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A STUDY OF GRADED EXTREMAL RINGS
AND OF MONOMIAL RINGS

RALF FROBERG

If R=(R,m, k) is a local Noetherian ring or if

R= @R,
iz0
is a Noetherian graded R,-algebra (R,=k a field) we denote the Poincaré
series for R,

Pr(Z) = Y dim,(TorR(k,k)Z' .
iz0

There are now examples of local rings (even Gorenstein) and of graded rings
(even with R;=0) with Pg(Z) non-rational (see [1], [2], [14], [4], [10], [11]).
For monomial rings (rings of the type k[X,,...,X,] modulo an ideal
generated by monomials) the question of rationality is still open. In this paper
we first study two classes of “extremal” graded rings and show that they have
rational Poincaré series. Then we make a closer study of some classes of
extremal Gorenstein rings. For monomial rings we reduce the question of
rationality of the Poincaré series to squarefree monomial rings, and we show
by means of an example that the Poincaré series for a monomial ring may
depend on the characteristic of the ground field.

Extremal rings.

Let k be an infinite field and R a commutative Noetherian graded k-algebra
such that Ry=k and m= @, R, is generated by R,. R is then a factor of 4
=k[X,,...,X,], R=A/I with I homogeneous. H(n, R)=dim, R, is called the
Hilbert function of R. H(n, R) is a polynomial for n large, the Hilbert-Samuel
polynomial, we denote this polynomial by h(n, R). The generating function for
the Hilbert function, the Hilbert series

Hp(2) = i H(n,R)Z",

n=0
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is a rational function and has in lowest terms the form pg(Z2)/(1 — Z)%™R where
pr(Z) is a polynomial with integer coefficients, with pr(0)=1 and pr(1)+0.
pr(1)=e(R) is called the multiplicity of R.

DEefINITION. If Hg(Z)=p,(Z)/p,(Z) with p, polynomials we define the index
of irregularity for R as

i{(R) = degp,(Z)—degp,(Z)+dimR .

In some sense i, (R) measures the deviation for R from being regular, at least
i; (R)= 0 with equality if and only if R is a polynomial ring. Schenzel defines the
regularity index of R as

i(R) = max {n; H(n,R)*h(n,R)} +1

in [15]. The following lemma explains the connection between i, (R) and i(R),
in fact we show that i;(R)=i(R)—1+dimR.

LEMMA 1. Let R=k[X,,. .., X,)/I where k is a field and 1 homogeneous, let
Hr(Z)=p(Z)/p,(Z) be the Hilbert series for R (p; polynomials) and let H(n, R),
respectively h(n, R), denote the Hilbert function, respectively the Hilbert~Samuel
polynomial for R. Then

degp,(Z)—degp,(Z) = max{n; Hn,R)+h(n,R)} = —dimR
with equality if and only if R=k[X,.. .., Xdimr}
Proor. Of course deg p,(Z) — deg p,(Z) is independent of the representation

of HR(Z) as quotient of polynomials, so we could use Hg(Z)=pg(2Z)/
(1—2)4mR to see that

degp,(Z)—degp,(Z) = degpr(Z)—dimR = —dimR

with equality if and only if pg(Z) =1, i.e. if and only if Hg(Z)=1/(1 - Z)4%™R je.
if and only if R=k[X,,..., X4mr]- Now let p(Z) be any polynomial with
integer coefficients. Then it is easy to see that the coefficient of Z" in the power
series expansion
p(2)/(1-2)" = Y hZ
iz0

is a polynomial h(n) for n large, that h;=h(i) for i>degp(Z)—d and that
hgeg pz)—a ¥ h(deg p(Z) —d). This gives

