

(21) a = z+ao

with z € k and a, € J(A). Now J(A) is a subspace amd hence an irreducible
closed subset of the affine space End, (Q). Thus the subset U=1+J(A),
obtained by translation by 1, is an irreducible closed subset of End, (Q). Since
the elements of J(A) are nilpotent linear transformations each element of U is
unipotent and in particular has determinant 1. Thus U is a closed, connected
unipotent subgroup of the special linear group SL (Q).

We denote by ¢: M — Q the projection corresponding to the decomposition
M=Q®R. For g € G we define o, € End, (Q) by

o, (y) = <(gy)

for y € Q. We first note that o, is non-singular. Let Q' be the kernel of o, If
y € Q and y € u, we have

g (vy) = E(gyy) = ¢(Ad (8)(7)gy)
Ad (g)(y)¢(gy) = Ad (g)(V)e,(y) = 0,

where Ad: G — End, (u,) is the adjoint representation of G on u, (see § 1.3 of
[7]). Thus Q' is a u,-submodule of Q and so, if non-zero, has non-zero
intersection with the socle Q, of Q. However, Q, is a G-submodule of M, so

i
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gy € Qo for y € Q, abd if y+0, then a,(y)=gy=+0. Hence Q'NQ,=0 and we
must have @'=0.
We define

G =<a,U: geG)

the subgroup of GL (Q) generated by U and {o,:g € G}. For ge G, ue U,
y€u, and y e Q,

aguorg-1(yy) = o ué(g™'yy) = aué(Ad (g7 )(Mg™'y)
au(Ad (g7 H()E(E 1Y)

o (Ad (g7 (&™)

(g Ad (€Y (u(E(EY)

¢(Ad ()(Ad (g7 H(»)g(u(&(&™')

= youo,-1(y) .

i

Hence aguo,-1€ A and so, by (2.1), has the form z+a, for some z €k,
ay € J(A). We let

0, ={yeQ: J(4y=0}.

By Nakayama’s Lemma Q, is non-zero, moreover it is easily seen to be a u,-
submodule of Q and therefore contains Q, (since the socle Q, is simple). Thus,
for Oy e @, we have

aguo-1(y) = au(g™'y) = o,(g7'y) = y.
On the other hand we have
(z+ag)y = zy

so that z=1 and thus o,ue,-+ € U. Hence in particular o,0,-1=u" for some
u' € U and, for any u e U,

agu(e,) "' = aua,- (W) teU,
and so U is a normal subgroup of G*.

We leave the reader to verify the following.

LEmMMA 3. The map ¢: G — G*/U taking g to o, U (g € G) is a surjective
group homomorphism.

Let y: G — GL (M) be the representation of G afforded by M and ¢: T
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— GL (Q) be the representation of T afforded by the T-module Q. (That is,
a()y)=y(@)(y) for t € T, y € Q). Now ¢ is a morphism of algebraic groups so
T, =0(T) is a torus in GL(Q), and in particular is closed and connected. We
put

G* = (T{,U: xeG¥*)

where T} =xT,x~*. Now G* is generated by closed and connected subgroups
of GL (Q) and is therefore closed and connected (by the Proposition of § 7.5 of
[3]). However, since G is semisimple, it is generated by the subgroups of G
conjugate to T. It follows that the image of ¢ lies in G*'/U. Thus, by the
surjectivity of ¢, we have G* =G* and G* is a closed connected subgroup of
GL (Q).

Consider now the determinant function §: G* — k*. Since U lies in SL (Q)
this factors through U to give a group homomorphism &: G*/U — k*.
Composing & with ¢ we thus obtain a group homomorphism G — k*. But G
is semisimple and so equal to its derived subgroup. Hence the homomorphism
G — k* is trivial and so § and thus also & is trivial.

We have now shown:

LeEMMA 4. G* is a closed, connected subgroup of SL (Q).

Thus G* and G*/U are naturally affine algebraic groups; we wish to show
that ¢: G — G*/U is a morphism of algebraic groups. We already know that
¢ is a group homomorphism and it remains to check that ¢ is a morphism of
varieties. Now ¢ is the composite of the map g + o, (g € G) with the quotient
map G* — G*/U, so it suffices to show that the first map G — G* is a
morphism of varieties. However, G* is a closed subgroup of SL (Q) and hence
of the affine space End, (Q) so it will certainly suffice to check that the map
a: g — a, (g € G) from G to End, (Q) is a morphism of varieties. We have a=6
oy, where

0: End, (M) — End, (Q)

is defined by 6(s)(y)=¢&(sy) for s € End, (M), y € Q. Now 6 is a linear map and
hence a morphism of varieties, also y: G — End, (M) is a morphism of
varieties and therefore so is the composite «. We have now obtained the
following strengthening of Lemma 3.

