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POWERS OF PARTIALLY ORDERED SETS:
THE AUTOMORPHISM GROUP

BJARNI JONSSON

1. Introduction.
The purpose of this paper is to prove the following result.

THE PRINCIPAL THEOREM. Suppose P is a bounded, directly indecomposable
poset that satisfies the descending chain condition, and suppose P~ A€, where A
is exponentially indecomposable. Then

Aut (P) = Aut (4) x Aut (C) .

To say that a poset (partially ordered set) is bounded means that it has a
smallest element 0 and a largest element 1. The poset A consists of all isotone
functions from C to A4, ordered by pointwise inclusion,

f<g ff(x) <gkx) forallxeC.

To say that A4 is exponentially indecomposable means that there are no posets
X and Y with A~ XYand |Y|> 1. Aut (P) is of course the automorphism group
of P.

For any posets A and C, there is a natural map

n: Aut (4)x Aut (C) — Aut (49),
where for ¢ € Aut (4), y € Aut (C) and fe AS,
(& N(f) = Eofoy™t.

This map is always an embedding, and it is our objective to show that in the
case under consideration it is an isomorphism. Obviously this would not be
true without some restrictions on the posets A and C. The particular
conditions assumed here are best motivated by recalling the canonical
representation property that holds for a large class of posets P. To simplify the
discussion, we assume that P is finite.
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First, P is the disjoint sum of its (connected) components,
P = Z(Pi’iel)’

and this representation is obviously unique. Secondly, each P, is isomorphic to
a direct product of directly indecomposable posets,

Pi;n(Pi,j’jeJi),

and by Hashimoto’s Theorem ([1]), this representation is unique up to
isomorphism. Finally, each P; ; can be represented as a power,

P. .

with A; ; exponentially indecomposable. It is not known whether, in general,
this representation is unique up to isomorphism, but by either Theorem 5.2 or
8.2 of Jonsson, McKenzie [2] we know that the representation is unique if P; ;
is either upper or lower bounded.

Roughly speaking, the automorphism group of P is determined by the
automorphism groups of the components P,, and these in turn are determined
by the automorphism groups of the factors P; ;. More precisely, if we partition
I in such a way that two indices belong to the same block just in case the
corresponding components are isomorphic, then the automorphism group of P
is isomorphic to the direct product of the automorphism groups of the posets
Pg=3% (P, i€ K), taken over all the blocks K, and the automorphism group of
Py is isomorphic to the wreath product of the automorphism group of one of
its components P; and of the full symmetric group on K. In exactly the same
manner, the automorphism group of P; can be represented as a direct product
of wreath products of automorphism groups of factors P;; and of full
symmetric groups, although this is a less trivial result and depends on the strict
refinement property for direct products of connected posets.

In view of this it is natural to ask what information we can obtain about the
automorphism group of A€ if we know the automorphism groups of 4 and C,
under the assumptions that A€ is connected and directly indecomposable, and
that A is exponentially indecomposable. In particular, one would like to know
whether the natural map is onto. Unfortunately this is not always true, even for
finite posets. In Example 11.1 in Jonsson and McKenzie [2], A consists of a 2-
element chain and a 3-element chain, with their bottom elements identified,
while C is the 2-element chain 2. Thus both A and C have trivial
automorphism groups but, as noted there, the automorphism group of A€ has
order 2.

It is clear from the above example that we cannot drop the boundedness
assumption from our theorem, and cannot even weaken it by just assuming the
existence of one of the two bounds. It is of course possible that, even when the
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natural embedding is not onto, something can be said about the relationship
between the three groups. Indeed, Theorems 11.2 and 11.4 in Jonsson,
McKenzie [2] are examples of results of that kind. However, these are quite

special, and at the present we have no idea what kind of general results one
could hope to obtain.

2. The logarithmic property.

We shall make extensive use of the results, techniques and notation from
Jonsson and McKenzie [2], and henceforth that paper will be referred to,
briefly, as [JM]. In particular, the version of the logarithmic property
introduced there will play a fundamental role. We begin by recalling some of
the basic facts, and introducing certain assumptions and notation that will be
in effect throughout this section and the next three.

We shall be concerned with an isomorphism

(2.1) p: A€ =~ BC,
where it is assume that

(2.2) A4 is bounded, and VJ(A)=A.
(2.3) C and D are connected and directly indecomposable, and satisfy the
ascending chain condition.

