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THE SMALLEST SINGULARITY OF
A HILBERT SERIES

DAVID J. ANICK

Summary.

In this note we prove the following. Let H be any non-commutative finitely
generated connected graded algebra over a field k. Let

H(z) = Y rank, (H,)z"
n=0 -
be the Hilbert series of H and let r <oo be the radius of convergence of this
series. Then H(z) goes to infinity, as z approaches r, at least as fast as a first
order pole. e,

liminf(r=2z)H(z) > 0.

z—r”

The same result holds if H(z) is instead the growth function of any finitely
generated group. An application shows that the members of a certain class of
finitely presented Hopf algebras always have transcendental Hilbert series.

Let k be any field and let
M=3M,
n=0

be a locally finite graded k-module. Let M(z) denote the Hilbert series of M,

M(z) = rank,; (M,)z" .
n=0
Hilbert series are intriguing objects because they may be studied from the point
of view of algebra, combinatorics, or complex analysis. Consideration of
properties of Hilbert series as functions of a complex variable has been limited.
The most celebrated result in this direction is that the Krull dimension of a
graded commutative algebra R is also the order of the pole of R(z) at z=1 [2].

Received March 30, 1981,



36 DAVID J. ANICK

The question of under what conditions H(z) is a rational function, when H is a
finitely presented non-commutative graded algebra [9], [7] or when H is the
homology ring of the loop space on a finite CW-complex [8], [1], has also
attracted a great deal of interest. Avramov [3] has looked into questions about
the radius of convergence r of certain H(z). In this paper we examine the local
behavior of H(z) in a neighborhood of z=r and prove that H(z) goes to infinity
at r at least as fast as a first order pole if H is finitely generated as an algebra.

Let H= @ H,
n=0

be a finitely generated graded algebra over k. All graded algebras are assumed
to be connected, i.e., Hy=k. H is a quotient of a {ree associative polynomial
ring H=k{x,...x.»/I, where I is a two-sided ideal generated by
homogeneous positive degree elements. Let the generator x; have degree e;>0.

Let a,=rank, (H,), so each q, is a non-negative integer. Let r be the radius of
convergence of H(z). If only finitely many of the a,’s are non-zero, H(z) is a
polynomial, r=o00, and H is a finite dimensional vector space over k. We will
not be concerned with this case. If infinitely many of the a,’s are non-zero, then
the series fails to converge for z=1, hence r=1.

Since H is a quotient of S=k{x,,...,x,>, H(z) is bounded above for z>0 by

S(z) = (l—zt: z“)ul

i=1

If ry is the smallest positive root of 1 —3_, z*, then S(z) converges for |z| <7y,
hence O<ry=r.

LemMa 1. Let H, {e;}, {a,} be as above. Suppose each e;=1. Then for all m=0
and nz0, a,a,Za, .,

Proor. There are pairings u,,,: H,®H, —» H,, ., {or each m,n. We have a
commuting diagram
SM®SPI _z—) Sm+n
! !
Hm®Hn —hlﬂ) Hm+n
in which the vertical maps are onto. It follows that u,, is surjective. Hence
rank (Hm®Hn) ; rank (Hm+n) M

1€, A, = ap iy
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Our next result shows that this simple criterion is sufficient to imply the
desired conclusion.

THEOREM 2. Suppose

oG
fa) =3 ¢
n=0
satisfies ¢, € R and c, = o" for all n for some 0.>0 and c,,c, = Cpp+, for all m,n 20.
Let r be the radius of convergence of f. Then

liminf(r—z)f(z) > 0.

zor”

Proor. To begin with, «" <c¢,=<¢] for all n. The series for f(z) converges for
lzl<cy! and diverges for |z|=a" !, and o™ ' 2r2c;

Let b,=(c,)""2a. We prove first that lim,_, b, exists. This is essentially
proved in [5] in the context of norms in Banach algebras. Quoting from [5, p.
350], let s>0 be arbitrary and let 0<t<s. For n>0 we have

b t
ns+t __ n — NSt ns+ef “t
bns+t = Cps+t é CsCy = bs bt - bs ( ’

b,
b (n—sliT)
b ns+t é bs (Bi) *

Letting t vary and n — oo yields

which leads to

limsupb,, < b

m-=oc

s .

Letting s — 00 gives

limsupb,, < liminfb,,

m-—*oC Rimde @

hence lim,_ . b, exists. Let B=lim,. b,; recall that r=f""'. We have just
shown that f<b, for all n>0. So ¢,=f" and consequently

liminf (r—z)f(z) 2 lim (r—z) ) p"z" = lim % =r>0,
zor” zor” n=0 zarm 1 —pz

as desired.

Combining lemma 1 and theorem 2 and setting a =1, we have at once
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COROLLARY 3. Let H, {e;}, {a,}, and r be as before. Suppose each e;=1. Then

liminf(r—z)H(z) > 0.

z—r”
We now extend this to the general case.

THEOREM 4. Let H, {e;}, {a,}, and r be as before, with no restriction on the {e;}.
Then

liminf (r—2)H(z) > 0.

