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POWERS OF PARTIALLY ORDERED SETS:
CANCELLATION AND
REFINEMENT PROPERTIES

BJARNI JONSSON and RALPH MCKENZIE

1. Introduction.

This paper concerns a general operation on partially ordered sets (posets).
Given two posets A and B, A% denotes the set of all order preserving
(monotone, isotone) functions from B into A4, i.e., maps f: B — A such that
f(x)<f(y), whenever x,y € B and x <y. The order on 4% is defined pointwise, f
<g iff f(x)<g(x) for all x € B. This operation, called exponentiation, was
defined and studied by G. Birkhoff in [2] and [3], but except for one paper,
Novotny [15], nothing more was written about it until the subject was revived
recently by I. Rival who, in collaboration with others, wrote several papers on
various aspects of this operation.

In relation to the operations of disjoint union, or sum, and direct product,
exponentiation obeys the same equational laws encountered in the arithmetic
of integers,

AB+C ~ AB‘AC, (AB)C ~ AB'C’ (AB)C ~ AC'BC,

where = denotes isomorphism. We shall be concerned with four properties
that do not hold in general, but will be shown to be valid for large classes of
posets.

I. Cancellation law for bases. 48~ A¢ implies B=C.
IL. Cancellation law for exponents. A€~ B¢ implies A ~B.
ITII. Refinement property for powers. If A€~BP then for some E, X,Y,Z,
A~EX, B=EY, CxY-Z,D=XZ.
IV. Mixed refinement property. If A2=11 (C,, i € I), then for some 4, (i € I),
Ax=M (A, iel)and C;=ABforalliel

The largest part of our efforts will be devoted to the properties II and III.
These properties will be shown to hold under a variety of conditions, and
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unfortunately there is no reasonable way of combining all our results into one
theorem. See Theorems 5.2, 5.4, 8.1, 8.2, 8.3, and 10.3. One special case is
known in the literature: It is shown in Duffus and Rival [8] that II holds if 4
and B are finite lattices and C is a finite poset.

Property IV turns out to be much easier to handle. The only conditions that
have to be imposed on the posets are that B and A2 be connected. See Theorem
9.1. For the special case when A4 is a bounded lattice and B is finite, this result
can be found in Duffus, Jonsson and Rival [7].

We do not make a detailed study of the property 1. In Duffus and Rival [8] it
is shown that this property holds for finite posets, provided the base is not
unordered. Making use of our results concerning III and IV, we obtain I for
certain infinite posets. See Theorems 10.1 and 10.2.

Section 11 contains some results about the automorphism group of A2,
However, we do not make a thorough investigation of this subject, and it is
clear that much more can be said about the connection between this group and
the automorphism groups of A and B. See Theorems 11.2, 11.4 and 11.5. The
twelfth and final section contains a short list of open problems.

In [16], Wille considers the properties I-IV for 4 and B lattices of finite
length and C and D finite posets. His results, which were obtained later than
ours, cover some situations not included here, but more importantly, his
techniques are different and, when applicable, they are simpler.

Several of the results presented here were announced in [13].

2. Background material and examples.

The operations of addition and multiplication are commutative and
associative, and multiplication is distributive over addition. Every poset is the
sum of its (connected) components, and from this it follows that the
cancellation law for addition,

A+B =~ A+C impliess B = C,

holds provided 4 does not have an infinite set of pairwise isomorphic
components. In particular, this holds whenever A4 is finite. On the other hand,
the unique factorization property fails, even for finite posets (Hasimoto and
Nakayama [12]). E.g., letting 2 denote the 2-element chain, we have

14+2+22423424425 = (1+2)(1+22+2%
= (1+2+2%)(1+2%),

and all four factors are directly indecomposable. However, a fundamental
theorem in Hashimoto [10] states that any two direct decompositions of a
connected poset have isomorphic refinements. Thus a connected poset has, up
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to isomorphism, at most one representation as a direct product of directly
indecomposable posets. In particular, every finite connected poset has the
unique factorization property. It follows easily that a direct factor that is
connected and finitely factorable can be cancelled. Le., if 4 is connected, and is
isomorphic to a direct product of finitely many directly indecomposable posets,
then A-B=A-C implies B=C. The hypothesis that A be finitely factorable
obviously cannot be omitted. To show that the connectedness of A4 is also
essential, recall that in [9] Hanf constructed a Boolean algebra X such that
2: X% X but 2-2- X = X. Let B be the sum of infinitely many copies of X, so
that B+ X=B,andlet C=B+2-Xand A=1+2 Then A-B=A-C,but BC.

A poset whose components are isomorphic to direct products of directly
indecomposable factors can be represented as a polynomial in these factors
(Hashimoto [11]). This representation is unique, and the operations of
addition and multiplication of posets agree with the operations on
polynomials. From this it follows that if A, B and C are finite sums of finitely
factorable connected posets, then A-B>~A4-C implies B=C. A more direct
proof of this can be found in Duffus [6]. For 4, B and C finite, this is also a
special case of a very general cancellation theorem for finite relational
structures in Lovasz [14].

We shall need a stronger form of the Hashimoto refinement theorem, the so-
called strong refinement property. This property is not explicitly formulated in
[107], although the argument given there can be used to show that it holds. A
formulation using factor relations can be found in Chang, Jonsson, and Tarski
[4], but since that concept will not be used here, we choose to express the
property more directly in terms of isomorphisms.

THE STRONG REFINEMENT PROPERTY. If ¢: A-B=C-D, where A, B, C, D are
connected posets, then there exist isomorphisms

I
=]

woW-X=A Bp:YZ
y:W-Y=C 0:XZx

Ie

I
<

such that, forallwe W, xe X,ye Y, z€e Z,
o(a(w,x),B(y,2) = (r(w,)),0(x,2)) .

A similar result holds for infinite products, but this will not be needed here.
It has been noted already that the familiar exponential identities hold in the
present setting. Observe also that if C is connected, then

(A+B)¢ = A°+BC.

It is well known that if 4 is a finite distributive lattice, then
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~ AP
A = 21( J s

where J(A4) is the set of all join-irreducible elements of 4 (not including 0), and
the superscript § denotes the dual. Hence, for finite distributive lattices A and
B,

AIB x JANIBY ~ BIAY > guB,

where * denotes free products in the variety of all distributive lattices. Applied
to finite ordinals m and n, this yields

2" = n®l, (MOY" = (meHY™,

where @ denotes ordered sums.

We conclude this section with a number of examples that will give some
indication of the type of restrictions that must be imposed on the posets
involved in order for I-1V to hold.

ExAMPLE 2.1. (Failure of I). If A is unordered, then A8~ A€, whenever B and
C have the same number of components, for 48 consists of just those functions
from B into A that are constant on each component, and similarly for 4. For
a less trivial example, let X be the Boolean algebra constructed in Hanf [9]
with 2- XX but 2:2- X~ X. Let B be the sum of infinitely many copies
of X, and let C=B+2-X. As was noted earlier, (1+2)-B=(1+2)-C. Letting
A=2'*2 we therefore have A8~ A€, although B#C.

ExampLE 2.2. (Failure of II and III). Let C be the poset in Fig. 1, let A consist
of infinitely many copies of C, and let B= A + 1. Then C€ has five components,
four singletons (the automorphisms of C), and one with 32 elements.
Therefore, A has infinitely many one-element components, and hence B¢
A€+ 1= AC€. Note that C is finite and A and B have finite length.

>

Fig. 1.

ExampLE 2.3. (Failure of I and III). Let A and B be the posets in Fig. 2, i.e.,
A=1®(1+2) and B=1®(1+1), and let C be the direct product of infinitely
many copies of 2. Each function from C into A or into B is into one of the
arms, because C has a largest element. The right arm of A4 is 3=2% and since
2-C=C, it follows that each of the posets A€ and B¢ consists of two copies of
2€, pasted together by identifying their zero elements. Notice that 4 and B are
triple indecomposable, additively, multiplicatively and exponentially.
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A B
Fig. 2.

ExampLE 2.4. (Failure of III). Let N be the pentagon (the five-element non-
modular lattice), and let

A = 2P+ N2+ 41 B = 22+1. N2 +2+1
C =2+1, D=2+1.

Then A= BP. Since A and B are exponentially indecomposable, III fails.

ExampLE 2.5. (Failure of IV). If B is not connected, then IV will in general
fail, since B= B, + B, implies A%~ 48 48 For a more interesting example, let
X, Y and B be the posets called A, B and C in Example 2.3, and let A=X+Y
+1+1. Then XB=YB and therefore A8~ (XB+1)(1+1), but A4 is directly
indecomposable.

3. Cancellation and refinements: A general criterion.

The cancellation law for exponents will be shown to hold under a number of
different conditions that have no reasonable common generalization, and the
same situation prevails regarding the refinement property for powers.
Nevertheless, the methods used to prove these various results are to a
considerable extent the same, and in order to avoid duplicate arguments we
therefore formulate some rather technical properties of an isomorphism ¢: A€
~B” that will imply the existence of a refinement for this particular
isomorphism, and in case C = D will imply that A = B. First we introduce some
notation and terminology that will be in effect throughout the paper.

