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ON INFINITE NIELSEN TRANSFORMATIONS

OLGA MACEDONSKA-NOSALSKA

Introduction.

Jacob Nielsen’s procedure for reducing a finite subset of a free group [8] led
to the concept of Nielsen transformation ([6, p. 130]), which has proved useful
especially in the case of finitely-generated groups. We shall define here an
infinite Nielsen transformation and show that any infinite chain of words can
be carried to a Nielsen-reduced chain by an infinite Nielsen transformation.
This is equivalent to saying that for any endomorphism « on a free group F of
countably infinite rank there exists a free base {a;) such that the set of non-
unit images <oag;) is Nielsen-reduced. From this follows immediately the
Nielsen—Schreier Subgroup Theorem for F. As another example of the
application of our result let us consider the following Proposition ([$, 2.12]):
Let f be a homomorphism from F, onto a free group G; then F,=S*Z, such
that f maps S isomorphically onto G and maps Z into the identity. In [4], the
proof of the analogous result, with F in place of F,, consists of a transfinite
convergence process making use of Nielsen’s procedure for a finite subset.
Using our theorem the proof may be simplified, since it may be extended from
F, to F without any essential change. The desirability of transforming infinite
subsets has led to other generalisations of Nielsen transformations ([2], [9]);
when these are applied to a free system of generators in F, they are examples of
our infinite Nielsen transformations. The extended Nielsen operations given in
[1] relate only to finite subsets of generators for normal subgroups.

Our definition of the infinite Nielsen transformation is based on an analogy
of the result ([6, p. 130]) that the group Aut F, is antiisomorphic to the group
of Nielsen transformations of rank n. Hence it is natural to consider
transformations associated in the same way with automorphisms of F. Our
main result shows that for any chain of words u there exists an infinite Nielsen
transformation N such that the subset of non-unit words in Nu is Nielsen-
reduced. By analogy with a similar result for Nielsen transformations of finite
rank, it can also be shown, using [7], that an infinite Nielsen transformation is
a (possibly infinite) product of elementary Nielsen transformations.

The author is grateful to Professor Donald Solitar who suggested this area
of investigation. :
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1. Basic definitions.

Let F be a free group of countable rank on free generators {x;, i € I}, where I
is the set of natural numbers. Any infinite sequence of freely reduced words in
F is called a chain, which we shall denote, for example, by w=(w,,w,,...). We
call the chain of generators basic and denote it by x=(x,, x,,...). For each
chain n=(n,,n,,...) we define a corresponding transformation N, on the set of
all chains, carrying a chain w=(w;,w,,...) into Nw=((Nw),, (Nw),,...),
where (Nw),, is a reduced word obtained from n,, by substituting w, for x;,i € I.
For a sequence of chains {w*)», w*= (w}, w3,. . .), the corresponding sequence of
transformations will be denoted by {(W,), where W, x =w®, namely (W,x),=w?
(i € I). If, for a transformation N with Nx=((Nx);, (Nx),,...), the set {(Nx),
iel} generates F freely, then N will be called an Infinite Nielsen
Transformation. For transformations N, N,, define their product by (N,Nw
=N,(N,w). It is easy to see that the product thus defined is associative.
Transformation N is called invertible if there exists a transformation M such
that MN=NM =E, where E is the identity transformation. A transformation
N is invertible if and only if it is an infinite Nielsen transformation; this follows
from the one-to-one correspondence of the group of free substitutions and the
group of automorphisms of F, in a similar way to [6, p. 130]. For convenience,
similar definitions and results for chains of words and for transformations are
given separately.

2. Convergence.

We shall introduce here a concept of convergence for a sequence of chains
(or transformations) analogous to coordinate convergence ({3, 10.2]), that is,
in a convergent sequence of chains w!, w?, w3,. .. the mth entries coincide for
w¥, k2 k,. If we have a convergent sequence of invertible transformations, the
limit transformation is not necessarily invertible. Indeed, consider transfor-
mations N, N,, N;,... where

Nix = (X1X3, X2, X3, Xg5. - .)
Nzx = (xle, xZX3, X3, X4,. . .)
Nix = (X1X3,X,X3,X3X4, Xg5. - -) -

The limit transformation of the given sequence is N where Nx
=(X{X3, X3X3,. . ., X Xi415- - -) Whose entries generate a subgroup in F with
elements of even x-length, hence this subgroup is proper in F and N is not a
free transformation and hence is not invertible. In Lemma 2 we give a
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criterion for the limit transformation of a sequence of invertible trans-
formations to be also invertible. For a sequence of transformations we shall
also define a sequence of partial products (and a product as its limit), the
condition for whose existence is given in Lemma 3. The main theorem of this
section provides sufficient conditions for a sequence of Nielsen transformations
to have a product which is also a Nielsen transformation.

DerFiNITION 1. (1) Let {w* a<a') be a (transfinite) sequence of chains for a
fixed countable limit ordinal «’. We say that lim,_,, w* exists if VYm € I, 3o, <o’
such that for all « satisfying a,<a<a', we have wi=w?%. Then we write
lim,_, w*=w for the chain w with w,,=wi (Ym e I).

(ii) Let <P,, a <a’) be a sequence of transformations. We say that lim,_, . P,
=Piflim,_, P,x=Px;thatis,Vm € I, 3a, <o such that for all « satisfying a,,
Sa<a, we have (P, x),=(P,x),=(Px),.

(iii) In (i) and (ii), clearly we can chooze the a,, increasing, and then the limit
criteria can be written, respectively, as

win = wi, (P, x); = (Px); = (Px), foriZm, a,Za<a .

Let f, <B,<pB;<... be asequence of ordinals such that lim; §;=a’; then for
a sequence of chains (w* a<a'), we shall speak of its B-subsequence (wh, i
=1,2,...D.

LEMMA 1. Let {w*, a<o') be a sequence of chains. (i) If lim,_, . w*=w then
every B-subsequence wP, i=1,2,... has limit w. (ii) If every B-subsequence has a
limit, then their limits are the same (w, say), and lim,_, w*=w.

Proor. If lim
subsequence.

Conversely, let every B-subsequence have a limit and for some fixed g-
subsequence let lim; w# =w®; hence ¥ m € I, 3 B(m) such that whi=w), whenever
B.> B(m). Suppose now that lim,_,, w*+w°; then for some m and for each B;
there exists a;> f; such that w%+w%. Now alternating B; and o; gives us a
sequence y;, i=1,2,. .., for which lim;y;=0o’ but {(w”,i=1,2,...) has no limit,
which is a contradiction.

1o W*=w then, by Definition 1, lim;wfi=w for every B-

The same lemma can be formulated for transformations as:

LeEMMA 1'. Let {P,, a<a') be a sequence of transformations. (i) If lim,_,,. P,
=P then every B-subsequence Py, i=1,2,... has limit P.

(ii) If every B-subsequence has a limit, then their limits are the same (P, say),
and lim,,, P,=P.