Proor. We will reduce this problem to the case of Corollary 3. We will
embed H in an algebra G which is only slightly bigger than H but has degree
one generators.

We may write H=_S/I, where S=k{x,,...,x,> and deg(x;)=e;, and I is a
two-sided ideal of S. The first step is to embed S in an algebra T with degree
one generators. Let

T=k{y; | 1Si<t;15j<e)

where each y;; has degree one. Let a: S — Tbe the injection of graded algebras
defined by a(x)=y;, ... .. Now, however, T is much bigger than §, so we
reduce T by dividing out all products which do not appear in im (). Let J&T
be the two-sided ideal generated by all y;;y;.; for (i,j,,j) ¢ W, where

W: {(l’.]”s.l+1)l j<ei} U {(i’ei’i” 1)} .

Let n: T— T/J be the projection. Then T/J has a basis consisting of the z-
images of those monomials y; ;, . .. y; ;, with the following property for k <p: if
Jx=¢ then i, is arbitrary and j,,,=1; if j,<e, then i ,,; =i, and j, ., =j,
+ 1. In particular, ker (moa)=0. Let

G, = Span{l;y,-j...y,vell any i; j>1}
and

G,

Span {1; y;, ...y; | any i; j<e;}
and
G; = Span{y,;...yu [ any i; 1<jsk<e;} .
By considering the above described basis for T/J, we have an isomorphism
o: T/J = (G,®@im (0)QG,)DG,
as graded modules. Let [«(I)] be the two-sided ideal of T generated by a(I).
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Since a(l) is already a two-sided ideal of im («),
o(n(fx(D])) = G,®a()®GC, .
Let G=T/(J +[a(l)]). The algebra G has degree one generators and
G = (G,®im ()®G,DG,)/(G,;@x(®G,) ~ (G;OHRG,) DG,

as graded modules.
From this we deduce that G(z)=G,(z)H (2)G,(2)+ G;(2). Also

t

Gi(d) =1+ Y

€
ze,-—j+1
i=1 j=2

and

and

G3(Z) = Z Z Zk—j+l

i=1 1<jSk<e,

are polynomials in z which are positive for z=0. G(z) and H(z) have the same
radius of convergence r.

i

liminf (r— z)H(2)

z—r”

liminf (r = 2)G(2)G, (2) ' G (2) !

G,(N™'G,(r) " liminf (r—2)G(z) > 0

zZ—or

by Corollary 3. This is the desired result.

ExaMmpLes. That liminf, ,,- (r—z)H(z) can be finite is exemplified by H
=k{xy,...,%,» with {e;} arbitrary. Let

f(z) = H@)™! = 1—i P
i=1

and let ry be the smallest positive root of f(z). r is the radius of convergence of
H(z), and r, is a simple pole, because it is not a double root of f'(f"(z) <0 for z
>0). At the other extreme, H(z) can have an essential singularity at r, even if H
is finitely presented. Shearer [9, see “note added in proof ] gives an example of
a finitely presented algebra whose Hilbert series is

oo -1
H(z) = [(1—2)(1—22) I:[l (1—2")] ,
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for which r=1. The function H(z) has an essential singularity at z=1. In fact,
the unit circle is the natural boundary of this analytic function.

Theorem 2 has another application to the growth functions of finitely
generated groups. Let G be any finitely generated group and let C be a finite
generating set. For g € G, let

L(g) = Lc(g) = inf{n | xiixiz ... xp = g for some x; € C and ¢;=+1} .
L(g) can be thought of as the length of the shortest path from the identity to g
in the graph of G. The growth function of G (relative to C) is defined by

f@) = fela) = F 0.

geG
If f(2)=2% ¢ a,z", then ay=1, a, 22#(C), and a,=#{g € G|L(g)=n}.

LEMMA S. Let f(z)=fc(z) be the growth function of the group G generated by
the finite set C. Let

f@ =Y az.
n=0
Then a,,a,2d,, ., for all m,n=0.

ProoF. Let G,={g € G | L.(g)=n}. For fixed m and n, define a map

m+n
v: G, xG,— |J G
i=0
by v(gy,8.)=g,8,- We now show that G,,,Simv. Any he G, ,, may be
written as
h = xj...xjme

m+n

Let
— & “"m g EM sm n
g = X{' ... X] and g, = x{rrt...xjmin

m m4n

If L(g,)<m, then g,g,=h would have a representation as a product of L(g,)
+n or fewer generators, contradicting the fact that L(h)=m+n. Thus L(g,)
=m and likewise L(g,)=n. h=v(g,,g,) and hence G, ,,<imv. It follows that

m+n=
am+n = 41:(Gm+n) § #(Gm)#(Gn) = aman .
THEOREM 6. Let f(z)=f.(z) be the growth function of an infinite group G
generated by the finite set C. Let r be the radius of convergence of f(z). Then
re (0,1] and liminf, ,,- (r—z)f(z)>0.

Proor. Since G is infinite and C is finite, none of the coefficients of f(z) are
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zero and r< 1. The result is a direct application of Lemma 5 and Theorem 2
with a=1.