deg pr(Z)—dim R = degp,(Z)—degp,(Z) = max {n; H(n,R)+h(n,R)} .
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Now suppose that R=k[X,,...,X,]/I,k an infinite field, I a homogeneous
ideal # (0) and let ¢ be the least degree of a generator for I. Schenzel shows in
[15] that, in our terminology, i;(R)=t—1 if R is Cohen-Macaulay and that
i;(R)=2t—2 if R is Gorenstein. A Cohen—Macaulay (respectively Gorenstein)
ring is called extremal Cohen—Macaulay (respectively extremal Gorenstein) if
there is equality. Note that an extremal Gorenstein ring is not an extremal
Cohen—Macaulay ring with these definitions unless it is isomorphic to a
polynomial ring over k. We disgress a little to show that extremal rings are
extremal with respect to Hilbert functions also. If R is graded and x is a non-
zerodivisor in R of degree one, Hg(Z)= (1 —Z)Hg;)(Z) so R is extremal if and
only if R/(x) is extremal (dim R/(x)=dim R—1). If R is a zero-dimensional
extremal Cohen-Macaulay ring k[X,,..., X, )/, IS(X,,...,X,)?

H(i,R) = H(,k[X,,....X,] ifi<t and H(,R) = 0 if ixt

(so R=k[X,,....X,)/(X,, . X,)). If R is a zero-dimensional Gorenstein ring
(graded) it is well-known ‘that H (i,R)=H(s—i,R), s=degsocR. Hence, if
R=k[X,,....,X, /I, 1€(Xy...,X,)* is a zero-dimensional extremal
Gorenstein ring then

H(i,R) = H2t—2—i,R) = H(i,k[X,,...,X,] fori<t,

so also in this case the Hilbert function is “as large as it can be”. We will now
calculate the Poincaré series for extremal Cohen—Macaulay and Gorenstein
rings.

If R is graded, Tor® (k, k) is bigraded. We call

Pr(X,Y) = Y dim,(Torf;(k, k) X'y
L

the double Poincaré series for R (first degree is homological). Pg(Z,1) is the
Poincaré series for R. A graded ring R is called a graded trivial Golod ring if
one could choose representing cycles {z;} for a basis of H(K(R)) (the homology
of the Koszul complex K(R; dT;=X))) such that z,;z;=0 for all (i, ). Graded
trivial Golod rings have rational (even double) Poincaré series, see e.g. [5]. We
will show that zero-dimensional extremal Cohen—Macaulay rings are graded
trivial Golod rings and conclude that they have rational (double) Poincaré
series. If R is an extremal zero-dimensional Gorenstein ring we show that
R/(0:m) is a graded trivial Golod ring. Furthermore, there is a rational
correspondence between the (double) Poincaré series for R and R/(0:m) if R is
a graded zero-dimensional Gorenstein ring. As one can easily reduce to the
zero-dimensional case, we can conclude that extremal Gorenstein rings have
rational (double) Poincaré series.
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THeorREM 2. Extremal Cohen—Macaulay and Gorenstein rings have
rational (double) Poincaré series. In fact, an extremal Cohen—Macaulay ring
R=k[X ... . XYL I1s(X,.....X,)% of codimension k (=n—dimR) and
least degree of I =t has the series

oft—1+k\[t+i=2\_, .
P X,Y = (1 XYy 1— Xz+lyl+x-—l
= (Y )

hence
_ w1 = (t=1+k\(t+i=2)_.,,
Pr(Z) = (1+2) /(1 i; (t—1+i>< i1 >Z )

An  extremal Gorenstein ring R=k[X,,... X, ]/, 1=(X,,...,X,)% of
codimension k and least degree of 1 =t, has the series

(=1 k\(t+i-2
Pr(X,Y) = (1+XY)"[{1—
REGY) = )/( P <(t—1+i>( i1 >+
+(t—1+k><t+k—i_2>_<k><t+k—2>>X|’+lyt+i—l+X2+ky2t—2+k>
i t—1 i t—1

hence

. K ((t—=14+k\[(t+i-2
ran = (13 (Y1)
+(t—1.+k>(t+k—i—2>_(If)(t+k—2>>ziﬂ+Zz+k>'
i t—1 i t—1

a). ExTREMAL COHEN-MACAULAY RINGS. Schenzel shows that an extremal
Cohen-Macaulay ring R has a free minimal resolution