Recall that J(A) is the set of all strictly join irreducible elements of A, and
that VJ(A) is the set of all those elements of 4 that are least upper bounds of
subsets of J(A). Because A4 is assumed to be bounded, the sets J(4) and J' (A4)
are equal. (Cf. Section 6 in [JM].) Before introducing further notation, we
pause to indicate how the investigation of this isomorphism ¢ will aid in the
proof of the Principal Theorem. It will be shown that if A is directly
indecomposable, then one of two things must happen. One possibility is that ¢
is induced by an isomorphism ¢ from A to B and an isomorphism y from C to
D, in the sense that @ (f)=¢&o foy~! for all f e A, The second possibility is that
A and B have representations 4i: A>FP and u: B=EC, and that there is an
isomorphism g from F to E such that the diagram

AC N BD
l 1
(F) — (EP

commutes, where the unlabelled isomorphisms are obtained in an obvious
manner from 4, u, and g. It is clear that this is closely related to various results
in [JM], e.g. Theorem 8.2. The principal difference is that there we were
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concerned with the existence of certain isomorphisms, but here we need to
know their explicit form.

The next step is much easier. We consider a power A<, where A is directly
indecomposable and is not of the form X¢. Of course we also assume that A is
bounded, with VJ(A4)= A, and that C is connected and directly indecompos-
able, and satisfies the ascending chain condition. We show by induction on n
that the natural map from Aut (4) x Aut (C") to Aut (4") is in this case an
isomorphism. From this the Principal Theorem follows by an easy induction
on the number of non-isomorphic factors in the exponent.

The various notational conventions introduced in [JM] will be freely used.
E.g., we write ffor ¢(f);if a € A, then (a) is the constant function on C whose
sole value is a; for a,a’ € A and S= C, {a[§], a’) is the function on C that takes
on the value @ on S and @' on C—S; and for a € 4 and s € C, j(a,s)={a[x
>5],0>. R(p) is the set of all a € 4 such that ¢(<a)) is constant, and @ is the
bijection from R(¢p) to R(p~!) such that ¢({ad)={@(a)). For a,a’ € R(p), a
<, means that a<a’ and that for any function f'e A€ with f(C)={a,a'}, fis
constant. Recall the conditions (¢,k), (¢ !,k), k=1,2,3,4. Collectively these
assert that

E = (R(p),<,) and F = (R(p7"), <,1)

are sub-posets of 4 and B, respectively, that ¢ is an isomorphism from E to F,
and that the maps a — @(<ad)and b — ¢ ~!({b)) are isomorphisms from A to
FP and from B to ES, respectively.

As in Section 7 of [JM], the isomorphism ¢ in (2.1) induces an isomorphism

y:J(A)-C° = J(B)-D?,
which in turn induces isomorphisms

Y 4;C°

I

B,"Dé )

where A4; and B, (i € I) are the components of J(A) and J(B), respectively. This
means that, for ue A, xe C, ve B, and y € D,

Vi, x) = (v,y) iff @ju,x) = j@,y).

Applying the strict refinement property to the isomorphisms ;, and making
use of the fact that C and D are directly indecomposable, we have for each i € I
one of two possibilities: either there exist isomorphisms

(2.4) o0 A,

~B, y:C=D
such that, for all u € 4; and x € C,

2.5) Vilt, x) = (o(u), (),
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or else there exist a poset W, and isomorphisms
of: W;-D°
Bi: W C°

e

A, 7: C

B, ¢6:D=D

such that, for all we W, x € C, and y € D,
Viohw, ), 7(0) = (Bi(w, x),6,0)) -

We let I, be the set of all i € I for which the first case applies, and I, =11,
and for k=0,1 we let

J(A) = U {4 iel), J.B) =U{B: iel}.

For i € I, the notation can be somewhat simplified. Replacing x by y;”*(x) and
y by 8; 1(y), we obtain

Yilei(w, 3710 x) = (Bilw,y 1 (%)),y) -

e
a

e

Defining

mwy) = w571 0) Bilwx) = Bilwy ()
we therefore obtain isomorphisms
(2.6) @ W;:D*~ A, P2 W, C°=xB,,

such that, for all we W,, x e C and y € D,

2.7 Viloi(w, ), x) = (Bi(w,x),) .

Note, finally, that the two formulas (2.5) and (2.7) can also be written
(2.8) @ju,x) = jlo().yi(x)) ,

29) @j (i (w,3), %) = j(Bi(w,x),y) .

Our first lemma is largely a translation into the present notation of various
results from Section 7 of [JM].

LeEMMA 1. (i) For all fe AS,iely ue A, and x € C,
u < f(x)  iff () < ]('Vi(x)) .
(ii) For all fe AS,iel,,we W, xe C, and y € D,

o0(w,y) < f(x) iff Biw,x) < FO).

(iii) An element a € A belongs to R(op) iff, for alli € I, and w € W, the inclusion
o;(w,y)<a either holds for all y € D, or else for none.