Math. Scand. 51 — §



66 OLGA MACEDONSKA-NOSALSKA

LEMMA 2. Let (P, a<a') be a sequence of invertible transformations, and

lim,_,, P,=P. Then there exists lim,_,,. P;*=R if and only if PR=RP=E.

Proor. By Lemma 1’ we can assume that «'=w. Now let lim; P, =P,
lim, Py ' =R; then Ym € I, 3k,,1, such that, for k>k,, [=1,, we have
(P, X)p = (PeX), = (Px), and (P, ~'x), = (P 'x), = (Rx),
Choose subsequence T,, m € I, where T, =P, ); then
(Tpx); = (Px), (T,'x); = (Rx); (ism).

Suppose that m first words in Px (and hence in T,,x) are expressed through x,, i
<s, for some s € I. We can always take s=m. Then

T:'x = (RX)g,. oo, (RX) e« o5 (RX) g Vst 15 - )
Tm(Ts—lx) = ((P(Rx))l’ s (P(RX)),", Zmt1se - ) -

Since s = m, the first m elements in T,,x and T,x coincide, hence the same is true
for T,w and T,w for any w. Take w= T, 'x; then

T,w = T,(T;'x) and Tw = T,(T;'x) =

hence (P(Rx)),=x; for i<m. Since this is true for arbitrary m € I we get PR
=E, and in a similar way we get RP=E, which gives the required result in one
direction.

Conversely, suppose that PR =RP =E; we want to show that R=1lim, P, .
Let

(Rx),, = w(x{,X35...,X,)

be a word in x,;, i<s. By convergence of the sequence Py, k=1,2,3,...,to P,
there exists k, such that, for k= k,, we have (P,x),=(Px); for i<s. Then each
transformation T,=RP, (k=k,) carries x,, into

(Tkx)m = ((RPk)x)m = W((ka)l’ . ka)s) ((Px)h' R} (Px)s)
= (R(Px))m

Now
(Rx)m = (Tk(Pk—lx))m = (Pk—lx)m for k;ks 5

so that R=lim, P, !, and the proof is complete.

COROLLARY. Let {N,, 0. <o’ be a sequence of invertible transformations. Then
lim,, N,=E if and only if lim,_,, N;'=E.
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Now let & be any fixed countable ordinal, &> 1, and denote by @ the set of
ordinals {a, 1<a<d). We also write =&, U ®,, where &, is the subset of
nonlimit ordinals and @, is the subset of limit ordinals in &.

DeriniTioN 2. The sequence of chains (w* o € @) (or the sequence of
transformations {P,, « € ®}) is called complete if Vo' € &, we have lim,_, . w*
=w" (lim,., P,=P,), namely Vm, Ja,, a, <o, such that w%i=w% ((P,x),
= (P,x),,) whenever a, Sa<ao'.

DEerINITION 3. A sequence of transformations {P,, o € @) is called the
sequence of partial products for the sequence of transformations {N,, a € @, if
P,=N,, P,=N,P, , for a« € &\ 1, P,=lim_,, P, for o € ®,. Obviously
every sequence of partial products is complete. N

LEmMMA 3. If a sequence {N,, o € ®,)> has the property lim,., N,=E for
every of € ®,, then the sequence of partial products for {N,, a € ®,) exists.

Proor. Let P, =N, and define P,=N,P,_, for a € ®,\ 1. To define P,. for
o € ¢, notice that the condition lim,_, N,=E implies, for any m € I, the
existence of a,, (o, <a') such that for all o (x,, Sa<a’), (Nx),,=X,,. Thus define
P, by (P,x),=(P, x),, m € 1. To show that P, =lim,_, P, it is enough to
verify that for all « (a,, S a <o), (P,x),,= (P,X),,. Use induction on a. For a=a,,
our statement is trivial. For some o, <o, let (P,x),, = (P, x),, for all a satisfying

o, Sa<oy; then we have to show that (P, x),, = (P,x),: if 2y € &, we have
(Paox)m = (NaoPao—lx)m = (Pag—lx)m = (Pa'x)m;

while for o, € @, P, was defined by the inductive hypothesis in such a way
that (P,x),=(P,x),, and hence (P,x),=(Pyx), It follows that P,
=lim, . P, and hence there exists a complete sequence of partial products
(P, o€ ®) for (N,, a € Py>.

DreFINITION 4. Given a fixed sequence (N, o€ ®,> of invertible
transformations, let &(m) denote the set of indexes of the generators x; (i € I)
appearing in the reduced form of the word (N, 'x),,; thus

(Ng'x), € gp{x;,i€dm).

For any S< [ denote &(S)=U, (i), i € S. Assign to (N, « € ®,> characteristic
sets T(m), m € I, defined inductively:

T,(m) = 1(m), T,(m) = &(T,_,(m) for a € P,
T,(m) = U T,(m) for o € ®;; T(m) = Tz(m).

a<a
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DEerINITION 5. The sequence of invertible transformations (N,, o € &y is
called regular if its characteristic sets T(m), m € I, are finite.

THEOREM 1. Let {N,, a € &) be a regular sequence and lim,_, N,=E for
every o € ®,. Then the sequence of partial products for {N,, o € @, consists of
infinite Nielsen transformations.

ProoF. The existence of the sequence (P, a € ®) of partial products follows
from Lemma 3. Thus we have to show that every P,, o € @, is invertible, which
we accomplish by induction.

For a=1, P, =N, is invertible.

For some a, € @,

§)) suppose all P, (x<ay) invertible;

we then have to show P, to be invertible. When o, € @, this is obvious
because P, '=P, 1 N_' Now consider the case a, € ®,: we first show that
for & <ayg,

@ (Py'x)y € gp{x; i € T,(m)},
Use induction on «. For a=1,
(Py'x)y = (N7'x), € gp{x, i€ Ty(m)} .
For some B <oy, suppose (2) holds for all o, « < ff; then we need to show that
(P5'x) € gp{x;, i € Ty(m)} .
For B € &, denote N; 'x=w, so that
(Ng'x); = w; e gp{x; i € B(j)}

(see Definition 4). Then

(Pp—lx)m = ((Pi—llNEI)x)m = (P;1yw), € gp {wy j e Ty_ (m)}
gp{x, i€ BU)j € Ty (m)} = gp{x, i e Ty(m)}.

n

For B € @,, it follows by (1) that P; ' =lim,_, P, ', namely, Vm, 3a,, (2, <p)
such that

(Pg'x)m = (P x)m € gp{x, i T, (m)} < gp{x;,ie Ty(m},

where Ty(m)=U, . s T,(m). This proves statement (2).