ProPoSITION. The map ¢: G — G*/U is an epimorphism of algebraic groups
and U=R,(G*).

The group U is equal to the unipotent radical R,(G*) of G* because it is a
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closed, normal, unipotent subgroup of G* and, since ¢ is surjective, G*/U is
semisimple.

We are now ready to prove the theorem. Let n: G* — G*/U be the natural
map, let n: T— T, be the map obtained by restricting the codomain of ¢ and
let T,=n(T,)=¢@(T). We have, as in section 1, ring homomorphisms

. G(T) - 9(Ty), ¢:9(Ty) —» 9(T), 4:9(T)— 9(T)
with 7ot =¢ and also maps

0z Powu(Ty) > P6(T)  and 7wy Poay(Ty) — Pos(T)y).
We have

chr(Q) = 7i(chr, (Q) ,

where Q is regarded as a G*- (and hence T;-) module via inclusion G*
— End, (Q). However, by Lemma 2, n5 is a bijection and so chr, (Q)=n4(y) for
some y € Pgsy(T,). Thus we have

chr(Q) = Hent(y) = ¢(1) = @2

and so

chr(Q) € pp(Peu(Ty) & Po(T)

that is, chy (Q) is a proper character.

In order to state and prove the corollary we need some more notation. The
Weyl group W=N;(T)/T acts naturally on X(T)®zR; we choose a positive
definite, W-invariant, symmetric bilinear form (-,-) on X(T)®zR. Let & be
the root system of G (with respect to T) and 4 a base for the root system,
giving a system of positive roots ®* and a system of negative roots . For
0+Ae X(T)®zR we define A*=2A/(4 A); we let

X*={AeX(T): (A«) 20 foralloed} and
X,={AeX": (Ao)<p" forall aed}.

We have a partial order < on X(T), we decree that A<pu, when u— 4 is a sum
of positive roots.

For A € X* there is a unique simple G-module L () of highest weight 4 and,
for A€ X(T), a unique simple u,-T-module L(n, 1) of highest weight A.
Moreover {L(4): Ae X*} is a full set of simple rational G-modules and
{L(n,2): A e X(T)} a full set of simple u,-T-modules. We define the nth
Steinberg module St, to be L((p"— 1)g), where g is half the sum of the positive
roots. It is known that St, is projective as a u,- and as a u,-T-module. We
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denote by Q(n, 4), for A € X(T), the projective cover of L(n, 1) in the category of
u,-T-modules. We define, for 4 € X (T), Q(n, 4) to be the restriction of Q(n, 4) to
u, and L(n, 2) to be the restriction of L(n, A) to u,. Then {L(n,4): L€ X,} isa
full set of simple u,-modules and Q(n, 1) is the projective cover of L(n,A).
Moreover, for A € X,, the restriction of L(4) to u,-T is isomorphic to L(n, A).
Further details may be found in [7].

For Ae X(T) we define A°=(p"—1)o+wyd, where w, is the longest
element of the Weyl group. For A € X, we have, by p. 41 of [4] (see also
Lemma 5 of [1]) that L(n,1) appears exactly once in the u,-socle of M
=St,®L(1°%. We let Q, be the u,-submodule of M isomorphic to L(n, 4). Since
the sum of all u,-submodules of M isomorphic to L(n, 1) is a G-submodule of
M (see § 2.2 of [8]) Q, is a G-submodule of M. Moreover, by the Proposition of
§ 2.3 of [5], we have Q,~L(4) as a G-module and so Qox~L(n,J) as a u,-T-
module. Now YSt,,®L(/1°) is projective as a u,-T-module and so a sum of
projective indecomposable u,-T-modules. Hence there is a u,-T-summand of
M, say Q, containing Q, such that Q is a projective indecomposable u,-T-
module. Let R be a u,-T complement to Q in M. It follows from [6] that
Q(n, A)- is the injective hull of L(n, ) in the category of u,-T-modules and so Q
is isomorphic to Q(n, 4). Hence ch @ =ch @ (n, 1), moreover M, Q and R satisfy
the hypotheses of the theorem. Thus we have:

COoROLLARY. For A € X, the character chQ(n, 2) of Q(n,A) is proper.

REMARK. For each 1 € X* there is a proper character y(4) given by Weyl’s
character formula (see § 5.1 of [7]). It may be that a still stronger property
holds. It may be that ch Q(n, 1), for 1 € X, (or even chQ(n, A)y(u)* for any
ue X', where F is the Frobenius morphism on ZX(T), asin § 5.1 of [7])is a
sum of the characters x(r), te X*. The statement concerning the
ch Q(n, Dy (wF is true, when p is large by virtue of 5.6 Satz of [8] whereas that
concerning ch Q(n, A) has been checked, by M. Koppinen, [9], for small primes
in several low rank cases.
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