(iv) Foralla,a' € R(p),a< ,ad iffa<a and, for allu € Jo(A), u<a’ implies u
<a.
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(v) Jo(A) S R(9p).
(vi) For all i€ I, and u € A;, o;(u)=3(u).

PrROOF. Observe that u<f(x) iff j(u,x)<f, and that o;(u)<f(y;(x)) iff
Jjo; (), y:(x))<f. From this (i) follows by (2.8). Similarly,

o(w,y) < f(x) iff j(o;(w,p),x) < f, and

Biw,x) < fy) iff j(Bi(w,x),y) < T,

whence (ii) follows by (2.9).

Given a € A, let f=<a). Then a € R(¢) iff, for all ¢ € J(B), the inclusion v
< f(y) is independent of y. If v € J,(B), then this inclusion never depends on y.
Indeed, we have v=a,;(u) and y=1y;(x) for some i € I, u € A;, and x € C, and by
(i) the inclusions v < f(y) and u <f(x) are equivalent. The latter inclusion does
not depends on x, since f'is constant, and the former is therefore independent of
y. if v € J,(B), then v=f;(w, x) for some i € I,, w e W, and x € C. By (ii), the
inclusions v < f(y) and «;(w, y) <a are equivalent. Hence v < f () is independent
of y iff a;(w,y)<a is. This proves (iii).

Suppose a,a’ € R(p) and a<a'. To say that a<  a means that, for any
function f € A with f(C)={a,a'}, fis constant. Equivalently, it means that, for
any such function £, and for any v € J(B), the inclusion v < (1) is independent
of the element y € D. For v € J,(B) this is automatically the case. Indeed, we
have v=;(w, x) for some i € I, w e W, and x € C, and by (ii) the inclusions v
<f(y) and «;(w,y)<f(x) are equivalent. By (iii), the latter inclusion does not
depend on y, for f(x) is either a or a’, and therefore belongs to R(p). We
therefore need only consider the case when v € J,(B). In this case v=a;(u) and
y=7;(x) for some i € I,,u € A, and x € C, and by (i) the inclusions v < f(y) and
u< f(x) are equivalent. Since f(C)={a,d'}, this shows that the inclusion v
< f(y) is independent of y iff the two inclusions u<a and u<da’ either both
hold or both fail. This proves (iv).

(v) is an immedutate consequence of (iii), for if ae Jo(4),and ifie [, we W,
and y € D, then the two element a and a;(w, y) belong to different components
of J(A), and are therefore not comparable.

Finally suppose i € I, and a € 4;. By (v), a € R(¢p), and therefore ¢({a))
={@(a)). Letting f=(a), and picking any x € C, we have by (i), o;(a) <F (y;(x))
= @(a). To prove the opposite inclusion we consider any v € J(B) with v < (a),
and show that v<a,(a). First suppose v € J,(b). Then v=p,(w,x) for some
kel,, we W, and x € C. Picking any y e D, we have B,(w,x)<f(y) and
therefore by (ii), a,(w, y) <f(x)=a, which is impossible because a and o,(w,y)
belong to different components of J(4). We must therefore have v € J,(B).
Hence v=o,(u) for some k € I, and u € A,, and the inclusions v < @(a) and u
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<a are equivalent by (i). But the inclusion u<a can only hold of k=i, and in
this case it implies that v=o;(1) <o;(a). This completes the proof of (vi).

3. The case I+ F+1,.

It will be shown here that if I, and I, are both non-empty, then 4 has a non-
trivial decomposition. More specifically, it will be shown that the sets J,(A4)
and J,(A) have least upper bounds ¢, and ¢,, and that

A = [0,¢0]°[0,c,] -
Some additional notation is needed. For a € 4, b € B, and k=0, 1, we let
J() = {ueJ(A): u<a}, J(a) = J@)NJ,(4),
Jb) = {veJ(B): vgb}, J(b)=J([b)N J(B).

We let M and N be the sets consisting of the maximal elements of C and of D,
respectively. Actually the only properties of these sets that will be used are that
they are proper filters that are invariant under all the automorphisms of C and
of D, respectively, and that if y is an isomorphism from C to D, then y(M)=N.
We let

Jin(A) = {o;(w,y): iel,, we W, ye N},
Jim(B) = {iw,x): iel, we W, xe M} .
Finally, we shall be working extensively with functions of the form {a[M],a")
and (b[N1],b'), where a'<a in A and b’ <b in B, and to simplify the notation,
we denote these simply by a’a and b'b, respectively. Notice that in this context
the constant functions {a) and {b)> are sometimes written aa and bb.
LemMMA 2. There exist elements ¢,c’,cq, ¢, € A and d,d',dy,d, € B such that
@(01) = dd', @lcc’y = 01,
(piOC,) = dd, o(cc) = 0dy ,
o(col) = d'd',  @l(cdc) = dyl .
Furthermore,
J©) = Jn(4), J(©) = J nA) U Jo(4),
J(co) = Jo(4), J(ey) = J1(4),
Jd) = Jy mB), J(@d)=J; u(B)UJyB),
J(do) = Jo(B), J(dy) = J,(B).
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Proor. Let f=01. We claim that
Ji,m(B) if ye D-N
Jom(B)UJy(B) ifyeN.
To prove this, we show that an element v € J,(B) belongs to J(f(y)) iff y € N,
and that an element v € J,(B) belongs to J(f(y)) iff v € J; p(B).