Notice also that, by the Corollary to Lemma 2, and because of the finiteness
of T(m): Vm, 3y(m) such that for all « (y(m)<a<ay) and for all i € T(m), we
have (N;'x),=x, Thus if we denote N; 'x=w’, then
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3) wl = (Ng'x) = x;

for all § satisfying y(m)< f <a,, and for all i € T(m).
Our final requirement, that

4 P! exists for oy € @,

is, by Lemma 2, equivalent to the existence of lim,., P;'. Accordingly, we
define the transformation R by (Rx),, = (P;(,f,,x)m (where y(m) is given above,
m € I). Then in order to prove that R=lim,_,, P, it is enough to show that

) (P; %), = (Rx),

for all « satisfying y(m)<a <o, which we prove by induction on «. For «
=7y(m), (5) is trivial. Now suppose that, for some f in y(m)< ff <oy, (5) holds for
y(m)<a<f; thus we need to show that

(6) (Pg'x)m = (RX),, .

For e @, we have lim,_,P;'=P;' by (1) and Lemma 2; and hence
(P; 'x),, coincides with (PjX),, for somc nonlimit g, <. Thus it remains to
prove (6) for B € @,. Since f>1,

(Pg'X)m = ((Pg2y Nz Ox) = (Pg2y(Ng ')y = (Pglywh),,

it follows that the word (P; 'x), is obtainable by replacing x; by wf in the
reduced form of (P;,x),. But, by (2),

(Pp——lxx)m egpix,ie Tp-x(m)};
and, by (3), wf=x, for i € T;_,(m)< T(m). Thus it follows that
(P ' %) = (P51 %) = (RX),

which proves (6).
We have therefore established that (1) implies P,, invertible, which
completes the transfinite induction, and the theorem is proved.

3. Existence of a minimal chain.

Our ultimate aim is to prove the existence of an infinite Nielsen
transformation which changes a given chain u into a Nielsen-reduced chain. In
this section we shall consider the set M of all chains w= Nu for all infinite
Nielsen transformations N, and introduce a partial order in R. Using
Kuratowski-Zorn’s Lemma, we shall then prove the existence of a “minimal
chain” with a particular property (Lemma 9). Our partial order w'¥>w? is
based on the existence of a complete sequence (w*) with first element w'¥’ and
last element w® such that every w® can be carried into w**! by a so-called
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contracting transformation. These contracting transformations form a
sequence which is connecting. We show first that a connecting sequence
(Definition 6) has a product and moreover, if this sequence is contracting, its
product is an infinite Nielsen transformation which carries the first chain into
the last one (Theorem 3). To define a contracting transformation we introduce
an ordering (Definition 7) in the set of entries of a chain. We order entries by
their x-length, and by their position for words of the same length. In the next
section, and subsequently, this ordering will be the only one used, and we shall
then change the natural indexes of entries for new transfinite) ones. Lemma 6 of
this section will be used in section 4.

DEFINITION 6. We say that a sequence of transformations {(N,, a € @) is a
connecting sequence for a sequence of chains {(w® o€ ®UO) if N.w* ™! =w?

a € Dy, and wi=w%"! implies (N,X),,= Xpp-

LEMMA 4. If (N, a € @) is a connecting sequence for a complete sequence of
chains {w*, o € $UO0), then lim,_, N,=E for every o' € ®@,.

Proor. For every o € @,, lim,_,,. w*=w", which implies, for each m, the
existence of a,,, o, <o, such that w% ' =w?% =w? whenever a,<a <o This

means, by Definition 6, that (N,x),=x, whenever a,<oa<o and hence
lim,_,, N,=E for every o' € ¢,, as required.

LEMMA S. If (N, a € ®,) is a connecting sequence for a complete sequence of
chains {w*, o € ®UO0), then the sequence of partial products {P,, o € ®) exists,
and P.w’=w" for a € P.

Proor. By Lemmas 4 and 3, the sequence {(P,, a € @) of partial products for
(N, a € ®,) exists. Now, for a=1, P,w’=N,w’=w'. Let P,w® =w*for all &, «
<o If &' € P, then

P,w® = (NP, _)w° = N,w*™ ! = w*.

For o € @, notice that P, w® = lim,_,,. (P,w°); then the inductive hypothesis
and the completeness of {w*, o € ®UO) give

P.w® = lim (P,w°) = limw* = w* .

a—a’ a—a’
This completes the proof, which shows in particular that
(M Piw® = w*.

LEMMA 6. If the sequence (N, a € ®,) has the property lim,_, N,=E for
every o € ®,, then for any m € I the set A(m)=Uae¢0&(m) is finite.
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Proor. We see first that, for all but a finite number of a € @, (N,x),,=Xx,,:
for if not, we can find a sequence o; <a, < ... convergent to some o’ € ®, such
that lim; (N,x),#+x, which (by Lemma 1) contradicts the hypothesis
lim,_, N,=E. Now (N,x),,=X,, implies &(m)=<{m), and because of finiteness
of every &(m), a € @,, our statement is proved.

DEerINITION 7. For elements w;, i € I, of a chain w define a new ordering by
w;>w; if and only if either £ (w;)>7¢(w)), or £/(w)=¢(w;) and i>j, where /(w) is
the length of a word w in generators x;.

DEeFINITION 8. We say that transformation N contracts a chain w if N changes
only one element of w (say with index m), decreasing its length by
multiplication with elements preceding it in the new ordering. More precisely,
we require:

(i) (Nx);=x;, i+m,iel;
(i)) £(Nw),, <t (W,);
(iii) (Nx),,=a(x)x;b(x), where a(x), b(x) € gp {x;: w;<w,}, e=+1.
If N contracts w let N (m) denote the set of indexes of generators x; in the
words a(x), b(x).

The first two properties of Definition 8 imply
(8) ((Nw), = £(w) = (Nx), = x; (ie]).

DerFiNITION 9. A sequence of transformations (N,, o€ @,> is called
contracting if, for some complete sequence of chains <w*, x € ®U0), N .w* !
=w" and N, contracts w*~ !, « € @,

Notice now some properties of a contracting sequence {N,, o € ®¢):

I. Every N, is invertible, « € @,. Indeed, (N, 'x),=x; for i+m, and

(N7 '%)p = [a™ " (0)x,b ™1 (x)]°

Here obviously m depends on a.

II. lim,,, N,=E for every a € ¢,. This follows from Lemma 4, since a
contracting sequence is obviously connecting.

I &(i)=<i) for i%+m, and &(m)=<{N,(m),m>, where N, (m) was defined in
Definition 8 (iii).

A typical element from &(m) we will denote by a(m), to indicate that under
N, the element with this index in w*~! is used to obtain w¥.

DeriNITION 10. The elements wi,), a(m) € d(m), we call the acting elements
under N, corresponding to indexes a(m).
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Notice now some more properties of the contracting sequence (N, o € ®,)
for the complete sequence of chains {(w*, a € ®UO).