In most cases we will identify a poset A, as a relational structure (X, <), with
the set X of its elements, but there will be occasions when two partial ordering
relations < and <’ are defined on the same set X, and then we must of course
distinguish between the posets A= (X, <) and 4'=(X, <'). f u<v in A, then
[u,v] denotes the interval {x € 4 : u<x<v}. We write u<v if v covers u, i.e., if
u <, and there is no element x with u <x <. The following simple observation
is very useful: For f,g € AB, f<g iff there exists b € B such that f(b)<g(b) and
S(x)=g(x) whenever b#+x € B.

We say that A is upper bounded if it has a largest element (always denoted
by 1), and that A is lower bounded if it has a smallest element (denoted by 0). If
A is both upper bounded and lower bounded, then it is said to be bounded. We
say that A is updirected (down-directed) if every finite subset has an upper
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bound (a lower bound). Finally, we say that A is atomic if in every interval
[u,v] with u<uv there exists an element that covers u.

For brevity we introduce names for certain important classes of posets. We
let 2, ¥, &, and & denote the classes consisting, respectively, of all posets, all
lattices, all join semilattices, and all meet semilattices. For any classe ¢ of
posets, Ha, and Ay, will denote the classes consisting of all those membersof ¢
that satisfy, respectively, the maximal condition, or the ac.c., and the
minimal condition, or the d.c.c., while #7(0), 2 (1) and 2" (0, 1) will denote the
classes consisting of all those members of ¢ that are, respectively, lower
bounded, upper bounded, and bounded.

The constant function in A2 with value a is written {a). We often use the fact
that, for a; € A (i € I), the join V ({a;), i € I)=f exists in AB just in case the
join V (a;, i€ I)=a exists in 4, and that in this case f=<{a). In particular, if
¢: AS~BP and if p({a;>)=g; (i € I), then the join V (g, i € I)=g exists in B?
just in case the join V (a, i € I)=a exists in A4, and in this case ¢({a))=g.

We frequently need to define functions in A2 by specifying their values in
different ways on different subsets of B. If f,g e A® and X< B, we let
{f[x € X7],g> be the function that agrees with fon X and with g on B— X. If
a,a € A and b € B, we let {a[x <b],a’> be the function whose value at x is a if
x<b, but a' otherwise. Several obvious variants of this notation will be used.
Of course it must be checked in each case whether the new function belongs to
AB.

We now turn to some more technical notation that we prefer to introduce in
a more formal manner. Since the concepts about to be introduced will play a
central role, we shall try to motivate them by describing without a proof how
an isomorphism ¢: 42> B? can be used to construct an isomorphism : 4~ B.
(The proof will appear in Bergman, McKenzie, and Nagy [1].) The members of 42
are ordered pairs (a,,a;) with a,,a, € 4 and ay<a,. In particular, for a € A4,
the diagonal element (a, a) belongs to A% and we must use this to define ¥ (a).
Unfortunately, ¢(a,a) is not always a diagonal element. E.g., there is an
automorphism of 3% that interchanges (1, 1) and (0, 2). However, if we let ¢(a, a)
= (b, b;), then it turns out that (b,,b,) and (b,,b,) correspond to diagonal
elements, say (b, bo)=¢(ag,a,) and (b,,b,)=¢(a,,a,). Furthermore, the
element ¢(ay,a,) in B? also turns out to be a diagonal element, say (b, b). We
now have the situation pictured in Fig. 3, and we have in fact associated with
each element a € 4 an element Y (a)=b € B. It is a simple matter to show that
Y is an isomorphism.

This suggests an approach to the cancellation problem in general, and
indeed this approach will be shown to work under some rather general
conditions, although the proof is quite involved. Suppose ¢: A€~ BC. Given
ae A, let g=¢({a)). For c € C, try to prove that {g(c¢)> corresponds to a
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(bl’bl)

(ay,ay)

(a,a) <(by, by) (ag,a,) > (b, b)

(ag, ag) * (by, by)
Fig. 3.

constant function, say ¢({f(c)))={g(c)). For the function f determined in this
manner, which is obviously a member of A€, try to prove that ¢(f) is constant,
say ¢(f)=<b). The map a — b will then be an isomorphism of 4 onto B.

DEFINITION 3.1. Suppose ¢: AC~BP.

(i) 4(p)={fe A: @(f) is constant}.
(ii) R(@)={x € A: {x) € 4(o)}.
(i) x<,yiff x,y € R(p), x<y, and every f € A€ with f(C)< {x,y} belongs to
A(p).
(iv) @ is the map from R(¢p) to R(¢~!) such that ¢({x>)=<{(d(x)> for all
x € R(p).

Four properties of an isomorphism ¢: A“~B” will be extensively

investigated throughout much of this paper, and for easy reference we list these
here.

(p,1) <, is a partial ordering of R(¢).

((p92) (23 (R((P), S(p)g (R((P—l)’ Sog_')'

(@,3) 4(¢) is the set of all order preserving maps from C into (R(¢), <,).
(p,4) <, agrees with < on R(gp).

The next two theorems show the relevance of these properties for our
investigations.

THEOREM 3.2. If ¢: A= BC, and if (9, 1), (9,2), (¢,3), and (¢, 3) hold, then
there exists : A= B such that

Y@ = (¢ 'op(Ka)) forall.aeA.

Proor. From (¢, 1) and (g, 2) it follows that (¢~ !,1) and (@~?,2) also hold.
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Given a € A, the function g=¢@({a)) belongs to 4(¢ '), and therefore by
(¢~1,3), it is an order preserving function from C into (R(¢™'), <,-).
Consequently, by (¢,2), f=¢ 'og is an order preserving function from C into
(R(p), <,), and we infer by (g,3) that fe 4(p), that is, ¢(f)=<(b) for some
be B. The map y:a— b is obviously order preserving, and (Y (a))=
@(® " 'og({a))). To show that  is an isomorphism, we merely observe that
the same process in reverse leads from b to a.

THEOREM 3.3. If @: A=BP, and if (9,1), (¢,2), (¢,3), (¢,4) and (¢~ 1,3)
hold, then

A=E’ and B xES where E= (R(p),<,).

Proor. From (¢, 1), (¢,2), and (@, 4) it follows that (¢ ~*,1), (¢~*,2), and
(¢~1,4) also hold. By (¢7%,3) and (¢~ 1,4), the map a — ¢({a)) is an
isomorphism of 4 onto (R(¢™ ), sq,—.)”, and hence 4= EP by (¢, 2). Similarly,
B=~EC.

4. Cancellation and refinements: Technical lemmas.
Throughout this section we assume that ¢: A~BP. We adopt the

convention, which will also be in effect in later sections, of writing f= ¢(f) for
fe A€, and x=@(x) for x € R(p).

LemMa 4.1. If D is connected, then (o, 1) holds. In fact, given x,y,z € R(¢p)
with x<y<z, we have x<,z iff x<,y and y< , z.

Proor. First suppose x<,z, and consider a function fe A with
(O ={x,y}. The function g=<x[ f(k)=x],z) is in 4(gp), that is, g is constant.
Since g A {y>=f, hence g A (§) =], it follows that f is also constant. Thus x
<,y and, similarly, y<,, z.

Now suppose x<,y and y<,z and consider a function fe A€ with
f(C){x,z}. We complete the proof by showing that f is constant. Assuming
that this is false, we infer from the connectedness of D that there exist p,q € D
with p<gq and f(p) <f(g). Define

g- = <f[r<P],](‘1)>, hO = <x[f(k)=x],,\’>, hl = <y[f(k)=XJ,Z> .

Since x<,y and y<,z, h; is constant, say h;=(u;). Clearly h, < f <h,, hence
upd < F<Cuyd, gy <g<{uy), hy<g<h,. From this we infer that

1 g Ay = <glf(=x1y),
for if f(k)=x, then g(k)<h,(k)=y, but if f(k)=z, then g(k)> hy(k)=y.
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We have g(p)=f(q)>f(p), hence g f, g £ f, and thus g(m) £ f(m) for some
m e C. For this element m we must have f(m)=x < g(m), because g(k)<h, (k)
<zforall k € C. It follows by (1) that g A {y> > h,, since g(m) > x =h,(m). Thus
g A (J) exists and is strictly larger than {u,», whence there exists v € B with u,
<v< f(q),7. We infer that

Cugy < Lug[rEql,v) < f, &,
contrary to the fact that f A {(y)>=h,, hence f A (7> = (up).

We introduce an ad-hoc property that will in several arguments enable us to
combine a number of cases.

DEFINITION 4.2. We say that X ¥ has Property (a) if for every non-constant
fe XY there exists g € XY such that f<g, and g agrees with f on a cofinal filter
in Y.

COROLLARY 4.3. Suppose either Ye #(1), or Ye &, or Y is updirected and
X € &,. Then XY has Property (a).

Proor. If Ye 2(1), take g=<{f(1)>. If Ye &, choose m,n e Y with f(m)
€1 (n) and let g(k)=f(k v m). If Y is updirected and X € %, choose mne Y
with f(m) £ f(n), and let g(k)=£(k) v f (m).

The usefulness of Property (a) is in part based on the following simple
observation.

LEMMA 4.4. Suppose x € X and f,g € XY, and suppose (x> <f, g. If there exists
a cofinal filter F in Y such that f(k)<g(k) whenever k € F, then {x) is not a
maximal lower bound for f and g.

Proor. Choosing m € F with x< f(m), we have

x) < KxlkEm), f(m)) < f.g.

LeMMA 4.5. If AC and BP have Property (a), then (¢,2) holds.