First, if v € Jo(B), then v=a;(u) and y=y;(x) for some i€ I,, u e A; and
x € C, and the conditions

) J(fO) = {

v<f@), u<f(x) xeM, yeN

are equivalent. On the other hand, if v € J,(B), then v=,(w, x) for some i € I,
we W, and x € C, and the conditions

v <fO)  awy) <f(x), xeM, vel u(B)

are equivalent.

From (1) it follows that fis constant on each of the sets N and D— N, that is
fis of the form dd’, and (1) also shows that the formulas for J(d) and J (d’) hold.
By symmetry, ¢ ~(01) is of the form cc’, and the formulas for J(c) and J(¢')
hold.

Next, letting g=cc and h=c'c’, we claim that

[%)] for ye D—N
J,(B) for yeN
Jo(B) for ye D—N
J(B) for ye N

@ JE0) = {

€ J(h(y)) = {

To prove this it suffices to show that for v € J,(B), v<g(y) never holds, but
v<h(y) always holds, and that for v € J,(B) each of the inclusions v<g(y),
v<h(y) holds just in case y € N. First, for v € J,(B) we have v=0,(u) and
y=y;(x), where i € I, u€ 4; and x € C, and the inclusions v<g(y) and v<h(y)
are equivalent to u<c and u<c’, respectively, but from the formulas for J(c)
and J(c') we see that u < c holds for no u € J,(A4), while u < ¢’ always holds. On
the other hand, if v € J,(B), then v=f,(w,x) for someie I, we W,and x € C,
and again consulting the formulas for J(c) and J(c¢), we see that the conditions

v <g0), owy) <c, yeN
are equivalent, and also the conditions

v < h_(y)’ ai(w’.V) < C,, y € N .

From (2) and (3) we infer that ¢(cc) and ¢(c'c’) are of the form 0d, and d,1,
respectively, and that the indicated formulas for J(d,) and J(d,) hold. By

-
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symmetry, ¢ ~'(dd) and ¢ ~*(d'd’) are of the form Oc, and c,1, respectively, and
the indicated formulas for J(c,) and J(c,) hold. This completes the proof of the
lemma.

The elements ¢, ¢,. . .,dy, d, in Lemma 2 are obviously unique. The notation
introduced there will be in effect throughout this section.

CoRrOLLARY 3. The elements 0,c¢,c’,cy,cq,1 in A and 0,d,d’,d,,d,,1 in B form
lattices that are homomorphic image of the lattices in Figure 1.

Proor. It is clear that, for any elements a,d’,a” € A, a=a' A a’ iff J(a)
=J(a@)NJ(a"), and that J(a)=J(a)UJ(a') implies a=a’ v a". From this and
the corresponding statement about B we see that all the joins and meets
indicated in the figure are correct.

Fig. 1

LEMMA 4. The functions listed below are mapped as indicated:

1 r 07 07
11 11 col | dd Ocy | dd
¢l | dyl ccy | dd, Oc | Od
a1l | dl cc’ | 01 CoCo | dody
¢,y | dydy 01 | dd’ Oc | 0Od
cl | dl coC' | dod’ Oco | 0d,
cc | dyl cc | 0d, 00 | 00

Proor. We first observe that, according to Lemma 2, ¢ maps the functions
01, ¢, Ocy, cc, col, ¢
onto

dd', 01, dd, 0d,, dd, ddl,

Math. Scand. 51 — 9
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respectively. Letting f=c,c, and g=c,c,, we easily check that J(f(y))=J,(B)
and J(g(y))=J,(B), whence f=d,d, and g=d,d,. Of course ¢ maps 00 onto 00
and 11 onto 11. The remaining eight entries in the table can be easily verified
by expressing the functions involved as joins and meets:

¢l = ¢y v Ol dl = dd, vdd,

'l = vl dl = dylvdd,
cl = ¢’ vOl, dl = 01vdd,
cey = cc v Ocy, dd, = 0d, v dd ,
col = nepl, dod = dyl Ad'd,
0c’ = Oc v Ocy, 0d = 0d v 0d, ,

Oc = Oc; A Oc, 0d = dd A0d",
Ocy = 0c’ Acoep, 0dy = Od' A dyd, .