From (8) for o € @, it follows that
&) twp ) = £(wy) = (NoX), = x,, and  wi ' = w;.
Now from (i) and (ii) of Definition 8 and the completeness of the sequence {w*,
ae U0, if o, e @UO0, f<a, m e I, then
(10) L(wh) 2 £(wh) s
(11) fWh)y = £(w%) = wh = w2

m -

From Definition 8 (iii) it follows that w®=a(w*™*)(w% ')y*b(w*~!), where
ie N,(m)and w% '>w?"1 ie N, (m). Thus by III, for any a(m) € d(m) with
a(m)+m, we have w2~ '>w’. ), which means by Definition 7 that

(12)  either Z(w3Y) > £(wip)

or /(wf’,,"‘) =¢w'Y)  and m>a(m).

a(m)

LEmMMA 7. Let a, B € ®,, B <a. Fix B(m) € B(m), a(B(m)) € &(B(m)). Let a(B(m))
%+ fB(m). Then for the corresponding acting elements (see Definition 10) it follows
that

(13) 4 (Wﬁ(:n}) 2/ (W:(;i(lm))) s
(14) 4 (Wﬁ(;,i) { (wa(ﬁ(m))) = f(m) > a(f(m)).
PrOOF. By (12),

£ (Wﬁ(m) )2 /¢ (Wa(ﬂ(m»)
and, by (10),

£ Whim) Z £ Wham) »
which gives (13). If

¢ Wham) = € (Wiigim) »

then both the previous relations are equalities and
£ Woem) = £ Weiaimy)
implies f(m)>a(B(m)), by (12), which proves (14).

THEOREM 2. Any contracting sequence (N, a € &, is regular.
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Proor. According to Definition 5 we have to prove that the characteristic
sets T(m) (m e I) of (N, a € ®,> are finite.

Consider at first the set T, (m) for some fixed m € I. Now T,(m)=U, T, (m)
consists of indexes ¢,

te Tym) = R(k—=17(...2(Im)...), k=1,23,...,

so that, for some fixed indexes 1(m) € 1(m), 2(1(m)) € 2(1(m)),...,t can be
written in the form k(k—1(...2(1(m))...)). If it happens inside this iteration
that i(r)=r then instead of i+1(i(r)) we shall write i+1(r). Then every
t € T, (m) can be written in shortened form t=kg(k,_ (. .. k;(m) . ..)) such that
in the sequence of internal indexes k,(m),k,(k,(m)),...,t, every two
neighbouring indexes are different natural numbers and k, (m)+m.

The same can be done for elements of T'(m)= T;(m): every t € T(m) can be
written in a form t=a, (0, (. .. ay(x;(m))...)), where o; € @, and o >0,
>...>uw,>0,, and such that the sequence of internal indexes

(15) ay(m), oy (0g (m)), ot (0‘2(“1 (m))),- ot

has different neighbouring elements and «, (m) = m. We shall then say that our
index ¢ is of weight k and has the core o, (m)+m. To prove that |T (m)| < oo we
shall show that the number of different sequences (15) is finite.

For every t € T(m) the core of ¢ is in A(m) which, by II and Lemma 6, is
finite. Hence it is enough to consider a subset C(m)< T(m), consisting of
indexes with the same fixed core a«,(m), and to show its finiteness.

For the sequence (15) of internal indexes for t consider the sequence of the
lengths of corresponding acting elements (Definition 10), which by Lemma 7
is non-increasing:

(16) Iwacl) > fwecl )= 0= I(wnY).

oy (m) az(ai(m))

The number d of strict inequalities in (16) will be called the defect of the index t.
Obviously 0<d<i(w,) for every t € C(m). Also, by Lemma 7, for each
equality in (16) there is a strict inequality (decrease) between corresponding
indexes in (15).

For any fixed m and «, (m), denote by C%(m) the subset of C(m) consisting of
indexes of defect d. It is enough to show that C%(m) is finite. Let us show first
that C°(m) is finite. Denote by C?(m) the subset of C°(m) consisting of indexes
of weight k; then C°(m)=U, CY(m). Use induction on k. For k=1, C(m)
consists of only one index a, (m) and hence is finite. Suppose C?_, (m) is finite
and ¢t € C(m), that is,

t = ooty (... ay(m)...)) € &loagoq(...ay(m)...)).

Then C{(m)< U A(s), s € C2_,(m). By Il and Lemma 6, every A(s) is finite, and
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by the inductive hypothesis, Cy_,(m) is finite; hence C{(m) is finite. We show
now that for k> o, (m) all C{(m) are empty: for a given t € C°(m), d =0 means
that in the corresponding sequence (16) all lengths are equal and hence, by
Lemma 7, sequence (15) of inner indexes for ¢ is strictly decreasing, and hence
has not more than o, (m) terms. Consequently C{(m) is empty for k> o, (m). It
now follows that U, C(m)=C°(m) is finite for any m and «, (m).

Let us again fix some m and «, (m) and, using induction on d, suppose that
C*~1(m) is finite. Let t € C*(m) and t = (o, (. . . ¢, (m) .. .)). Suppose that in
the corresponding sequence (16) the last strict inequality occurs for

Iwes—1) > l(weg!), where r = o, (...0;(m)...) e C*"'(m);

then t=0,(... ar)...) e C°(r) and C!m)cU, C°(r), r € C*~*(m). As shown
above, C°(r) is finite for every r € I and every a,(r), while C?~!(m) is finite by
the inductive hypothesis; hence C%(m) is also finite. The proof is therefore
complete.

THEOREM 3. If a complete sequence of chains {(w*, o € ®UO0) has a contracting
sequence (N, a € ®,> then there exists an infinite Nielsen transformation P
such that w*=Pw°.

ProoF. By (7) of Lemma S (since a contracting sequence is connecting), P
= P; is the last element of the sequence of partial products for (N, a € @,). By
property II and Theorem 2 our contracting sequence satisfies the conditions of
Theorem 1 and hence Py is an infinite Nielsen transformation.

Now take some fixed chain u, and denote by R the set of chains w= Nu for
all infinite Nielsen transformations N.

DerFINITION 11. (Partial order in 9). Let w), w'? e R. If, for some @ with last
element &, there is a complete sequence of chains {w* o € ® U0}, possessing a
contracting sequence of transformations, and such that w® = w"), w*=w® then
we write w)>=w?,

By properties (10) and (11) of a contracting sequence, w)>w® implies

(17) t) 2 tw?), mel
(18) (D) = £WD) = Wi = W, mel.

LeEMMA 8. Every linearly ordered subset L of chains in Mt has a lower bound in
Nn.

Proor. Denote by {w,,, w € £ the set of different mth entries for the chains
in L. Because of linear ordering in £ and properties (17), (18): for each m € I,
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the set {w,,, w € £) has exactly one element of minimal length, which will be
denoted by w,. Let us show now that the chain w= (w,,w,,...) has the
property w<w' for any w' e L. If w, W, then /(w})>¢(W,). Denote by w! any
chain in € for which wi =w,; then because of (17) and linear ordering in £ we
have w'>w'. If w|, =w, we take w! =w’. Proceeding inductively, let w" € € be
defined such that wl=w, i<n, wj,, +w,,,, which implies (W, )>¢(W,, ).
Then there exists w"*! e £ for which w"}i=w,,,; hence Z(w",,)>/(w'}!}
which implies w">w"*! and so, by (17) and the inductive hypothesis,

fWiY) S £(wh) = £(W,) for i<n.