Proor. If this fails, we may assume that x <,y but not X <-1 . Then there
exists a non-constant f € A€ with (D)= {X, 7}, and by Property (a) there exists
g € A such that f<g, and g agrees with f on a cofinal filter F in C. Put h
={x[k ¢ F],y). Since x<,y, h is constant, say h= {u).

Now (x) < f < (), hence {(x) < f <(y). Also g <{pD, because g agrees with
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fon a cofinal filter in C. From this we infer that the meets g A h and f A h exist
and are equal to (x[k ¢ f], f>. Hence

gAw = faluy =x[f)=x]u>.

Choose p € D with f(p) <g(p), and observe that x is a maximal lower bound for
g(p) and u, for if x<v<g(p),u, then {x[r%pl,v) is a lower bound for g and
{u), contrary to the fact that the value of g A {u) at pis x. Letting g, =<g(p)>,
we infer that (x) is a maximal lower bound for g, and h. This contradicts
Lemma 4.4, for (x)<g,,h, and g,(k)<y=h(k) for k € F.

LemMA 4.6. If C € (1) or C € &, then every order preserving function from
C into (R(9), <,) belongs to A(p).

Proor. We make use of the fact that 4(¢) is closed under all existing joins
and meets in 4. Suppose f'is an order preserving function from C into (R(¢),
<,) If C e 2(1), then the functions { f(m)[k<m], f(1)> (m e C) belong to
A(@), and their meet is f. If C € &, then the functions {f(m)[k*n], f(m v n))
belong to 4(¢). For a fixed m, the join of these functions is the function f,, with
Sn(k)=f(m v k), and the meet of the functions f,, is f.

The conclusion of this lemma is half of the condition (¢, 3). The second half
is more difficult to establish, and will require a more stringent hypothesis. In
particular, we will have to assume that 4 and B are atomic.

Suppose x € R(p) and x<y in A. Then the interval [{x), {y)] is isomorphic
to 25, and letting f=(y), we therefore have [{x), f]=2C. What does this tell
us about f? The next lemma, which will be used in establishing both (¢, 3) and
(p,4), addresses this question, but first we make two observations.

As is well known, 2¥ is a complete distributive lattice, and X is dually
isomorphic to the set of all completely join irreducible elements in 2. From
this it follows that the base 2 always cancels: 2¥ =27 implies X > Y.

The second observation is somewhat less obvious. The refinement property
for powers holds whenever one of the bases is 2: If 2X = UY, then for some Z,
U=2% and X=Y-Z. To see this we note that lattices L of the form 2% are
completely characterized by three properties: (1) L is complete, (2) L satisfies
the infinite distributive law

xA V{miell = VVi{xay:iel},

and (3) every element of L is the join of completely join irreducible elements. It
is obvious that 2Z always has these properties. Conversely, if (1)-(3) hold, then
we take Z to be the dual of the set of all completely join irreducible elements of
L, and define the isomorphism y: 22 L by letting
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v(f) = Vvi{zeZ: f(2)=1}.

We also note that if a lattice L satisfies (1)—(3), then so does every closed
sublattice of L. The proof of our claim is now easy. If 2X~U?Y, then UYis a
lattice that satisfies (1)—(3). Hence the constant functions in UY form a closed
sublattice, so that U itself is a lattice that satisfies (1)—(3). We therefore
conclude that U =27 for some poset Z, hence 2¥~2Y"Z and, finally, X= Y- Z.

LemMA 4.7. Suppose C and D are updirected and directly indecomposable,
x € R(¢p) and x<y € A. Then either

(i) y € R(p) and x<y or else
(ii) D has a largest element, and @ ({y))(r)=X whenever 1%r € D.

ProOF. Letting f=<y), we first show that the range of f contains just one
element different from X. Note that {x) is not the meet of two strictly larger
members of the interval [{x),{y)]. In fact, given two such functions, f;
={(x[k ¢ F;},y), i=0,1, where F, and F, are filters in C, their meet is
{x[k ¢ FoNF],y>, and FyNF, is non-empty because C is updirected.

Suppose now that (D) has two members distinct from %, say u=/f (p) and v
=f(q). Since D is updirected, we may assume that p <gq, and therefore x <u <v.
Let

g = ([rkqlv), h=<xr2plo).

Then (x> <g<{y) and g<h£{y). Since C is updirected, it cannot be the case
that h(k)=y whenever g(k)=y, for then h<{y). Letting h, ={x[g(k)=x], h),
we therefore have g<h, <h and h, A {y>=g. Consequently, g<h, <h and
h, A f=8.

Choose s € D with g(s)<h,(s), and note that s>p and s*q. Let w=Hh,(s).
Then X <w<v, and from the fact that k;, A f=g it follows that X is a maximal
lower bound for u and w. Finally, letting

8o = g A uy = (X[rxqlup,
g-l = g A <W> = <’E[ri51],w> ’

we find that (%) is a maximal lower bound for g, and g,. Since {X) <go, &, < f,
this contradicts the fact that (x) is meet irreducible in [{x),<{y>].

We have shown that, for some ue B and some filter F in D, f
=(x[r ¢ F],u>. This implies that 2€ =[%,u]", hence [, u] =2C for some poset
G. Thus 2€22FC and we have C=~F-G. In as much as C was assumed to be
directly indecomposable, we conclude that either F or G consists of just one
element.

Math. Scand. 51 — 7
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If F is trivial, F = {1}, then the alternative (ii) in the conclusion of the lemma
holds. If G is trivial, then Xx<u. We then apply the results obtained so far to
¢~ !, with X and u in place of x and y. Letting § = (u), we have two alternatives;
either C is upper bounded and g(k)=x whenever 13k € C, or else there exist
z € A with x<z and a filter H in C such that g={x[k ¢ H],z). However, from
the fact that f< {u) we infert that {y) <g. This rules out the first alternative and
shows that the second alternative must hold with H=C and z=y. Le., we have
g={y>, therefore y € R(¢9), and y=u covers X.

LemMMA 4.8. Suppose A is atomic, C and D are updirected and directly
indecomposable, and BP has Property (a). If C %D, then (¢,4) holds.

ProoF. Suppose, to the contrary, that there exist x,y € R(¢) such that x<y
but not x<,y. Then there exists f€ A€ with f(C)={x,y} such that f is not
constant. Since B? has Property (a), there exists g € A such that f<g, and g
agrees with f on some cofinal filter F in D. From the fact that f< {7} it follows
that g <<y>, hence g<<y)>. Choosing m € C with f(m)<g(m), we infer that
f(m)=x. Choosing z € 4 with x<z<g(m), we now apply Lemma 4.7 with y
replaced by z. Let h={z). Since C% D, the alternative (i) in the conclusion
of the lemma cannot apply, and hence D is upper bounded and g(r)=x
whenever 1=r e D. Letting h, ={x[k*m],z), we therefore have h,(r)=x
whenever 1 +r € D. But we also have h, <g, hence h, (1)< g(1)=f (1), so that h,
<J, contrary to the fact that h,(m)=2z>f(m) and thus h, £ f.

LemMma 4.9. Suppose C,D € (1), or C,D € #(0), or C,D € &,. If fe A(gp),
and if f(C) has a largest element a, then a € R(p).

PROOF. Let f=(b) and g=<a). First suppose C,D € #(1), in which case a
=f(1) is the largest element of f(C). Let g, =<g(1)> and h={f[r+1],g,(1)>.
Then f<g<g, and f<h<g,. Since h(k)=f (k) for k%1 and g(1)=a=f (1), we
have g A h=f. Thus g A h=f=(b), and since g(1)=g,(1)>h(1), we infer by
Lemma 4.4 that h=<b). Thus h=f, g,(1)=h(1)=f(1), which implies that g,
<f))=g, g=g,, §=8,=<g(1)), and therefore g is constant, i.e., a € R(¢p).

Now suppose C,D € #(0). By the dual of what has been proved so far,
Z(0) € R(p "), that is g(0)=x for some x € R(¢). Clearly (x> <g, hence (x>
<g=<a), so that x<a. On the other hand, f<{(ad>=g, hence (b>=f<g, b
<g(0)=x, f<{x), which implies that a<x. We therefore have a=x € R(¢p).

Finally suppose C,D € &,. If a ¢ R(¢p), then g is not constant, and hence
there exist p,q € D with g(p) <g(q). Letting g,(r)=g(q v r) for r € D, we have
g<8;, g<g,. Hence for some m e C, a<g,(m), and clearly m can be so chosen
that f(m)=a. Letting h={f[k*m]),g,>, we then have ganh=f, g A h=f
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={b), which violates Lemma 4.4, since h(r)<g,(r)=g(r) for r>q, and (b)
<g h

Lemma 4.10. Suppose A and B are atomic and C and D are directly
indecomposable. If either

(i) C and D both belong to (the same) one of the classes &, 2(0, 1), &, (0), £ (1),
Praax(1), or else
(i) A,Be &, and C,D e #(1),

then (@, 3) holds.

Proor. We need to show that if f € 4(g), then f(C)< R(¢), and fis in fact an
order preserving function from C into (R(@), <,). Observe that in each of the
six cases, C and D are either upper bounded, or else they are join semilattices,
and that A€ and BP therefore have Property (a).

We begin by proving the following statement.

(1) For any x,ye A with x<y, if there exists fe A(p) such that
{xy}=f(O)clxy], then x<, .