These joins and meets, which are suggested by Figure 2, are easily verified with
the aid of Corollary 3.

LEMMA S. For any a € A, and for u=c,c,cy, ¢, the join a v u and the meet
a A u exist, and

Javu) = J@uUJ@).
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ProoF. For any fe A, the following conditions are easily seen to be
equivalent:

fvg exists for all g e A€,
f(x) va existsforallae A and xe C.

Using this, the corresponding fact about BP, and the fact that ¢ preserves joins,
we see that the following joins exist for all g € A€, ae A and b € B:

0l v g, cc' v g, cva, ¢ va,
ccvg 0d, vg, d,vbh,
ccdvg dylvg dyvh.

By symmetry, d v b, d v b, ¢, vaand ¢, v a exist. To prove the existence of
the meets a A u, we simply replace all joins by meets in the above argument.
To prove that

(1) Jave) = J@uUlJ),
it suffices to show that, for any u € J(a)—J, n(A4),

u < avcimplies u < a.

For this purpose consider the functions
f=aa, g=c,h=fvg=1(avolavc).
Then g=01, and therefore
_ 1 for ye N
h =
) {f(y) for ye D—N .

First suppose u € Jo(A). Then u € A; for some i € I, and picking any x € C
— M, we see that the following conditions are equivalent:

u<ave=hx), oW <hpx) =7 :x) u<fx)=a.

On the other hand, if u € J, (A) (and of course u ¢ J, y(A)), then u=o;(w,y) for
some i € I, we W;and y e D— N. Again picking x € C— M, we see that the
conditions

u<ave=hx), PBwx)<hy =50, u<fl)=a

are equivalent.
To prove that

(2) J@avc)=J@ulJ(),
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it suffices to show that, for any u € J,(4)—J; n(4),
u<avc implies u < a.

Consider the same functions f, g and h as before. We have u=oa,(w,y) with
iel,,we W;and y e D— N, and picking in this case x € M, we see that the
conditions

u<avd =hkx), Bwx) <h(y) =70, u<flx)=a

are equivalent.
From (1) and (2) we obtain by symmetry

(3) Jbvd) =Jb)UJA),
4) Jbvd)y=JbUJd).
To prove that

4) J(av o) = J(@ U J(co),

it suffices to show that, for any u € J, (A),
u<avc, implies u < a.
We have u=a,;(w,y) with i € I,, w e W, and y € D. Consider the functions
f=aa, g=cl, h=fvg=(avcy)l.

Then g =d'd’, and therefore h(y)=f(y) v d'. Picking any x € C — M, we see that
the conditions

us<ave=hx, Bwx) <hy)=70)vd,
ﬁi(W,X) < f()’), u< f(x) = q

are equivalent. Here we have made use of (4) and the fact that f;(w, x) is not a
member of J(d'), since x ¢ M.
Finally, to prove that

J@ve)=J@UlJ(,),
it suffices to show that, for all u € J,(4),
u<avc implies u < a.
In this case we consider the functions
f=0a g=0c, h=fvg=0@avc),

noting that g =dd, and therefore h(y)=f(y) v dfor all y € D. We have u € A, for
some i € I,, and picking any x € M, we make use of (3) and the fact that
o;(u) € J(d) to infer that the conditions
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u<ave =hx), oW < h(yx) =7 yvd,
a(w) < f(:(x), u<fx)=a

are equivalent. This completes the proof of the lemma.

LEMMA 6. For any ag,a; € A, if ag<c, and a, <c,, then a, v a, exists, and

(apva)Aacy =ay (ayVva)ac =a.

Proor. We first consider the case when a, <c¢, and we let f=ayc,, g=a,c.
Then

Ocy < f<cocy, and g < cc,
and therefore
0dy < f<dydy, and g < 0d,.

For y € D, we therefore have f(y)=d, if y € N, but g(y)=0if y ¢ N, so that in
either case f(y) v g(y) exists. Consequently f v g exists, and hence so does f v g.
Since ¢, v ¢=c', we infer that a, and a, have a least upper bound in the
interval [0, ¢']. By symmetry, if by <d, and b, <d, then b, and b, have a least
upper bound in [0,d"].

Considering now arbitrary elements a,<c, and a, <c,, we let f=0a, and g
=0a,. Then f<0c, and g<0c,, and consequently f<0d, and g <dd. Thus, for
all y € D, the elements f(y) and g(y) have a least upper bound in [0,d']. From
this it follows that fand g have a least upper bound in [00,d'd'], and therefore f
and g have a least upper bound in [00, ¢,1]. Obviously this implies that a, v a,
exists.