It follows now that wi*!=w, for i<n+1.In case w"_, =W, , define w"* ! =w".

In this way we obtain a sequence
(19) w o> wl > wr > .

which is convergent to w and which, together with w, therefore gives us a
complete sequence. Relation w">w"*! means, by Definition 11, that there
exists some complete sequence of chains beginning with w" and ending with
w"*! having a contracting sequence of transformations. Inserting all these
intermediate complete sequences, we extend (19) to a complete sequence
satisfying Definition 11; this gives w'>w.

By Theorem 3 there exists an infinite Nielsen transformation P such that w
= Pw', and since w' € RN, we get w € N. This completes the proof.

Now by Kuratowski-Zorn’s Lemma there exists a minimal chain w® in N
such that, for every w' € N, either w®<w’, or w®=w’, or w® and w' are not
comparable.

LEMMA 9. For some fixed m € I, let w% € w°, where w° is a minimal chain in R.
Let g € F have the form g=a(w°®)(w2):b(w°), where ¢=+1 and
a(w®),b(w®) € gp {w), w) < w3, (as in Definition 7)} .

Then £(g) = £(Wl) .

Proor. We define an infinite Nielsen transformation N by (Nx),=x; (i%m),
(Nx),,=a(x)x%,b(x). Suppose we had in addition that ¢(g)=¢(Nw°),, <¢(w3);
then by Definition 8, N would be contracting for w°. This implies, by
Definition 11, that w®>Nw°, which contradicts the minimality of w°.
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4. An algorithm.

According to [6, Lemma 3.1], a set w is Nielsen-reduced if it satisfies
properties 1* and 2* given below. In this section we show that for the minimal
chain w® with the property given in Lemma 9, there exists a Nielsen
transformation P such that in Pw® the set of non-unit elements satisfies 1*. The
transformation P will appear as a product of a connecting sequence of
transformations (N,>, where N, changes w* to w**! and the sequence leads
from w® to w®. We achieve the connecting sequence {N,> by performing the
algorithm similar to the one given in [6, Theorem 3.1]. In every step from w* to
w**1 the length of entries will be unchanged and hence the ordering given in
Definition 7 will be the same in every w* as in w°. According ro the algorithm,
in the step from w* to w**! only elements with new indexes A<a+1 can be
changed and then only if their length is equal to ¢(w2, ). For each step the
corresponding chain w**! is such that the subset of its elements with indexes p,
u=Sa, satisfies 1*.

DEFINITION 12. We shall say that subset w=<{w;> of words in F satisfies
property 1* if for each non-unit word of even length its right half is isolated in
w, that is, does not occur as a terminal segment of any other wi, e=+1.

DeriNniTION 13. Consider the elements w?, i e I, of the chain w® and
rearrange them according to their lengths by the ordering w{<w{ given in
Definition 7. This rearrangement therefore assigns an element w? the new
position (i), where o =¢(i) is a nonlimit ordinal, 1La<d<w? and ¢: I
— Py P=(¢ 1 <SELA) is a bijection. For example, in w® let wd,_; =x,,_1,
Wo =X Xa+1 (k=1,2,...); then d=2w and @QRk—1)=k, p(2k)=w+k (k
=1,2,...). In what follows we shall assume, unless specified to the contrary,
that the set w® has been re-indexed by w? — w3, where the ¢(i) will be

denoted by Greek letters.

ReMARK 1. Let o, € &,. Then
(20) a < B implies /(W) S £(wp).
Moreover, if o is a limit ordinal and a <o« < f, then by Definition 13, £(w?)

<t(wp).

REMARK 2. If for some chain w= (w;,w,,...), we have £(w)=7(w?) for all
i € I, then w and w® induce the same rearrangement ¢.

THEOREM 4. Let w® be a minimal chain in M then there exists a complete
sequence of chains {w*, a € ® U0 which satisfies (a)—(e) below for all x € U 0.
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(@) ¢(W)=¢(W)) for all i € I, which, by Remark 2, is the same as £ (w%)=£(w9)
for all i € &,

(b) A>a = wi=w), 1€ ?,, ie., elements of w* with indexes i >« coincide with
those in w°.

(€) ASa, wiEwi™! = wi=a(w')(W)b(w®, where e=+1,
a(w®),b(w°) € gp {w, & <a}, and hence

(21) wi e gp{w?, éSa}  for Asa.

(d) Subset (w3, A<a) satisfies property 1* (Definition 12).

(€) Ifi<o, wi™tEwsthen (i) (W)=, (W%, (ii) wi=w w21, (iii) the left half of
w4 lexicographically precedes that of w3~ ! and coincides with that of w2, (iv)
the left half of w8 coincides with that of w® for B=ua.

ProOF. We proceed by induction on a. For =0, w® obviously satisfies (a)—
(e). For some o € @ U0, suppose the chains w#, f <«, are defined to satisfy (a)—
(e). We then have to construct w* for the two possibilities where « is a nonlimit
or a limit ordinal.

Consider o € ®,. Then w*~! is defined and we shall obtain w* as in [6,
Theorem 3.1], with suitable modifications. Denote the subset of elements w3 ™,
pSa—1,by w, and its elements by w),. By the inductive hypothesis we get from
(d) and (b) that w’ has property 1*, and w% ™' =w?. To obtain w* we isolate the
right halves of words in w' from w? and its inverse.

Suppose that w), =u,v,, w2 =s,v,, where u,, v, are the left and right halves of
w). Then replace w? by w,=wl(w}) "' =s,u;'. Now s,u; ! is freely reduced, and
hence 7/ (w)) =¢(w0); for otherwise, £ (w)) </ (w?) and w,=w?(w’)"!, where (by
assumption (21) for w*™!) w} e gp{w}, {<a—1}; and the choice g=w,
contradicts Lemma 9.

If w, contains as a terminal segment the righf half v, of w) in w, then v,
properly contains u; '; for v, cannot be a terminal segment of w; !, and not of
uj !. Therefore, w,=s,v,, Where £(s,) </ (s;). Now replace w, by w, =w,(w,)~".
Continuing in this way we arrive in a finite number of steps (because of the
relation 1/ (wW9) <4 (s,+1) <Z(sy) at a w, which does not terminate with a right
half of a word in w'. However, w, ! may end with such a right half. If it does,
repeat the above procedure with w; ! in place of w?. In a finite number of steps
we finally arrive at a word w, ! which does not end with a right half from w'.
For in going from w; ! to w_ ! only right halves of words in w' are deleted;
therefore, since /(w,) =/ (w’), every initial segment of w, ! of length <3/(w,) is
unaltered. Hence, the terminal segments of W, with length <1/(w,) are the
same as those of w,. Consequently neither W, nor w, ! ends with a right half
from w'. Moreover,

(22) W, = a(w)wlb(w'), where a(w'),b(w) € gp {w;, {<a} .
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By the inductive hypothesis for w*~! it follows from (21) that
aw),b(w) € gp{w}, £Sa—1), A<a.