Let f=(b). By Lemma 4.9, x,y € R(¢). Considering a function g € A® with
g(C)={x,y}, we need to show that g is constant.

Suppose this is not the case. Since BP has Property (a), there exists g, € A€
such that g <g,, and g, agrees with g on a cofinal filter in D. From the fact that
(xy<g=<<y)itfollows that g, <{(y), hence {(x)> <g<g, <{y), and hence there
exists m € C with g(m)=x<g,(m). Choose z € A with x<z<g,(m), and apply
Lemma 4.7.

Suppose 4.7(i) applies, i.e., suppose z € R(¢) and X<Z. Letting h= {x[f (k)
+y],z), we then have (x)<h<<(z) and h<f, hence (x> <h<<(Z) and h
<<{b). Since X<z, h must actually take on the value z, and we infer that Z<b,
hence (z) <f, contrary to the fact that x € f(C).

Now suppose 4.7(ii) applies. In this case D has a largest element, and g(1)
=g,(1). Letting h={(x[k*m],z>, we have h(r)=x for 1+re D, and h(1)
<g,(1)=g(1), so that h<g, contrary to the fact that h(m)=z<£g(m). This
contradiction completes the proof of (1).

To complete the proof of the lemma it suffices to show that if fe A(¢p),
m,n € C, and m<n, then there exists g € 4(¢) such that f(m) and f(n) are,
respectively, the smallest and the largest member of g(C). If C has a largest
element, we may by Lemma 4.1 assume that n=1, and if C has a smallest
element, we may assume that m=0. The function fin 4(p) and the elements
m,n € C with m<n will be fixed throughout the remainder of the proof, and we

let f=<b).



100 BJARNI JONSSON AND RALPH MCKENZIE

The statements (2) and (3) below hold independently of the hypothesis of the
lemma, and, in particular, they do not depend on the atomisticity of 4 and B.
This is important because we will also want to apply their duals.

(2) Suppose BP has Property (a), suppose g € A€ satisfies the conditions
f<g and f(k)=g(k) for k>m, and suppose g is a maximal function satisfying
these conditions. Then g € 4(¢p).

Suppose to the contrary that g is not constant, and using Property (a),
choose g, € A with g <g, such that g, agrees with g on some cofinal filter F in
D. We shall arrive at a contradiction by showing that g, (k)= (k) for k>m.

Assuming that this is false, let

h = (flktmd,g>, hy = <blr& F1h) .

Then f<h, hence {b) <h,, and consequently f<h,. For r € F we have
hi(r) = h(r) < §,() = &),

whence h, <g. Thus f<h, <g,h, which is impossible because g A h=f.

(3) Suppose D € 2(1), g,h € AS, h< f, g, and f (k)= g(k)=h(k) for k>m. Let
g,=<g(1)). Then g, (k)=f (k) for k=>m.

To prove (3), let

hy = <hlkdml g,  hy = <hr#11,h,(0) .
Then g A hy=h and h<h,<g,h,, hence h,=h. Therefore
hy(1) = k(1) = h(1) < f(1) = b,
whence it follows that h, <(bD, h, <f, and hence for k>m,
g1(k) = hy(k) < f(k) = g(k) < g,(k).
Thus g, (k)=f(k), as was to be shown.

We now consider the six cases of the lemma.

Case 1. C,D € &. Statement (2) applies with g(k)=f(k v m) and yields
g € A(g). Next, apply the dual of (2) with fand g replaced by g and g,, where
g, (k)=g(k A n). This gives g, € 4(¢p). Clearly f(m) and f(n) are, respectively,
the smallest and the largest elements of g,(C). Thus f(m) <, f(n).

Case 2. C,D e 2(0,1). Apply (3) with
g = {f(mlkxm), 5, h={fOkzxm]f),

and g,=<(g(1)). Then g, € 4(¢), and f(m) and f(1) are, respectively, the
smallest and the largest elements of g, (C), so that f(m)<,, f(1).
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Case3. C,D € £ (1). Apply (3) with g as above and h={f(k A m)[k 2 m], f).
Case 4. C,D € &, (0). This is the dual of Case 3.

Caske 5. The condition (ii) holds. Apply (3) with h=f and g(k)=f (k) v f(m)
for ke C.

CASE 6. C,D € Z,,,,(1). The argument in this final case will be quite different.
Assuming that f(m)<, f(1) fails. we may further assume that f(k)<, f(1)
whenever m<k € C. Let x=f(m) and y=f(1), and for k € C let f,={f(k)[j
<ml,y>. Then y € R(¢p) by Lemma 4.9 and f,, ¢ 4(p) by (1), but f, € 4(¢)
whenever m<k € C.

Let g={f,(1)), and note that f,, < g <{y>. The first inclusion is obvious, and
the second one follows from the fact that f,, < {y), hence f,, < {j>, and therefore
[.,(1)<y and, finally, g<<{j>. The element z=g(m) is greater than x. This

follows from the fact that f,, <g and f,,(j)=y=g(j) whenever j£m, hence for
some j<m,

x = ful) < gU) < gm) = z.

It is now easy to see that the function h={ f[k+m],z) belongs to A, for if k
<m, then f(k)<x <z, and if k>m, then f, € 4(¢p), say f,=<b,>, hence

Tu) < F) = by & = {Full)) < <b =T,

so that g< f, and, in particular, z=g(m) < f,(m)=f (k).

We have (b)=f<h because f(m)=x<z=h(m). Therefore b<h(l), and
letting h, =<{b[r+1],k(1)), we see that f<h, <h. Also, h, < f,, because f<g
and h(m)=g(m), therefore

h<g h(l)<gl)=fu1).
The inclusions f<h, <h and h, <f,, yield the desired contradiction. From
the first inclusion we infer that f(k)<h, (k) for some k € C, and since f(k)

= h(k) for k % m, this means that f (m)<h, (m). On the other hand, k, (m) < f,,(m)
=f(m).

S. Results on cancellation and refinements.

We are now ready to prove some of our principal theorems on cancellation of
exponents and refinements for powers.

LemMa 5.1. Suppose A€ > B, where A and B are atomic, C and D are directly
indecomposable, and either
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(i) C and D both belong to (the same) one of the classes &, #(0,1), &, (0), £ (1),
Prax(1), or else
(ii)) A,Be ¥ and C,D € 2(1).

If C=D, then A=B, but if C%D, then for some E, A=EP and B~EC.

Proor. By Corollary 4.3, A€ and B” have Property (a). Hence, by Lemmas
4.1, 4.5, and 4.10, the conditions (¢, 1), (¢, 2), (¢, 3), and (¢ ~ !, 3) are satisfied by
the given isomorphism ¢: A°~BP, and if C4D, then (¢,4) also holds by
Lemma 4.8. From this the conclusion follows by Theorems 3.2 and 3.3.

THEOREM 5.2. Suppose P~ A€~ BP, where P is atomic and C and D are finitely
factorable and upper bounded. Then for some E,X,Y,Z, A~EX, Bx~EY,
C=Y-Z, D=X-Z. In particular, if C=D, then A>~B.

Proor. We use induction on m+n, where
C;CI'CZ...C"‘, D;Dl'Dz...D",

with all factors directly indecomposable. Since C and D are connected, m and n
are uniquely determined by C and D by Hashimoto’s theorems. [ We note that
the atomicity of P~ A€ is equivalent to A being atomic and C possessing the
a.c.c, unless P is totally unordered. Our conclusion follows readily if P is
totally unordered. Thus we assume P is not totally unordered, so that A4, B are
atomic and C, D € %,,,(1).] For m=n=1 the conclusion holds by Lemma 5.1.
We therefore consider a value m +n>2, and assume that the theorem holds for
all smaller values. We may also assume that m>1.

Let C'=C,-C,...C,_,. Then (A% =BP, so that by the inductive
hypothesis there exist E,, X,, Y;, Z, with

A~ Ef, B=E}\, C=YZ, D=z=X,Z.
Since X, has at most n factors, a second application of the inductive
hypothesis yields
A=~ EY E ~Eff C,x=Y,2Z, X =X,2Z,,
and the first part of the conclusion holds with
E=E, X=X, Y=Y'Y, Z=2Z2,.

Finally, if CxD, then Cx X -Z>Y-Z, and since C is connected and finitely
factorable, this implies that X > Y, hence 4= B.

In certain important cases we are able to drop the assumption of
atomisticity in the preceding theorem. This is based on the following simple
observation.
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LemMma 5.3. Suppose ¢: AS=BP and y: AS = B?, where Ac A,, BSB,, and
@<y. Then (,i) implies (@,i) for i=1,2,3,4.

Proor. Note that R(¢)=A N R(Y), that <, is the restriction of <, to R(¢),
that @ is the restriction of IZ to R(¢), and that 4(p)= AN 4(y). From this the
conclusion readily follows.

Consider a meet semilattice 4, and let A™ be the lattice of semilattice filters in
A. Each element of 4 may be identified with the corresponding principal filter
in A, and A thus regarded as a subsemilattice of 4™ If C is a finite poset, then
by Theorem 3.1 in Duffus, Jonsson, and Rival [7], there is a unique
isomorphism of (4)* onto (4™ that is the identity on AC. (This theorem is
stated there for lattices only, but the proof is valid more generally for meet
semilattices.) Thus if ¢: A~ BP, where 4,Be % and C and D are finite
posets, then there is a unique isomorphism ¥: (4% =~ (B"P with p=y. Of
course A™ and B" need not be atomic, but using an idea from Dilworth and
Freese [5], we can iterate this process. Letting X,=A4, Y,=B, X;,, = X7, and
Y,,,=Y% we obtain isomorphisms ¢ XS =YS with p=¢,c¢,<....
Therefore, if we take A4, to be the union of the X;’s and B, the union of the Y;’s,
then there exists an isomorphism y: A¢~B? with ¢ <y, and 4, and B, are
atomic.