E:0 > A by g S, 4 SR 50

with f; homogeneous of degree 1 for 1<i<k and of degree ¢ for i=1. This
means that

H, (E®kK) = Torf;(R,k) + 0
only if
(i,)) € {(0,0), (1,0), (2, t+1), 3, t+2),.. ., (k,t +k—1)} ,

where the first degree is homological and the second (total degree) comes from
the grading of R. So

Hl,r(K(R)) = Torfi*'r(R?k) 4: 0
only if
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(i,r) € {(0,0), (1, —1),(2,t—1),... (k,t—1)}

(we call r ring degree). Now if we factor out by a maximal R-sequence

consisting of elements in R; (which is possible since k is infinite),
‘ R=R/(y;»....ys). it follows from Theorem A in [15] that R,=0 (in fact
R=A/(X,.....X,)). Since H; ,(K(R))=H; ,(K(R)) it follows that R is a graded
trivial Golod ring (choose homogeneous z;, i.e. ring degree (z)=t—1 for all i,
then ring degree (z;z;) = 2t — 2, so z;z;=0 since every element of ring degree >t
is zero). Since Pg(X,Y) differs from Pg(X,Y) only by a factor (1+XY)%,
Pr(X,Y) is rational. The formula follows from [5] and [15].

Schenzel also gives some examples of extremal Cohen—Macaulay rings:

1. Let X=(X;), 1=isn, 1 <j<m be a matrix of indeterminates, I the ideal
generated by all maximal minors. Then k[X]/I is an extremal Cohen-—
Macaulay ring.

2. Let X=(X;), 1 i, j<n, be a symmetric matrix of indeterminates, I the
ideal generated by the submaximal minors. Then k[X]/I is an extremal
Cohen—Macaulay ring.

3. Let (S,n) be a d-dimensional local Cohen—Macaulay ring of embedding
dimension e(S)+d—1 (the maximal possible). Then Gr,(S) is an extremal
Cohen—Macaulay ring. (e(S) denotes the multiplicity of Gr,(S).)

For references to these last statements, see [15].

b) Extremal Gorenstein rings. In this case R has a free minimal resolution

E:Q A% .. s> A" Ly 4 SR 50

with f; homogeneous of degree | for 1 <i<k and homogeneous of degree ¢ for
i=1 and for i=k [15]. A similar calculation as above shows that

Hl,r(K(R)) :# 0
only if

(1,1 € {(0,0), (1,1 =1), (2,t-1),.. ., (k=1,t—1), (k,2t - 2)} .

As before we factor out a maximal R-sequence consisting of element in R,,
R=R/(y,,....ys), and this does not change the homology of the Koszul
complex. Then Theorem 2 in [9], which gives the correspondence

Psj0.0(Z) = Ps(Z)/(1—Z*Ps(2))

for a zero-dimensional local Gorenstein ring (S, n) is easily extended to the
graded case which gives

Pgjo:i(X, Y) = Pr(X,Y)/(1-X?Y*72Pg(X,Y)).

Furthermore, Theorem 1 in [9] gives a correspondance between H(K(S)) and
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H(K(S/0:n)) for a zero-dimensional local Gorenstein ring (S,n). A similar
extension of this theorem to the graded case gives that

H, (K(R/(0:m))) # 0
only if
(i,r) e

{(0,0), (Lt —1), 2t =1),. .., (k—1,e—1), (1,2t =3), 2.2t = 3)... .. (k. 2t =3)} .

Since R,,_, =0, [15], we have (R/(0:m)),,_,=0 and it follows that R/(0:m) is
graded trivial Golod ring. Putting these pieces together, we get that Pr(X,Y) is
rational if R is an extremal Gorenstein ring. The formula follows from [5], [9]
and [15].

Schenzel also gives examples of extremal Gorenstein rings:

4. Let X=(X;;) be a skew-symmetric (2n+1)x (2n+1)-matrix of
indeterminates, I the ideal generated by the 2n x 2n-Pfaffians. Then k[ X]/I is
an extremal Gorenstein ring.