By Lemma 9 (with g=w,) it follows that

(23) (W) = £(w)),

since £ (W,)>¢ (w?) is not admissible by our construction. If w, has odd length,
then w' together with W, satisfies 1* and w* can be defined by wi=w3"" (u=+a),
wi=W,, to satisfy properties (a)-(e).

Suppose W, has even length and let u,, v, be its left and right halves. If v, (or
u,) is isolated then again w’ together with w, (or with w, !) satisfies 1*. And we
can define w2 =w3""! (u=%0), wi=w, (or W, ). Assume that neither u, nor v, is
isolated and that u, precedes v, ! lexicographically (if necessary substitute w, !
for w,). Then W, =u,v,, where u, and v, must be initial and terminal segments of
elements, or inverses of elements of w'. Now v, cannot be a terminal segment of
a w/ since £(w}) </ (W,), and a right half of a w} cannot be a terminal segment
of w,. Similarly, u, ! cannot be a terminal segment of w’, so that u, cannot be
the initial segment of (w})~'. Therefore, for some ¢ and ¢ <o, u,=u,, v,=u, ',
where u,, u, are initial segments of wj,, w,. Now modify w’ so as to isolate the
right half u; ! of W, from those (w})~! which end with u; !. If w, =u,v, replace
wj by W, =Ww,w) =u,v,, and otherwise let W, =w/, A <o. In any case, this ensures
that

(24) £(W;) £ £(wh).

Define w* by wi=w, (A<a), wi=w3"' (A>a). Before checking the properties
(a)—(e) for w* notice that, by (24), the inductive hypotheses (a) for w*~?,
Remark 1, and (23), we have for i<a,

(25) W) = L(R) S W) = £(WY) S L(WD) = L(W,) = £(wD) .

Let w, +w'; then, by (22) and the inductive hypothesis (21) for ws™ !, i<a—1,
we have

Wy = Wowy = a(w)(wg)lb(w)-w) ,
where a(w'), b(w'), w; € gp{wg, éSa—1<a}. Now if we suppose that £(W,)
<¢(w?) then we contradict Lemma 9 by taking g=w, and so (25) becomes
(26) (W) = £(W) = £(w) = £(w)) = £(wp) = £(W) = £(w]).

From (26) we have immediately property (a) for w® namely £(w%)=¢(wY),
AZa; while for A>a, wi=wi"'=w by the inductive hypothesis, which
gives (b).
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By (22), wi=a(w* " 1)(w)y*b(w* ). By inductive hypothesis (21) for w* ™ !:
a(w* 1), b(w* ™) e gp {wg, Esa—1},

which gives property (c) for A=a. In case A<a: either

Wa = wawiTh = a(w b wa !
and (c) is true by the same reason as above, or else w?% =w?"! and (c) is true by
the inductive hypothesis for w* 1.

We show now that the set {(w,, u<a) satisfies property 1*. Let v, (A <a) be
the right half of w, and therefore of w’,. Then v, cannot be the terminal segment
of a word of odd length (nor its inverse) in W, since words of odd length were
not altered in going from w’ to w. Also v, is not a terminal segment of w, or
W, ! (by construction of W,). Suppose now that v, is a terminal segment of W¢
(e=+1, p<a, p+4): in the case w,=w,, we then have a contradiction to
property 1* for w'; in the case w,=w,w,, we have, by (26), Remark 1 for
A<Za, and property (a), that

(W) = £(wg) Z £(W)) = £(W),

and hence v, is a terminal segment of the right half of w;,. Therefore v, must be
a terminal segment of v, or u, ! (since W,=w,w,=u,,). But then v, is a
terminal segment of w, or (w,)~", contrary to w’ satisfying 1*. Thus the right
half of W, (4 <o) is isolated in w. Similarly the right half u; ! of W, cannot be a
terminal segment of a word of odd length (nor of its inverse) in w. If u; ' is a
terminal segment of W5 (e= +1, A<a), then u; ' must be the right half of w%.
Now &1 since we have just shown that the right half of w, (A <o) cannot be a
terminal segment of w,. Moreover, ¢+ — 1, since otherwise u, is the left half of
W,, contrary to the construction of w, (4 <a). Consequently (w,, A< a) satisfies
1*, which gives us property (d) for w.

We now show that (€) holds. Notice that w4 w%~! means w, + w/, so that by
(26), £(w3)=¢(w3), which is (e) (i). Now W, =w,w)=u,v, gives (¢) (ii) and (e)
(iii), because the left half of w=W,, namely u,=u,, precedes lexicographically
the left half u,=v, ! of w%~'=w/; while the left halves of w, and W, coincide.
To obtain (e) (iv) we notice that while constructing the chain w* we changed
element w3~ ! (1<a) if and only if its left half coincided with v, !. This implies
that if in w*~! the elements with indexes 4 and u (4, u <o) have common left
half, then they have a (possibly new) common left half in w".

Thus for « € @, the chain w* is defined to satisfy properties (a)-(e), which
completes the induction for o a nonlimit ordinal.

Consider « € @,. Suppose the chains wf, f<a, are defined to satisfy
properties (a)-(e). We shall show that w* can be defined as lim,_,, w”. Indeed,
for a fixed p>o and any B <a, the inductive hypothesis (b) for w” gives w8 =w?.
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For a fixed p<a and any B with u<f<a, wh+wh*"! implies, by inductive
hypothesis (e) (iii) for w”, that the left half of wi*! precedes lexicographically
that of wf. This means that for all but a finite number of f (u<p<a), wh=wh*1
holds and hence the sequence {wf, B<a) is convergent. We may therefore
denote w*=lim,_,w? and we now check properties (a)—(e) for w*. Properties
(a)—(c) are obviously satisfied, while () has no sense, because o ¢ @,. To check
that (wg, ¢ <a) satisfies 1* we take any two elements wj, w3, with y,v<a.
Because of the definition w*=1im,_,, w¥, there exists y (4, v<y <a) such that in
w? we have w)=wj} and w}=w3. By the inductive hypothesis for w” (y <o) the
right half of w?, is isolated from (w!)*!, and hence the same holds in w* This
completes the induction for a a limit ordinal, and the theorem is therefore
proved.

REMARK 3. Notice now that the procedure of the algorithm given in the proof
of Theorem 4 allows us to define, for each « € ¢, an infinite Nielsen
transformation N,, such that N,w*~!=w* That is, N, is a product of two
transformations, N,= N, ,N,,, where

(Na1x); = x5, Ao,

(Nalx)a = a(x)x:b(x)’ where a(x)’ b(x) € gp {xi’ 6 < (X} >

(Nyzx); = x5 AZa,
(Na2X)y = x,x; for some A<a (according to the algorithm) ,
(Napax); = x; for the rest of the 4, A<a .