THEOREM 5.4. Suppose A€~ BP, where C,D € P(1) are finite, and A,B € &.
Then for some E,X,Y,Z, A~EX, B~EY, Cx~Y-Z, D= X" Z. In particular, if
C=D, then A=B.

ProoF. First suppose C and D are directly indecomposable. As we have just
observed, the given isomorphism ¢: A°~BP can be extended to an
isomorphism : A ~BP, where 4, and B, are atomic lattices. Now (¢, 1)
holds by Lemma 4.1, and (¢,2) by Lemma 4.5 and Corollary 4.3. By Lemma
4.10, (,3) and (¥~ !, 3) hold, and hence (¢, 3) and (¢ !, 3) hold by Lemma 5.3.
Finally, if C%D, then (y,4) holds by Lemma 4.8, whence (¢,4) follows by
Lemma 5.3. For the present case, the conclusion of the theorem follows by
Theorems 3.2 and 3.3. For the general case we use straightforward induction,
as in the proof of Theorem 5.2.

6. A logarithmic property.

In this section and the next two, a different method will be developed for
proving the conditions (g,i), yielding a refinement for ¢: A°~BP” under
conditions that only require C and D to be connected and finitely factorable,
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but impose additional restrictions on A and B. The basic idea is to associate
with each poset 4 a suitable subset J'(4) in a uniform manner, in such a way
that J'(A€)>J'(A)- C%. Thus we have here an instance of what is referred to in
Duffus and Rival [8] as a logarithmic property.

The familiar notion of a completely join irreducible element can be
formulated in a way that is meaningful for arbitrary partially ordered sets.

DEFINITION 6.1. For any poset A, J(A) is the set of all a € A such that for
some a € A, afd, but x<da' whenever x <a.

It is not generally true that J(4€)=J(4)- C°. E.g, let 4 be the poset in Fig. 1
with a zero added. Then J(A) consists of all four non-zero elements of 4, but
J(A% has only six elements. We therefore use a modified version of this
concept.

DEFINITION 6.2. Suppose A is a poset.

(i) Two elements of 4 are said to be compatible if they have a common upper
bound.
(ii) J'(A)is the set of all a € A4 such that, for some a’ € A, @' is compatible with
a and afd, but x<a whenever x € 4 and x<a.
(i) For any X £ A, VX is the set of all a € 4 such that for every a’' € A4 that is
compatible with a, if x<a whenever x € X and x<gq, then a<d'.

COROLLARY 6.3. For any poset A:
(i) J'(A)J(A)
(ii) J'(4)=J(A) if A updirected.
(i) If A € &£, then J(A) is the set of all completely join irreducible elements of
A.
(iv)aeJ(A)iffac Aand a ¢ V{ixe A: x<a}.
(v) If A satisfies the d.cc., then a= V {x € J(A): x<a} for all ae A, and
A=VJ(A).

Proor. All these statements are quite obvious, except perhaps the last part of
(v). We prove this by showing that, in general, 4 —VJ'(4) does not have a
minimal element. In fact, if such an element a exists, then there must exist an
element a’' € A that is compatible with a, such that a£a’, but x <a' whenever
x € J'(A) and x<a. Clearly a ¢ J'(A4), and this implies that there exists y € 4
with y<a and y<d. By the minimality of a, y € VJ'(4), and since d' is
compatible with y, we infer that there exists x € J'(4) with x<y and x £ d’. But
then x <a, yielding a contradiction.

DEFINITION 6.4. Suppose A € #(0) and T is any poset. Forae Aandte T
we let
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ja,t) = O0[s%t],ay .

LemMA 6.5. Suppose A € #(0) and T is any poset. Then

(i) J' (AN ={j(a,t): ae J(A), t € T} =J'(4) T
(i1) J(AT)={j(a, t:aeJ'(A) or (aeJ(A) and t is maximal in T)}.
(iii) If A is updirected, then

J(AT) = 7(AT) = {j(@,t): aeJ(A) and te T} .

Proor. We first remark that, by definition, 0 belongs to neither J(A4) nor
J'(A). Once this has been noted, the second part of (i) is obvious, for j(a,, t,)
<jlay,ty) iff ap<a, and t,>t, (provided a,=+0).

Any f e ATis the join of the elements j(f(t),t) with t € T. Hence, if f € J(AT),
then f must be of the form j(a,t). Furthermore, there must exist g € A7 such
that f€g, but h<g whenever h<f. This implies that a£g(t), and that x<g(t)
whenever x <a, which shows that a € J(A). Furthermore, if ¢ is not maximal,
say t<ty, then j(a,t,)<j(a,t), hence j(a,t,)<g, a<g(t,). Thus a and g(t) are in
this case compatible, and hence a € J'(A).

Now suppose a € J'(A) and t € T. There exist a@',b € A such that a<b, a’' <b,
afad, and x <a whenever x<a. Let

g = O0(stt],d[s=t],b) .

Then j(a, t) £ g, but if h<j(a,t), then h(t) <a, hence h(t)<d’, and consequently h
<g. Thus j(a,t) € J(AT) and, in fact, j(a,t) € J'(A), since j(b,t) is a common
upper bound for j(a,t) and g. Next suppose a € J(A4) and ¢ is maximal in T.
Choose a’' with a £ a’ such that x <a’ whenever x <a. In this case, any function
h<j(a,t) is of the form j(x,t) with x<a, and thus h<j(d',t).

This completes the proof of (ii), and to prove (i), it only remains to show that
if j(a,t) € J'(AT), then a € J'(4). Choosing g,g, € AT such that j(a,t)<g,, g
<g,.j(a,t) £ g, and h<g whenever h<j(a,t), we take a’'=g(t) and b=g,(¢), and
check that a<b, a' <b, afd, and x<a’ whenever x<a.

Finally, (iii) follows immediately from (i) and (ii), together with Corollary
6.3(ii).

COROLLARY 6.6. If A € 2(0) and T is any poset, then
VJ'(AT) = AT iff VJ'(4) = 4.

PROOF. Since every member of A7 is the join of functions of the form j(a, t),
we see that

VI(AT) = AT iff j(a,0) e VI'(AT) (ac A, teT).
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For given a € 4 and ¢ € T, it is simple matter to check that
jla,t) e VI'(AT) iff ae VJ'(A).

From these two observations the corollary readily follows.

7. Applications of the strong refinement property.
Throughout this section the following assumptions will be in effect:

A is lower bounded, and VJ'(4)=A.
¢: A°=BP, and C and D are connected.
y: J'(A)-C°=J'(B)-D? is induced by ¢.

The last statement means that ¢ is the unique isomorphism such that, for all
aeJ(A),beJ(B),keCandreD,

W(a,k) = (b,r) iff @j(a,k) = j(b,r).

The components of J'(4)-C® are A;-C° (i € I), where the A;s are the
components of J'(A4), and ¥ sends these into the components of J'(B)- D, say

Y;: A C*> = B;-D°.
Applying the strict refinement theorem to this isomorphism, we obtain
o WX, = A, vy Y Z,=C,
B;: WY, =B, 6: X;Z,=D°,

such that forallwe W, xe X, ye Y, z€e Z,

Vil (w, 0,70, 2) = (Bilw, ), 8,(x,2)
or, equivalently,
@j(o(w, x),7:(v, 2)) = j(Bi(w, ¥),0:(x,2)) .
Observe that, for fe A€,
0w, x) < f(r:(n2) iff fi(w,y) < f(di(x,2).
We now prove a series of lemmas relating the above assumptions to the

concepts introduced in Definition 3.1.

LeMMA 7.1. An element a € A belongs to R(p) iff for allie I and w € W, the
condition a,(w,x)<a either holds for all x € X, or else for none.

ProOOF. Let f=<(a), and consider any m=vy,(y,z) in C. Then o;(w,x)<a is
equivalent to a;(w, x)< f(7;(y,2)), hence to
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1 Bi(w,y) < f(3:(x,2)) .

If f is constant, then (1) is independent of x. On the other hand, if f is not
constant, then it follows from the hypothesis 4 =VJ’'(A4) that i, w, and y can be

so chosen that (1) holds for some (x,z), but not for all. Since the original
inclusion, «;(w, x) <a, is independent of z, it must then depend on x.

LemMA 7.2. A function f e A€ belongs to A(e) iff, for all ie I, w e W, and
y € Y, the condition a;(w, x) < f(y:(y, 2)) either holds for all x € X;and z € Z,, or
else for none.

ProoF. We have

o(w,x) < f(:(1n2) il Bi(w,y) < F(3i(x,2) .

If f is constant, then the second condition is independent of x and z. The
converse follows from the assumption B=VJ'(B).

LEMMA 7.3. Given ay,a, € R(p), we have ay< ,a, iff ag<a, and, for all i € I
with |Z,>1, and for all a € A, a<a, implies a<a,.