By Lemmas 2 and 5,
J(ag v c;) N J(co) = J(ay),

therefore (a, v ¢;) A co=a,, and consequently (ao Vv a;) A ¢co=a,. Similarly,
(ap v a)) A c,=a,.

THEOREM 7. A=[0,¢,]-[0,c,].

ProoF. The maps
¥ a— (a@ancganc) p: (aga)— ayVva,

from A4 to [0,¢0] [0, ¢,] and from [0, ¢,]-[0,c,] to A are well defined, and they
are obviously isotone. Furthermore, Au is the identity map by Lemma 6, and to
see that ud is the identity map we need only observe that
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J@anacy)UJ@ancy) =Ja),

and hence (a A ¢g) v (a A ¢;)=a. The two maps are therefore isomorphisms.

4. The case I, ={.

If A is directly indecomposable, then it follows from Theorem 7 that either ¢,
=0 or ¢; =0, and hence either Io=(F or I, =. We show here that in the
latter case the isomorphisms ¢ is of the form f — Eofoy~!, where ¢: 4 =B and
y: C=D.

LEmMA 8. If I, =&, then R(p)=A and R(¢~')=B, and hence ¢: A=B.

Proor. If I, =, then J(A)=J,(A), and hence by Lemma 1 (v), J(4) S R(¢).
Since every member of A is the least upper bound of elements in J(A), it follows
that R(¢p)=A. Similarly, R(¢ ~!)=B, and it trivially follows that ¢: A=B.

LEMMA 9. If I, =, and if A is directly imdecomposable, then all the v;'s are
equal.

Proor. Assuming that I, =, and that the y/s are not all equal, we shall
show that 4 has a non-trivial direct decomposition. Let S be the set of all
elements x € C such that the elements y;(x) are not all equal, and choose a
maximal member s of S. Then all the isomorphisms y; agree on the filter G
={x € C: x>s} of C, and hence they all send G into the same filter H=7,(G)
of D. The set T={y;(s): i € I} has at least two elements, and HUT is a filter of
D. Letting

f=<1GL0), g =[GU{s}]05,

we have A=[f,g]=[f gl It is easy to check that f= (1[H],0), and that g(y)
=1 for y € H, and g(y)=0 for y € D— (H U T). Furthermore, the elements b,
=g(t) with t € T are all distinct from O, for we have t =1y,(s) for some i € I, and
choosing u € A;, we see that o;(u) < g(t). Observe that the members of T are
pairwise noncomparable, since they are the images of s under isomorphisms
from C to D, and since C and D are assumed to satisfy the ascending chain
condition. It follows that the interval [f,g] in B® consists of all functions h
from D to B such that h(y)=1 for y € H, h(y)=0for y e D— (HUT), and h(t)
<b, fort € T. Thus A is isomorphic to the direct product of the intervals [0, b,]
with te T.
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THEOREM 10. If I, = & and A is directly indecomposable, then there exists an
isomorphism y from C to D such that

f = Gofoy™*  for all fe AC.

Proor. By the preceding two lemmes, @ is an isomorphism from A to B, and
all the y;’s are equal to the same isomorphism 7 from C to D. The map

@'(f) = Gofoy™!

is therefore an isomorphism from A€ to BP. To show that ¢ and ¢’ are equal,
we merely observe that they agree on the set

J(A) = {jla,x): aeJ(4),xeC},
since for i € I, a € A;, and x € C we have by (2.8) and Lemma 1 (vi),

@jla,x) = j(a(a),7:(x)) = j(@(a),7(x))

= @oj(a,x)oy~".

5. The case [,= (.

In the notation of Section 7 of [JM], this is the case in which all the sets Z,
are trivial. By [JM, Corollary 7.8], the properties (p,k) and (¢~ ', k), k
=1,2,3,4, therefore hold. The first part of the next theorem is just a
restatement of these properties, and the second part is a more detailed version
of Theorem 3.3 in [JM].

THEOREM 11. Suppose 1,= (. Then
E = (R(p),<,) and F = (R(p™"), <,
are subposets of A and B, respectively, ¢: ExF, and
i: A= FP  where i(a) = p(Ka)),
u: B = ES,  where u(b) = ¢ '({b)).

I

Furthermore, the diagram
4C e , gD
/:Cj LIC
(FP)C 25 (E)P

commutes, where i€ and uC are the isomorphisms induced by i and p, and for
he (FP¢ xeC and y e D,
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v (x) = ¢~ (h(x)() -

PROOF. By (¢,4) and (¢~',4), E and F are subposets of 4 and B,
respectively, by (¢,2), @ is an isomorphism from E to F, and by (¢ ', 3) and
(¢,3) we have A: A=~FP and u: B>~EC.