In this way we can define a connecting sequence of transformations (N,
o € @) (Definition 6) for the complete sequence of chains constructed in
Theorem 4. Obviously N,;, N,,, and hence N,, a € @, are invertible.

LEMMA 10. Let {(N,, a € P,) be the connecting sequence from Remark 3. If A
<o < B, where B € B(a), « € G(4) (Definition 4), then B € B(J).

Proor. Notice first that if 1 <a, then N, acts on x; in the same way as N,.
This means that either &(1) =<4, a), or &(1)=<{A). Moreover, if « € d(4) then w}
+w3i™1 and so by (e) (iii) the left halves of w% and w? coincide. By (e) (iv) the
left halves of w8~! and w?~! coincide for f>a. Now f € f(«) means that the
element of w? ! with index « changes its left half under N, (8> «) and hence so
does the element with index A; this implies g € B(4), as required.

LEMMA 11. The connecting sequence of invertible transformations (N,
o € @), given in Remark 3 for the sequence of chains constructed in Theorem 4,
is regular (Definition 5).
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Proofr. By Definition 5 we have to show that all characteristic sets T (u),
u € ®,, for our sequence, are finite. Notice first that for some fixed p and all «
<pu—1, we have (N,x),= (N,;x),=x, This implies that &(u)=<{u) for asp
— 1. Now by induction on o (1 Sa=<pu—1) we get T, _, (1) = {u). Consider now
T,(w) = A(T, -, (w)=fi(u). Notice that T,(u) consists of indexes of generators in

(Nu—lx)u = (Nu—llNu_le)u = (a_l(Nu_le)xub-—l(Nu-le»e € gp {xé’ é:<—_,‘l};

thus if we denote T,(u)= 4, then 4 € A4 implies A< p, and A is obviously finite.
Now let a> u; then a> 4 (4 € A) and, as we noticed in the proof of Lemma 10,
either d(4)=<4,a) or &(4)=<4). Then T, ., (u)=(u+ 1) (A) <A, p+1), and
for any natural k,

Tyex() = (4K (Tyin-1 (W) S <A p+1Lp+2,. .. u+k>.
This implies

T,orow) € {Ap+lp+2,...5 2 E<ptw).

We shall show now that T, ,(u)= T(u). Notice that for a satisfying { <p+w
<o, by Remark 1 (before Theorem 4) we have 7 (w?) </(wj) and hence, by
Theorem 4(e)(i), wg“ =w}, which gives 4(&)=<&) for { € T, ,(p), a>p+o.
Now simple transfinite induction on o, where u+w+ 1504, gives

T = Tyiow) € Ap+lu+2,...5.

We shall show now that T'(y) is finite. By Lemmas 4 and 6, for each 4 € 4 the
set

A = U &)

xeP,

is finite, and hence the set A(A)=U A(J), A € 4, is finite. To prove finiteness of
T(p) we shall show that T'(u)< A(A); we consider the sets T,.,(u) and use
induction on k to show that T, ,(u)< (u+k) (4). For

k=1, T =@+)(T(w) = (u+1)(4).
Now suppose that T, , - (#)< (u+k—1) (A); then

Tyacl) = (u+0) (Tyix-1 () = l{J (+k) (@), e (u+k=1)(4).

By Lemma 10, t e (u+k) (¢) and &€ (u+k—1)(4) imply t e (u+k) (A),
which gives T, (1)< (u+k) (A). So for any k=1 we have T,,, (W< (u
+k) (A)< A(A); hence T(w) = T, (1) S A(A), as required. This completes the
proof of the regularity of {N,, o € &,).

THEOREM 5. For a minimal chain w°® there exists an infinite Nielsen
transformation P such that the chain Pw®=w* satisfies property 1*.

Math. Scand. 51 — 6
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Proor. In Theorem 4 we constructed a complete sequence of chains (w?
a € $UO), beginning with w® and ending with w?, (put w*=w*), satisfying
property 1*, and it was shown in Lemma 11 that the corresponding connecting
sequence of invertible transformations {N,, @ € @,) is regular. Then by (7) of
Lemma 5, Pw®=w*, where P is the last element of the corresponding sequence
of partial products for {N,, o € #,>. By Lemma 4 and 11, it follows from
Theorem 1 that P is an infinite Nielsen transformation, as required.

5. The main theorem.

In section 3 we proved that, for any given chain u, there exists a chain w°
= Nu which satisfies the property given in Lemma 9, where N is an infinite
Nielsen transformation. In section 4 we proved the existence of an infinite
Nielsen transformation P such that the chain Pw®=w* satisfies the property
1*. We now show that w* also satisfies 2* (Definition 14) which leads to
Theorem 6.

DEFINITION 14. We say that a set w of words in F satisfies property 2* if both
the major initial and major terminal segments (see [6, p. 123]) of each non-unit
word in w are isolated, i.e., if neither occurs as an initial or terminal segment,
respectively, of any other wi!, w, e w.

If w, is not isolated from wi! then one of the following holds:
(a) the major initial segment of w; is an initial segment of (wv)i‘, in which
case either

27 £(wg lwy) < £(w,)
or
£(wywy) < £(w,);

(b) the major terminal segment of w, is a terminal segment of (wy)il, in
which case either

4 twwgl) < £(w,)
or
L(wgw)) < £(w,).

Our object now is to show (Lemma 14) that the chain w* satisfies property
2* and for this we need two further lemmas.

LEMMA 12. If one of the words w§, w} in w* is not isolated from the other or its
inverse, and if B <y, then w§ is not isolated from (w;’)i‘.
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ProOF. By Theorem 4(a), £ (w))=¢(w¥) (A € &), and then by Remarks 2 and
1, B<y implies £(wg)<¢(wy). This implies that if, in addition, w¥ is not
isolated from (wj)*!, then also w is not isolated from (w*)*!, which proves
the lemma.

LEMMA 13. For each fixed B € ®, consider the sequence {wj, a € ®U0) of
entries with index f from the sequence of chains {w*, o € ®UO0) constructed in
Theorem 4. Then there exists exactly one B, € ®oUOQ (either =0 or B,=p)
such that:

(28) wp + wi (@<Bo), wp = wi (x28,).

Proor. Recall that, from Theorem 4(b), the element with index f is equal to
wy in the chains w*, 1Za<f—1. If a=p we have, by (22), wh
=a(w?~")(wh~1yb(wP ™). For the chains w* with o> B, the element with index
p can change only a finite number of times by decreasing its left half
(lexicographically) to obtain its last limit value wg.

In case wi+w} there obviously therefore exists only one f, (with B, f)
satisfying (28).