In the remainder of this paper we use Theorem 4 to show that all members
of a certain class of finitely presented Hopf algebras have transcendental Hilbert
series. The class consists of those algebras H which arise from the construction
in the following theorem, which is proved in [1].

THEOREM 7. Let N be any finitely presented connected graded algebra over k,
with Hilbert series o
N(z) = 1+ Z a,z" .
n=1

Let P(z%) denote 1 +Z', if i is odd and char (k)% 2 and P(z)=(1—2%)""1, if i is even
or char (k)=2. Then there is a finitely presented Hopf algebra H whose Hilbert
series is the product of a rational function with T]3% P(z")*.

By choosing N=k[x], one obtains a transcendental infinite product,
implying that H(z) is also transcendental. This example settled three long-
standing interrelated problems in topology and algebra. These were the
possible irrationality of the three series H(z) for H a finitely presented Hopf
algebra; Y2 ,rank (H,(QX; Q)z" for X a finite CW-complex; and
S ,rank(Tor? (k,k))z" for A a local Artin ring with residue field k. We are
now in a position to show that the series H(z) which are obtained through
Theorem 7 are transcendental for any infinite dimensional aigebra N. It suffices
to show that

gla = [] P>
n=1
is transcendental. This will answer a question of Roos and Jacobsson [oral
communication] as to whether or not g(z) might possibly be rational or
algebraic for some choices of the algebra N.

We first prove (cf. also [4])

ProposITION 8. Let {a,},>; be any sequence of integers and suppose 33_  a,z"
has radius of convergence r € (0,1]. Then [ P(z")* converges in the open
disk |z| <r and converges uniformly on any closed disk |z|<r, for ry <r.

ProOOF. Let

glz) = [] P,
n=1
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SO

[e 9

logg(z) = Y a,logP(z").

n=1
If P(z")=1+"2", then
=2l

log P(z") = [log(1+z" £ ) — = for |z|<1.
i=1 1—|z"

If Pz")=(1-2z""", then

|2I"

log P(z")| = [log (1-2z")| = ;
1-|z|

for |z]<1.

Hence

oo

Y. a,log P(z")

n=1

£ ; la,| [log P(z")|

o< 'z|n
Z '“"’(1 —lZI")
1 [o.¢]
(-—1 __M) T a1,

which converges for |z| <r and converges uniformly on |z|<r, for r <.

A

IA

To obtain the transcendentality of the product, we need a lower bound on
g(z) as well.

PRroOPOSITION 9. Let
oo
fl@)= 3 a7
n=1

have radius of convergence r € (0,1], where {a,},>, are non-negative integers.
Let

g(2) = l:[l P(z")™ .
Then

g(z) 2 e¥’@  forall ze[0,r).
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Proor.

o

logg(z) = ) a,logP(z").

n=1
Fix z e [0,r). If P(z")=1+2",

2n

log P() = log (1+2) 2 2"~

and if P(z")=(1—-2z""",
logP(z") = —log(1-2") = z".

In either case,

2n n
log P(z") = z"—iv = %
logg(z) = ) a,logP(z") 2 ) 3a,2" = 3f(2).
n=1 n=1

Hence g(z)= et/

THEOREM 10. Let N be any infinite dimensional finitely generated connected
graded algebra over k. Let

N(@) =1+ 3 a,"

n=1

have radius of convergence r. Let
g(2) = [] PEy™.
n=1

Then g(2) is a transcendental analytic function defined on |z|<r. If N is finitely
presented and H is the algebra constructed from N as in Theorem 7, then H(z) is
also transcendental.

Proor. We have already established through Propoisition 8 that g(z) is
analytic in the open disk |z] <r. By Theorem 4, there is some 4>0 such that
liminf (r—z)N(z) = 4.

zor”
If g(z) were algebraic, lim,_,,- (r—z)"g(z) would be zero for some sufficiently
large m. But for any m=0,
lim (r—z)"g(z) 2 liminf (r — z)y"e» W=D
zor”

zr”

1\

- . —_!
e 12 lim (r—z)y"ePH =97 = oo,
zr”
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One further observation on the singularities of their Hilbert series may be
made for this class of algebras. We have shown that g(z) is transcendental, but
the Hopf algebra H constructed from N always has a Hilbert series which is a
rational function times g(z). By its construction, this rational function always
has a finite order pole at some point strictly smaller than r, the radius of
convergence of N(z). There seems to be no way of avoiding these additional
singularities. This observation provokes the following open question.

QuEsTION. Let r be the radius of convergence of a finitely presented graded
Hopf algebra H. Is r always a finite order pole of H(z)?

We have already seen that the Hopf algebra requirement cannot be omitted,
and it is easy to construct finitely generated (but not finitely presented!) Hopfl
algebras with only essential singularities.

NOTE ADDED IN PROOF. We have since discovered finitely presented Hopf
algebras with smallest singularity essential. The question remains open,
however, for Hopf algebras with degree one generators and degree two
relations.
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