PrOOF. Suppose a,<,a;, and consider any i el with |Z]|>1, and an
element a=a;(w,x) in A; with a<a,. Choose z,,z, € Z; with z,%z,, and
choose any y € Y, and let m;=7,(y,z)) for j=0,1. Then my%m,, and letting f
={aplk*m;],a,), we have f(my)=a, and f(m;)=a,. Thus a;(w,x)
<f(y:(y,z;)), hence B;(w,y) < f(d:(x,z,)). Since f is constant, this gives B;(w,y)
<f(8:(x,z20)) or, equivalently, a;(w,x) < f(7:(y, 2o)), that is, a;(w,x) <a,.

Conversely, suppose a, <, a, fails but a;<a,. This means that there exists
fe AC with f(C)={ay,a,} such that fis not constant. There exist py,p; € D
such that p,<p, and f(p,) <f(p,), hence for some i € I and b= g;(w,y) in B, b
<f(py) and b£ f(p,). Write p;, j=0,1, in the form p;=6,(x;, z;). Then

Bi(w,y) < 7(5i(x1’21))’ Bi(w,y) £ ](55("0’ Zo))
or, equivalently,
a(w,x;) < fri,z)  aw, xo) £ F(1:(0,20)) -
Since f(C)={ay,a,} and a,<a,, this implies that
o;(w,xq) < ay, 0w, x0) £ g -

Recalling that the condition o;(w, x) <a; is independent of x, we conclude that,
for an arbitrary x € X, the element a =o;(w, x) is included in a, but not in a,.

LEmMma 7.4. §: (R(9), <,)=(R(9™1), <,

Y=9
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Proor. By symmetry it suffices to show that a,<,a, implies a,<,-1d,.
Considering any i € I with |Z;|>1, and b= f;(w,y) in B, we need to show that
b<a, implies b<d,. Picking any x € X;, we merely note that the conditions
Bi(w,y)<a; and a;(w, x) <a; are equivalent, and that by Lemma 7.3 the latter
holds for j=0 iff it holds for j=1.

LeMma 7.5. For all fe A(p), f(C)S R(¢).

Proor. By Lemma 7.1 it suffices to show that the condition o;(w, x) < f(m) is
independent of x, but if we write m=1y,(y, z), then this condition is equivalent to
Bi(w,y) < (8;(x, 2)), which does not depend on x since f is constant.

LEMMA 7.6. Every order preserving function from C into (R(¢), <) belongs to
A(o).

Proor. Let f be such a function. By Lemma 7.2 it suffices to show that the
condition a;(w, x) <f (y;(y, 2)) is independent of x and z. That it is independent
of x follows from Lemma 7.1, since f(C)< R(¢). In showing that it does not
depend on z, we may of course assume that |Z;/>1, and Lemma 7.3 therefore
applies. Since C is connected, f(C) is connected in (R(¢),<,). From this the
conclusion follows for, by Lemma 7.3, an element a € A; that satisfies the
condition a<f(m) for one m e C satisfies this condition for all m € C.

LeEMMA 7.7. The set A(@) coincides with the set of all order preserving
functions from C into (R(9), <,) iff, for all b e B, for all i eI with |Z|>1,
and for all w € W,, the condition B;(w,y)<b either holds for all y € Y,, or else
for none.

PROOF. Suppose f € A(p) and f=<{b). By Lemmas 7.1 and 7.3, f is an order
preserving function from C into (R(g), <) iff, for all i € I with |Z;|>1, and
all w e W, the condition o;(w,x)<f(y;(),z)) is independent of the elements
x € X,y € Y, and z € Z,. But this condition is equivalent to f;(w,y)<b. Thus f
is order preserving iff this last condition is independent of y.

CoroLLary 7.8. The conditions (@, 1) and (¢,2) hold. If, for each i € I, either
|Yi=1o0r|Z)|=1, then (¢p,3) holds, and if |Z,|=1 for all i € I, then (¢,4) holds.

Proor. For (¢,i), i=1,2,3,4, see Lemmas 7.3, 7.4, 7.7, and 7.3, respectively.



POWERS OF PARTIALLY ORDERED SETS 109

8. Further results on cancellation and refinements.
We consider here various situations in which Corollary 7.8 applies.

THEOREM 8.1. Suppose A€~ BP, where A € 2(0), VJ'(A)=A, C and D are
connected, and (C,D)=1. Then for some E, A~EP and B=~EC.

Proor. The condition (C,D)=1 means that C and D have no common
division other than 1. Hence, in the notation of the preceding section, |Z;|=1
for all i € I, and the conclusion follows from Corollary 7.8 and Theorem 3.3.

THEOREM 8.2. Suppose A€=BP, where A € 2(0), VJ'(A)=A, C and D are
connected, and C is finitely factorable. Then for some E, X, Y,Z, A ~EX B=E"
C=Y'Z Dx=X-Z. In particular, if C=D, then A=~B.

Proor. First suppose Cx=D. If C is directly indecomposable, then any
isomorphism ¢: A€ ~ BP satisfies (@, 3) and (¢ ', 3) as well as (¢, 1) and (@, 2)
for, in the notation of the preceding section, we have for each i € I either |Z||
=1, or else | X;| =1Y;| = 1. For this case we therefore have A = B by Theorem 3.2.
For C finitely factorable, the same conclusion is obtained by induction.

Dropping the hypothesis that C =D, we can find posets X, Y, Z with

CxYZ D=x=XZ (X,Y)=1.
By the first part of the proof, 4Y~BX and hence by Theorem 8.1, A~EX and B

> EY for some poset E.

THEOREM 8.3. Suppose A€~ BP, where A € 2(0), VJ'(A)= A, and J'(A), C and
D are connected. Then for some E,X,Y,Z, A~EX, B~EY, CxY-Z and D
=X -Z.

Proor. In the notation of the preceding section, the set I has just one
element, and dropping subscripts we therefore have

o: WX =J(4), vy: YZ

[N

c,
B: W-Y~J(B), 6: X-Z=xD°,
Y(a(w,x),y(0,2) = (B(w,y),8(x,2) .

For fe AC, the function fy: Y-Z — A is independent of the second argument
iff f6: X-Z — B, is independent of its second argument. In fact, suppose 16
does depend on its second argument, say z, >z, and f8(x, zo) <fd(x, z,). Then
there exists b= f(w,y) in J'(B) such that

14
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B(w,y) < fo(x,z;) and  B(wy) £ fo(x,2)),

hence

aw,x) < fy(z)) and  aw,x) £ fr(,2) .

so that fy also depends on its second argument.

With each function fe 4Y° we associate the unique function f* € A€ such
that f*y(y,z)=f(y) for all y € Y and z € Z. Similarly, for h € BX’, h* € B? is
defined by the condition that h*d(x,z)=h(x) for all x € X and z € Z. The
function ¢’: AY — BX' such that ¢'(f)*=¢(f*) is easily seen to be an
isomorphism, with an induced isomorphism y': J'(4)- Y=J'(B)- X given by

V' (a(w,x),y) = (B(w,y),x).
Applying the strict refinement property to ¥, we obtain the isomorphisms
a: WX =J@), y: YlzyY,
p: W-Y=J(B), ¢¢: X1=z=X,

11

I

where y'(y,0)=y and ¢'(x,0)=x. Thus the poset Z has becn replaced by a one-
element set, and Corollary 7.8 yields (¢',i) for i=1,2,3,4. The conclusion
follows by Theorem 3.3.

It is not in general true under the hypothesis of the preceding theorem that C
>~D implies A= B. E.g,, letting A=2 and B=22 we can choose C=D so that
2-Cx=C.

9. The mixed refinement property.
This section is devoted to the proof of the following result.

THEOREM 9.1. If B and A® are connected, then every direct decomposition of AP
is equivalent to one induced by a direct decomposition of A.

We first make precise the concepts involved.

By a direct decomposition of A we mean an isomorphism ¢ of 4 onto a
direct product,

o: Ax=T1(A,iel),
and we say that ¢ is equivalent to
¢: A=MA,iel

if there exist isomorphisms a;: A;= A} (i € I) such that ¢'(x);=a;(¢(x),) for all
xe€ A and i € I, i.e., such that
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(P’ = ﬂ(ai’ l € 1)0(p ’

where the direct product of isomorphisms is defined in an obvious manner.
This is equivalent to the assertion that, for each i € I, the maps x — ¢(x); and
x — @'(x); have the same kernel, i.e., that ¢(x),=@(y); iff ¢’ (x);=¢' (V).

For a given direct decomposition ¢ of A, the induced direct decomposition

B AB =48 iel
is obtained by letting

P®(M) = o(f(x) (el xeB).

LeEMMA 9.2. A direct decomposition
v: ABxn(C,iel
is equivalent to some @® iff, for all f,g e AB and all i € 1,

V(N = v W YKSD) = ¥(Kgx)), forallxeB.

Proor. This condition is obviously necessary. Conversely, suppose the
condition holds.

The map ¢(a)=y(<{a)) is an isomorphism of 4 onto a subdirect product of
the posets 4, C,, where 4;={y({a));: a € A}. To show that this is in fact a
direct decomposition of 4, it suffices to prove that if fe A% and y(f) € M (4,
i € I), then f is constant. For each i € I there exists a; € A such that Y (f);
=y ({a;));, hence for all x € B,

'ﬂ((f(x)». = y(ap)

which shows that f(x) is the same for all values of x.
We thus have @: A>T (4, i € I), hence @B: AB>~M (48, i e I). It remains
to check that ¥ is equivalent to ¢5, i, that for all f,ge A% and i€ I,

v(N)i=v(g): iff oB(N) = 0(g),

but this is but a reformulation of our hypothesis.