In case wj=wj we shall now show that wj=w} for any « € ¢ U0. Notice
first that if we denote wi =u’}, where u and v are left and right halves of w,
then, because an element with index u can alter its right half only under N, we
have v%=v¥ for all a > p. If w§ =w} it is easy to see that vj=vj foralla € @ UO.
Suppose however, that the left half of the element with index f can change;
then u¥ =uf ™' +uf implies that for some 1< B, the right half v} of some wf{ ™! is
a terminal segment of (u})~!. Observe also that if, for some §, > f, uf'~ ’#u”‘
—u,,, then by Theorem 4(e)(iii), uf: =uj}. Moreover, in wf1~1 the right halves
v¥ of all elements w4~ ! are isolated from wj! and hence v} cannot be a
terminal segment of (u})~'. This contradlctlon establishes that the element
with index f§ has constant value wy in each chain w°, « € ®UO; so that (28)
follows, with B,=0. This proves the lemma.

REMARK 4. If, in Lemma 13, §,=0, then

29) wy =wp=w; foranyaedUO.
If Bo+0 then B, and
(30) whol & wh = wp

and hence, by Theorem 4(a) and (e)(i),
1 L) = L) = o) = LW
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if, moreover, B,> B, then by (30) and Theorem 4(e)(ii),
(32) who = whowho=1

In addition we have, by (31) and (20),

(33) tWY) = WY = ¢(w)) for any & in B<E<pB, .
Also, by Theorem 4(a),
(34) fWg) = £(w}) forany Ee .

LEMMA 14. The chain w* satisfies property 2* (Definition 14).

Proor. We shall suppose that w§ is not isolated from w}, as in case (27) (for
the other cases the proof is similar). We denote g= (w})~'w, so that (27) and
(34) give

(35 £(g) < £(wf) = £(w)),

and we now show that (35) contradicts the conclusion of Lemma 9 for w°. By
Lemma 12 we can suppose that f<y. By Lemma 13, <, or f,=0, and also
<70 Or 7o=0. Then there are the following possibilities, some of which will
be considered together.

(@) Bo=0, 70=0;

(b) B=Po 7<% Bo<Yo;

© B=Bo V=%  V0<PBos

(d) B=Po 7<%, Bo=7os @ 7="7o (i) y<yos
(€) B=Bo, 710=0, () y<Po (1) y=Po (il]) y>Bo;
() Bo=0, Y =Yo-

Cases (a) and (e)(iii). In the cases: y, =0, which implies, by (29), that wi= w‘y’;
and f, <y, which implies (trivially in case (a), and by (21) in case (e)(iii)) that
who € gp {w?,& <Bo<7}. Then

g = (u)7hwE = o) = ()7
which, together with (35), gives a contradiction to Lemma 9.
Cases (b) and (f). Here B, <7,. By (35) and (31), £(g) </ (w9)=¢(w),). By (30)
and Theorem 4(c),
g = W) twr = (wh)Ttwle = (wh)ta(wO) (WS b (%) ,

where a(w°),b(w°) € gp {w?, £<7,}; also (trivially for (f), and by (21) for (b))
wﬁ“ € gp {w, £ <Py <7,}. Again a contradiction with Lemma 9 ensues.



ON INFINITE NIELSEN TRANSFORMATIONS 85

Cases (c) and (e)(i). Here y, < B, and f <y < f,. Thus, by (35) and (33), ()
< (w))=7¢(w}). By (30) and Theorem 4(c),

g = (W lwk = (wh)Tlwlk = a(wo)(wgu)”b(wo)w¥° ,

where a(w°),b(w°) € gp {w?, £ <B,}; also (trivially for (e)(i), and by (21) for (c))
w? € gp {w?, £<y,<f,}. We obtain a contradiction to Lemma 9.

Cases (d)(i) and (e)(ii). Here f<y=pf, We shall see that in these cases,
w¥=wl. Indeed, in (d)(i), y=7, and hence w¥=w>=wl. In (e)(ii), yo=0 and

$0, by (29), w¥=w9=w?. Hence w*=w)=wfo, and then, by (32),

g7 = W) hwg = (o)l = W

which implies that £ (g) =/ (w§° ") =¢(w}). On the other hand, by (35) and (33),
£(g) </ (w9)=7¢(w$), which is a contradiction.

Case (d)(ii). Here f <7y <vy,=f,. This relation means that the elements with
indexes B and y change their left halves simultaneously under Ny =N, to
become equal to wy and w respectively; hence they have common left halves
in wfo=! and (by Theorem 4(e)(iv)) in all succeeding chains —in particular in
w*. It follows also, by Theorem 4(e)(i) and (a), that £(w3)=¢(wj ) =¢(w?). Let 6
be the minimal ordinal (obviously nonlimit) such that, in all chains w* (a2 9),
elements with indexes § and y have common left halves, while (if 6 >0) w‘,ﬁ“,
w?~1 have different left halves. The element with index B can alter its right half
only under Ny, so the right half of wj coincides with that of wj for all « = and
hence for a=1y.

Let 6<y. Then it now follows that elements w} and w} have common left
halves, and have the same right halves as wj and w, respectively. Thus

(36) (W)W = (w})~Iwl .
In case w{,#w}“l, we have, by Theorem 4(e)(ii), W};=w§w},“; hence
g = (7w = () 7Iw) = ()T TIW) =

and /(g)=¢(w}~')=¢(wg)=¢(w?), which contradicts (35).
In case wh=w}™ !,

g = WH 'wr = (wh'wl = W) wl.
Now by Theorem 4(c), w}=a(w®)(w9)*b(w°), where
a(w),b(w) € gp {ws, {<v};

and, by (21), wy™! € gp {w, £ £y—1<y}. Taken together with (35), this gives a
contradiction to Lemma 9.
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Now let B<y<d. Then, analogously to (36), (wf)™'w}¥=(w}) ™ 'w). The
choice of 6 implies that w~! and w?~! have different left halves, hence only one
of the elements (say with index y) changes under N, Then wi=wj""! and w?
=wjw)~!. By Theorem 4(c),

wi = a(wWo)(w)'b(w°),
where a(w°), b(w°) € gp {w?, £ <d}; hence

g = W)Wk = W) T Iwiwi Tt = (wpT )T a(w) (Wb (W)W Tt

where, by (21), wj ™!, w)™! € gp {w}, E<6—1<5}. Now, by (35) and Theorem
4(e)(i) and (a), £(g) </ (w9)=£(wj), which gives a contradiction to Lemma 9.
This completes the proof of Lemma 14.

To recapitulate: for any fixed chain u we proved the existence of some
minimal chain w® in the set M of all chains Nu for all infinite Nielsen
transformations N. Hence w®= N,u for some infinite Nielsen transformation
N,. Later we constructed an infinite Nielsen transformation P such that Pw°
=w*, where the chain w* satisfied properties 1* and 2* (Definitions 12 and
14). By [6, Lemma 3.1], the set of non-unit elements in w* is a Nielsen-reduced
set. We have therefore proved:

THEOREM 6. For any chain u in F there exists an infinite Nielsen
transformation N such that the subset of non-unit words of Nu is Nielsen-
reduced.
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