The commutativity of the diagram is verified by direct calculations. Given
fe AS, x e C and y € D, we want to show that

YA = kSN

or, equivalently, that

P(fEN)O) = dlo ' KFOD)X) -
Letting

g =<, h=ZfOD,

we can write this as

g0 = $(h(x).

Since the functions g and h are constant, the elements g(y) and h(x) belong to
R(¢ 1) and R(g), respectively. In general, for a € R(¢p) and b € R(¢ "), the
assertion that ¢(a)=>b means that, for allie I, we W, se C, and t € D, the
inclusions a;(w,t)<a and f;(w,s)<b are equivalent. Since, by Lemma 1 (iii),
these two inclusions do not depend on s and ¢, we can fix these elements. Thus
@(a)=>b iff, for all i € I and w € W, the inclusions a;(w,y)<a and B;(w,x)<b
are equivalent.

To apply this with a=h(x) and b=g(y), we simply observe that the six
inclusions

O(,-(W,y) < h(x), ﬂi(Wax) < E(,V) s
Biw,x) < fO),  a(w,y) < f(x),
o(w,y) < g(x),  Biw,x) < gy

are equivalent. This completes the proof of the theorem.

6. The first induction.

The assumptions introduced at the beginning of Section 2 are no longer in
effect.

THEOREM 12. Suppose A is a bounded, directly indecomposable poset with
VJ(A)= A, and C is a connected, directly indecomposable poset that satisfies the
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ascending chain condition, and suppose A is not isomorphic to X for any poset X.
Then, for any natural number n, the natural map

Aut (4) x Aut (C") — Aut (4"

is an isomorphism.

Proor. The case n=0 is trivial. For n=1, the results in the preceding
sections apply with B=A4 and D=C. Given an automorphism ¢ of A€, it
follows from Theorem 7 that either ¢, =0 or ¢, =0, i.e., that either I,= ¢ or I,
= (¥. Since A is not isomorphic to any power X¢, Theorem 11 rules out the
possibility 1,=J. Hence I, = (J, and reference to Theorem 10 completes the
proof for this case.

We now assume that the theorem holds for a given value n>1, and for all
smaller values, and show that it also holds with » replaced by n+ 1. To simplify
the notation, we use the following convention: For x € C and y € C", (x,y) is
the juxtaposition of the sequences (x) and y, that is, if y= (yg, ¥, - -» Vu—1), then
(%,3)= (X, Y0, V1s+  -»Vn—1). Similarly, for x,y € C and ze C"™!, (x,y,2) is the
juxtaposition of (x,y) and z.

Let x be the isomorphism from A" to (A<")C such that, for fe A<, x e C
and y € C".

(X)) = f(x).

Consider an automorphism ¢ of A", and let ¢ be the induced
automorphism of (4<")C, i.e., the automorphism such that the diagram

AC"+X ___?__) ACn+l

xl lx

(AC")C N (AC")C

commutes. We are going to apply the results from the preceding sections with
@ replaced by ¢, with A and B replaced by A", and with C and D replaced by
C. By [JM, Corollary 6.6], VJ(4<")= A", and the conditions (2.2) and (2.3) are
therefore satisfied. Of course the auxiliary notions introduced in Sections 2
and 3 are now to be interpreted relative to ¢’ rather than to .

Since A4 is bounded and directly indecomposable, and since C" is connected,
it follows from [JM, Theorem 9.1] that A" is directly indecomposable.
Consequently, the direct decomposition of A" given by Theorem 7 must be
trivial, i.e., we must have either Io= or I, =(.

Cask 1. I, = . By Theorem 10 there exist automorphisms 7 of A" and § of
C such that
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¢'(g) = nogod™! for all ge (A

and by the inductive hypothesis there exist automorphisms ¢ of 4 and o of C"
such that n(h)=Eohoo ! for all h e AT For fe A”", x e C and y € C", we
therefore have

e(f)x,y) = x(e(N)W)
= ¢'(x(f)X) )
(mex(f)ed~ 1) (x)(y)
n(<(£)(G~1(¥)) )
(Eox (O (x)ea 1))
= {(NE N 0))
= {(f(07 x)oT D) -
Thus ¢(f)=Eofoy ™!, where y is the automorphism of C"*! that takes (x,y)
into (6(x),a(y)) for all xe C and y e C".

il

Cask 2. I,=(J. We now apply Theorem 11. By [JM, Theorem 8.2], the
posets E and F are isomorphic to A" . Hence we obtain a commutative
diagram

(AC")C _e (AC")C

e J l,,c

(A9 (4T )

where 4 and p are isomorphisms from A" to (4" )¢, and v is obtained from
an automorphism g of A" by letting

v(N0) = e(hk)(x) for he (A7) xyeC.
Let 7 be the isomorphism from A" to (A" )€ such that
t(@)(x)0) = g(x,y) for xeC, yeC"'.
Then
i= 1ok, = top,

where A’ and ' are automorphisms of A<". By the inductive hypothesis, there
exist automorphisms &,, £, and &, of 4, y,,7, of C", and y, of C"~" such that,
forall ge A< and he A",

X(g) = Liogoyr!,  W(g) = &uogoyy s elh) = &ohoyt.