COROLLARY 9.3. A direct decomposition
y: AB =M, iel

is equivalent to one induced by a direct decomposition of A iff the same is true of
each of the associated direct decompositions

Y,: A® = C, M (C, p*iel).
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LeEMMA 9.4. Suppose y: AB=C,-C, and B is connected. For any f, g € A8, if
there exists a € A with f,g<<{a), then for i=0,1, the condition y(f),=y(g);
implies that

Y(SD) = ¥(g(x))); forall xeB.

Proor. For notational convenience take i =0. We first impose very stringent
additional conditoons on f and g, and then gradually relax these conditions.
The element x € B will be fixed throughout the proof.

Cask 1. For some ag,a, € 4, ay<a, and

f=Laly>x],a0), g = <aly=x] ao) .
Letting ¥ ()= (p,q9), ¥(g)=(p,r), and Y ({a;>)=(s;t) for i=0,1, we need to
show that s,=p=s,. Let h € A8 be the function with y(h)= (s, 7). Then <ay)
<h<{a,), hence fv h={h[f(y)=a,],a,). On the other hand, (p,q) v (54,7)
= (p,r), hence fv h=g. From this it follows that h(x)=a,, h>g, and therefore
h=g. Thus so=p.

For y € B let hy={a,[z>y],a,), and let Y (h,)=<u,,v,>. We claim that if y
<y' and u, =p, then u,=p. Letting h,h’ € AB be the functions such that y (h)
= (u,,ty) and Y (h)=(p,v,) we have h A h,={a,) and hv h'=h, Therefore
h(y')=a,, hence h(y)=a, and, consequently, h'(y)=a,. From this it follows that
W=h, u,<y(h)=p, and thus u,=p.

Since the equation u, = p holds for y=x, we infer from the connectedness of
B that it holds for all y € B. Finally, since <{a,)= Vv (h,: y € B), we conclude
that s, =p.

Case 2. f(x)<g(x), and f(y)=g(y) whenever x.4= y € B. Let ay=f(x), a,
=g(x), h={aply<x],a) and h'=<{ag[y*x],a,>. Then the joins fv h and
g v h exist, and so do the meets f'=(fvh)Ah and g'=(gVv h) A K. In fact,

f, = <al[y>x]’a0>9 g’ = <a1[y2x]aa0> .

Of course Y(f")o=y (g, whence by Case 1, Y({f"(x))o =¥ (g (x))o- Since
f'(x)=ay=f(x) and g'(x)=a, =g(x), this is the desired conclusion.

Cask 3. f<g. Apply Case 2 to the functions

[ =LKflysxlg, ¢ =<fly<xlg,
noting that f<f'<g'<g, hence Y(f")o=¥(g".

Case 4. f and g are arbitrary. Let h € A8 be the function such that y(h)
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= (Y (f)o¥({ad)y). Then fig<h<<a) and Y (h)o=y(f)o=Y(g)o, so that by
Case 3,

YD) = (KRN = ¥ (<8(x))o -

ProoF oF THEOREM 9.1. By Corollary 9.3 it suffices to show that every direct
decomposition y: AB=C,-C, is equivalent to ¢? for some ¢: A=A, A,.

For a € A let ¢(a)=y({a)). Then ¢ is an isomorphism of 4 onto a subdirect
product of two posets 4, < C, and 4, < C,. We begin by showing that ¢ is in
fact an isomorphism of A onto A;- A4,. Le., given agy,a, € 4, we show that the
function fe AB with /()= (¢(ao)o, ¢(a;),) is constant.

First suppose there exists a € A with ay,a, <a. Taking any x € B, we see by
Lemma 9.4 that

YSOD) = ¥ ap) = ¥ (/)

for i=0,1, and hence that f={f(x)) is constant.

In the general case we use the fact that A4 is connected (because A% is) to
obtain elements ug, u,,...,u, € A with uy=a, and u,=a, such that any two
successive terms u; and u;, , with i <n have a common upper bound v;. We use
induction on n. The case n=1 has already been treated, and we therefore
consider a value n> 1, assuming the conclusion to hold for all smaller values.

Let o(u) = (p;»q;) and @ (v;)= (r;,s;). By the case n=1, there exist u; € A for i
<n such that ¢ (u})=(p;q;+,), and by the dual of the same case there exist v}
for i<n—1 such that ¢(v})=(r;,s;4+,). Clearly u},u;,, <v; for i<n—1, whence
by the inductive hypothesis, the function f with

Y(f)o = @ug)o = 1o = @lag) »

V() = ou,_) = s, = pla),
is constant, as was to be shown.
The isomorphism ¢ induces an isomorphism

pB: AB = 48-48,
and by the strong refinement property there exist isomorphisms

0!02 W'X

114

A8, o,: Y- Z
YVo: W Y=C, 7y, X-Z

Iie

A8,
C,

Ife

such that, forallwe W, xe X, ye Y, z e Z,

((pB)_l(aO(W’x)’al (y,z)) = W_I(VO(WaY)’yl(xaz)) .

To complete the proof it suffices to show that X and Z are one-element sets,
and by symmetry it suffices to consider one of them, say X.

Math, Scand. 51 — 8
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Choose any element a € A4, and let

Y(Kad) = (vow,y),7,(x,2) = (p,q) .

Since X is connected, it suffices to show that any element x’' € X that is
comparable with x is equal to x. We may assume that x’ <x. Let f € A5 be the
function such that

Y(f) = (o)1 (x,2) = (p.q) -
Clearly f<{a). We have

PPKay) = (to(w, %), 2, (5,2)) = (Kp),<)),

(pB(<f>) = (aO(W’ x’)’al(y’ Z)) = (g’ <‘I>) s
where g € A, Applying Lemma 9.4 to both ¢® and y, we find that for any

teB, OB O = PP(ad) = <,
hence (< (D)D) =a=W(<ad);, and that Y((F(D)o=¥({ad). Thus f()=a

for all t € B, and we have x'=Xx, as was to be shown.

10. Cancellation results for bases.

By Duffus and Rival [8], A~ AP implies C=~D whenever 4, C, and D are
finite and A4 is not unordered, and by Novotny [15] this implication holds
whenever 4 is totally ordered and has more than one element. We state here
some results of a related nature that follow rather easily from the theorems in
the preceding sections.

THeoreM 10.1. If P € 2(0) is of finite length, having more than one element,
then P~ A€~ AP implies C =~ D.

Proor. Since P is of finite length, it is finitely factorable, whence it follows
that

AxNA,iel C=Y(Chjed), D=Y (D,kekK),

where the index sets I, J, and K are finite, each A, is directly indecomposable,
and the posets C; and D, are connected. Since A{i and AP+ are connected, they
are directly indecomposable by Theorem 9.1. Consequently, by Hashimoto’s
theorem, the sets J and K have the same number of elements, and

Af = A%

where (i, j) — (4(, j), u(i, j)) is a one-to-one map of I-J onto I - K. We can write
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A; = EY:, where E, is exponentially indecomposable, and from the fact that 4, is

directly indecomposable it follows that U, is connected. By Theorem 8.2,
UirCj = Ui Doy -

Summing over i and j, we get U-C=U - D, where U is the sum of the posets U,.

Since C, D and U are finite sums of finitely factorable sets, we conclude that C

~D.

According to Novotny’s theorem, every totally ordered set with more than
one element cancels as a base without any restriction on the exponents.
Example 2.2 shows that there are finite bounded posets that do not have this
property. The next theorem yields other examples of posets, both finite and
infinite, that cancel unconditionally as bases.

THEOREM 10.2. Suppose A € 2(0) has more than one element, VJ'(A)= A, A is
either of finite length, or else is exponentially indecomposable, and suppose J'(A)
is connected. Then for all C, D, A€~ AP implies CxD.

Proor. Since J'(A) is connected, A4 is directly indecomposable. Hence, if C
=3 (C,, i € I) where the posets C; are connected, then by Theorem 9.1, the
posets ACi are directly indecomposable. It follows that A< = AP, where D
=Y (D,, i € I) and the sets D; are connected. Applying Theorem 8.3 to this last
isomorphism, we obtain

A~ENM>~E' C =2Y-Z, D =X Z.

If A is exponentially indecomposable, then X;=Y,=1, but if 4 is of finite
length, then X;>Y, by Theorem 10.1. Thus, in either case, C;=D;, C=D.

THEOREM 10.3. Suppose A € 2(0) is exponentially indecomposable, VJ'(A)
= A, and J'(A) is connected. Then for all B, C, D, A€ ~ BP implies that, for some
Y, BxAY and C=Y-D.

ProoF. Since J'(A4) is connected, A is directly indecomposable. Using
Theorem 9.1 twice we infer, first, that A€ is isomorphic to a direct product of
directly indecomposable factors and, second, that the same is true of B. Writing
B=M (B,iel) and D=Y (D; jeJ), where the posets B; are directly
indecomposable and the D;’s connected, we have A€~ BP; where the C; jsare
the components of C. Applying Theorem 8.3 to this last isomorphism, and
using the fact that 4 is exponentially indecomposable, we obtain B; = A" and
C,;=Y, ;D;for some posets Y; ;. By Theorem 10.2, all the posets Y; , for a fixed

i, are isomorphic, say Y; ;= Y;, and the conclusion holds with Y=3% (Y, i€ I).

i,j=
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11. Automorphisms of A5,

There is an embedding n of Aut(4)x Aut (B) into Aut (48) defined by
n(o, B)(f)=aofoB ™!, but in general = is not onto. Even when our methods
apply, i.e., when the automorphisms ¢: 48~ 48 satisfy (¢, 1), (¢,2), and (¢, 3),
and we are therefore able to associate with ¢ an automorphism « of A, it is
generally not the case that (x®)~!o¢ is induced by an automorphism of B. E.g.,
(2)? has an involutionary automorphism induced by the non-trivial
automorphism of 2-2, although both the base 22 and the exponent 2 are rigid.
An example with 4 exponentially indecomposable is (22- N)?=2%'2- N2, where
N is the five element non-modular lattice. Here the automorphism derives from
the factorization of A. A less trivial example follows.

ExampLE 11.1. Let A be as in Fig. 2, and let B=~2. Then A has a non-trivial
automorphism although 4 and B are rigid and triple indecomposable. The
poset A has two arms, 2 and 3222 If we add more arms, say 4252 . n? we

get a finite, lower bounded poset A, that is rigid and triple indecomposable,
and such that Aut (42) is an elementary Abelian 2-group of order 2"~ 2,

Surprisingly, the above example represents the worst possible situation, in a
sense.

THEOREM 11.2. Suppose A € P(0) is rigid, A=VJ'(A), and B is connected and
directly indecomposable. If J'(A) has n components, then Aut (AB) is isomorphic
to an extension of a subgroup of (Aut (B))" by an elementary Abelian 2-group.

Proor. By Corollary 7.8, every automorphism ¢ of A® satisfies (¢, i) for i
=1, 2, 3, whence by Theorem 3.2 there exists an automorphism « of 4 such that

(a(@)) = @(@ " 'op(Ka)) forac4.

Since A is rigid, « is the identity automorphism of 4, and @, which agrees with
o on R(g), is the identity map. Thus ¢?({a))=<a) for all a € A.

We have shown that the normal subgroup H of Aut (45) that is generated by
the squares of all the automorphisms is contained in the group K consisting of
all those automorphisms that leave every constant function fixed. We complete
the proof by constructing an embedding of K into (Aut (B))".

Consider any ¢ € K. For a € J'(4) and b € B, j(a, b) belongs to J'(A48), and
hence so does ¢j(a,b). Therefore @j(a,b)=j(a’,b’) for some a' € J'(A) and
b € B. Now j(a,c)<<a), hence j(a',b)<ep({a))=<a), so that a'<a. By
symmetry, a<d’, and therefore @' =a. We therefore have ¢j(a, b)=j(a,b’) for
some b’ € B. For a fixed a € J'(A), the map b — b’ is an automorphism 4, of B,
ie.,

¢j(a,b) = j(a,,(b)) (a€J(4),beB).
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The automorphisms 4, may vary with a, but we claim that they are fixed on
each component of J'(A). To prove this it suffices to show that if a’,a” € J'(4)
and a'<d”’, then A, =4,.. Let 4,(b)=b" and A,.(b)=>b". From the fact that
jl@,b)<j(a",b), hence j(a',b)<j(a",b"), we see that b’ <b'. For some x € B,

pjld,x) = jd,b"),
and from the ineqﬁalities.
jla,b) < jd,b") < j(a",b")
we infer that
jla,b) < j(d,x) < j(a’,b).

and therefore x=b, b’ =V'.

Let A4, i=0,1,...,n—1, be the components of J'(4), and write 4;=4, for
a € A;. With each member of K we have associated a member A= {4;,i<n) of
(Aut (B))". This map is a homomorphism because if ¢’ — A'={4}, i<n), then
Qo — {404, i<n), and it is easily seen to be on embedding.

ExampLE 11.3. If we take A=1®(1+2+...+n) and B=2-2, then the
subgroup of (Aut (B)" in Theorem 11.2 will actually be the whole group, but if
we take

A=100+2+... +n)d®1,

then the subgroup will be isomorphic to Aut (B), although J'(4) has n
components in this case also.

If the exponent B in Theorem 11.2 is rigid, then Aut(A4%) will be an
elementary Abelian 2-group. In the next theorem we obtain the same
conclusion under a different hypothesis.

THEOREM 11.4. If A is rigid and atomic, and B € P ,(1) is rigid and directly
indecomposable, then Aut (AB) is an elentary Abelian 2-group.

Proofr. By Lemmas 4.1, 4.5, and 4.10, every automorphism ¢ of A? satisfies
(p,i) for i=1,2,3 and as in the proof of Theorem 11.2 we infer from this and
the rigidity of 4 that ¢ leaves every constant function fixed. To complete the
proof, we therefore consider an automorphism ¢ of A% with ¢({a>)=<a) for
all a € 4, and show that ¢ is the identity.

Since B is rigid, so is 28. Hence if a<d' in 4, then ¢ maps every member of
the interval [{a), {(a’}] onto itself. Now suppose a<d’ and f={a[x<b],a’).
Writing, as usual, f=¢(f), we certainly have a < f (b). If this inclusion is strict,
then there exists u € A with a<u<f(b), but then ¢ maps the function g
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={a[x%b]l,u) onto itself, which is impossible because g f and g<f Thus
fib)=a. '
Any function fe A8 is the meet of the functions
Sy = {fB)x<bl.f (1)) .

Hence f(b) < f,(b)=f (b) for all b € B. Thus f< fand, by symmetry, f< f, so that
f=f

THEOREM 11.5. If A is a subdirectly irreducible lattice and B is a finite,
connected poset, then

Aut (4%) = Aut (A4) x Aut (B) .

ProoF. Given ¢ € Aut (A5), we show that there exists § € Aut (B) such that,
for all f,g € A% and b € B,

f(b) = gb) iff f(B(b) = g(B(D)).
Here, as usual, f=¢(f). Define

0, = {(f£,8): f(b)=g(b)},
0, = {(f9): f(b)=g(b)} .

The meet of the congruence relations 6, is the zero congruence, and similarly
for 8,. Hence, by the distributivity of the congruence lattice,

6,= A{0,v0.: ceB} forbeB,
0. = AN1{0,v0.: beB} forceB.

Since A2/, is isomorphic to 4, and thus subdirectly irreducible, 6, cannot be
the meet of finitely many strictly larger congruence relations, and hence 8,20,
for some ¢ € B. Similarly, for each ¢ € B there exists b € B with 6,=8.. Note
that no two of the relations 6, are comparable, because if a<a’ in A, then the
functions {a[x <b],a’) and {a[x <b], da’) differ only at b. We infer that there is
a one-to-one map f of B onto B such that

O, = Oppy forallbeB.

To prove that f is an automorphism, fix a,a’ € A with a<d'. Let f={a)
and g=<a'), and for any filter F in B let hg={f[x ¢ F],g)>. Then
hp=<{a[x ¢ p~'(F)],a’). Thus B~I(F) is a filter whenever F is, and B is
therefore an automorphism.

We claim that ¢ maps constant functions into constant functions. To show
this, let f=<{a), and suppose b,<b, in B. Let c;=p(b;) and f;={f(c)) for
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i=0,1. Then fi(c)=F(c), hence fi(b)=f(b)=a. Since fo(bo)<fo(b))</ (b)),
this gives

folby) = a = fi(by),

from which it follows that f(c,) =, (c,), that is f(co) =f (c;). Thus f is constant,
as was to be shown.

There exists a map o of A into itself such that ¢({a))=<{a(a)) for all
a € A, and it is easy to see that o is an automorphism. Finally, to show that
f=o00fop™!, consider any c e B and let b=f"'(c) and g={f(b)). Then
f(b)=g(b), hence

f) =g = alf®) = «(f(B7'() -

12. Open problems.

Our investigations suggest many questions concerning possible extensions
and unifications of the results, and simplifications of some of the arguments.
We list just a few such problems.

ProBLEM 12.1. Find counter examples (or prove that none exist) to the
refinement of A¢= BP under any of the following conditions:

(i) A, B, C, and D are finite and connected.

(i) C, D, and A€ are finite and connected.

(iii) A€ is a directly indecomposable lattice.

(iv) C and D are bounded and satisfy both chain conditions.

(v) A and B are atomic, and C and D are finitely factorable and belong both
to (the same) one of the classes ¥, 2(0,1), <, (0), £ (1), and P a,(1).

PRrROBLEM 12.2. There now exist three main refinement theorems dealing with
direct products and powers of posets. They deal with the relations M (4,,i € I)
=M (B, j € J) (the products are connected); A= (C,, i € I) (B and A® are
connected); A€~ BP (under a variety of relatively complex conditions). Does
there exist a reasonable refinement theorem regarding some kind of special
subdirect products that includes all three of these theorems as corollaries?

ProBLEM 12.3. Does the relation
Aut (A8 =~ Aut (4) x Aut (B)
necessarily hold when A4 is an exponentially and directly indecomposable

lattice and B is connected (and possibly also finite)?

ProBLEM 12.4. We have associated with each automorphism ¢ of A® (where
A and B satisfy certain conditions) a unique automorphism « of 4. In general,
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this correspondence is not a homomorphism. Does it have any interesting
properties? (This question seems particularly attractive, when A is a lattice.)
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