For fe AT x, ye C and z e C""! we obtain by direct calculations
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(voi%o)(NIM() = & (&5 (75 2)

(1€ ox0@) ()W) = &, (x.7, (:2) -

Letting
&= £ 1008,

we therefore have

Ty 0,2) = E(f (17 (%75 ' (2) -
Thus, if we define the automorphisms 6 and ¢ of C"*! by

o(x,3,2) = (7,1 01,2),  axp2) = (17 (%7, '),

then f(6(x,y,2))=¢&(f (o(x,y,2))), and letting y=300 ", we conclude that f=¢
ofo’))_l,
The theorem follows by induction on n.

7. The second induction.

The following simple lemma enables us to extend the preceding theorem to a
much larger class of exponents.

LemMaA 13. For any posets A, C and D, if the natural maps
Aut (4) x Aut (C) — Aut (4°),
Aut (4) x Aut (D) — Aut ((49P)
are isomorphisms, then so is the natural map

Aut (A) x Aut (C-D) — Aut (4¢P) .

PRrOOF. Given an automorphism ¢ of A€ "2, the induced automorphism ¢’ of
(AP is, by hypothesis, of the form ¢'(g)=nogod~!, where n and & are
automorphisms of A€ and of D, respectively. Also by hypothesis, # is of the
form n(h)=¢ohoo™!, where ¢ and ¢ are automorphisms of 4 and C,
respectively. Easy calculations show that ¢@(f)=&ofoy, where 7y(x,y)

=(0(x),8(y))-

THEOREM 14. Suppose A is a bounded, directly and exponentially
indecomposable poset with VJ(A)= A, and C is a connected, finitely factorable
poset that satisfies the ascending chain condition. Then the natural map
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Aut (4) x Aut (C) — Aut (49)

is an isomorphisms.

Proor. We have
C=CpCy...Cx,

where C,,C,,...,C, are pairwise non-isomorphic, directly indecomposable
posets. For k=1, the conclusion holds by Theorem 12. We therefore assume
that k> 1, and that the theorem holds for all smaller values.

Let

C = CPCy...Cy.
By the inductive hypothesis, the natural map
Aut (4) x Aut (C') — Aut (4%)

is an isomorphism. By [JM, Theorem 9.1 and Corollary 6.6], the poset A€ is
directly indecomposable and satisfies the condition VJ(4¢)= A€, and from
[JM, Theorem 8.1] we see that A is not isomorphic to a poset of the form
X € Hence, by Theorem 12, the natural map

Aut (A€) x Aut (C*) — Aut ((AS))

is an isomorphism. Reference to the preceding lemma completes the proof.

8. The proof of the Principal Theorem.

Under the hypothesis of the Principal Theorem, A4 is obviously bounded and
directly and exponentially indecomposable, and C is connected. Also, VJ(A)
=A by [IM, Corollary 6.3. (v)]. Furthermore, from the fact that A satisfies
the descending chain condition it follows that C satisfies the ascending chain
condition, for the map x — j(1, x) is an embedding of C? into A. In fact, every
strictly decreasing sequence of filters in C must be finite, for if the sequence of
filters G, is strictly decreasing, then the sequence of functions (1[G,],0) is
strictly decreasing. Using this, we will show that C is finitely factorable, thereby
completing the check of the hypotheses of Theorem 14.

Suppose C is not finitely factorable. Let C,=C. Then C, has a non-trivial
factorization 44: C=D,-C,, and one of the factors, say C,, is not finitely
factorable. Therefore C, has a non-trivial factorization 4,: C, =D, -C,, with
C, not finitely factoriable. Continuing in this manner, we obtain isomorphisms
A CoxD,-C,,, for n=2,3,... such that D, is non-trivial and C,,, is not
finitely factorable. Choosing d,, d, € D, with d, £ d,, associate with each filter G
in C,, the filter
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G, = {(xa,V)G Dn'cn+1: dem yE€ C} ’

in D,-C,.,, and the filter u,(G)=A4, !(G') in C,. It is clear that g, is injective
and order preserving, and that y,(C,,,) is a proper filter in C,. Letting

Hn = Holy .- - ”n(cn+l) s

we conclude that the filters Hy, H,,. . . of C form a strictly decreasing sequence.
Reference to Theorem 14 completes the proof.
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