5. Let X=(X;), 1<i, j<n, be a matrix of indeterminates, [ the ideal
generated by all submaximal minors. Then k[ X]/I is an extremal Gorenstein
ring.

6. Let (S,n) be a d-dimensional local Gorenstein ring of embedding
dimension e(S)+d—2. Then Gr, (S) is an extremal Gorenstein ring.

7. Let 4 be the simplicial polytope defined by n different points on
(a,a?,...,a%, and k[ 4] the associated squarefree monomial ring. Then k[ 4] is
an extremal Gorenstein ring.

For references, see [15].

We could use the construction in [6] of [d/2]-neighbourly polytopes
which are not combinatorially equivalent to cyclic polytopes to construct
another sequence of squarefree monomial rings which are extremal Gorenstein,
the smallest with 8 variables and 50 relations (squarefree monomials) of degree
3 and with Hilbert series (1 +4Z+10Z%2+42Z3+Z%/(1-2)*

Pfaffians, minors and cyclic polytopes.

Let M be the moment curve in R% defined parametrically by x(r)
=(t,1%,.. . 1%, —oo<t<o0. A cyclic polytope C(n,d) is the convex hull of any
nz2d+1 distinct points on M. C(n,d) is a simplicial polytope, i.e. each face of
dimension <d is a simplex [12]. The boundary of C(n, d) thus gives a simplicial
complex which is a triangulation of the sphere S~!. To each simplicial
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complex ¢ on n points we associate its Stanley-Reisner ring
R,=R[X,,...,X,]/I,, where I, is generated by the monomials X;,X;, ... X,
1gi<iy<...<iyZn, for which {ij,...,i} is not a face in a. Every
triangulation of a sphere gives a Gorenstein Stanley—Reisner ring [8]. Ryc (s, 24)
is an extremal Gorenstein ring of embedding dimension n and dimension 2d.

Let A,,, 5 be the (2d+3) x (2d + 3)-matrix (a;;) with a;;=X;; if i<j, a;=0
and a;;= — X; if i>j, where X; are variables. The minors M?4*2 of 4,4, 3 (row
i and column i is deleted) are + squares, M?4*3>= 4 (Pf?**3)% the polynomials
Pf24*3 are called Pfaffians. The ring

R[{Xij; 1§i<j§2d+3}]/({Pfi2d+3; 1§i§2d+3}) = Pyyss

is a “generic” graded Gorenstein ring over R of embedding dimension 2d? + 5d
+3 and dimension 2d*+5d [3]. We will shows that Rycpg4329 IS @
specialization of P,,, ; by means of factoring out a P,,, ;-sequence of variables
of length 2d% +3d.

Let B,,, be the (d+2)x (d+2)-matrix (b;) with b;;=X
variables. Let m!%?2

deleted). The ring

;» Where X, are
be the submaximal minors of B,,, (row i and column j is

Savz = RU{X, ;5 120 jsd+2})/(mi "5 150, jSd+2))

NE ij

is a graded Gorenstein ring of embedding dimension d? +4d +4 and dimension
d*+4d of a rather general type [7]. We will show that Rj;4.4,24 i @
specialization of S, , by means of factoring out an S, ,-sequence of variables
of length d? 4+ 2d. Moreover these variables are chosen in the “same” way as in
the former case.

Suppose that {X,.. ., X,} is a totally ordered set of points on C(n,d), i.e. X;
=X(t) and t, <t,<...<t, For simplicity we denote the set {X;,...,X,} by
its index set {ij,. . .,i,} and will always mean that {i,,...,i,} is totally ordered.
In [12] there is an algorithm described how to decide if {i,,. . .,i.} is a face in
C(n,d). We will describe that algorithm briefly. A subset {i,i+1,i+2,...,j} of
{1,2,...,n} is called contiguous if 1 <i and j<n. A set {1,2,3,...,k} or {k,k
+1,k+2,...,n} is called an end-set. It is clear that any subset I={i,,...,i}
can be written uniquely in the form I=Y,UX,U...UX,UY, with X;
contiguous, Y; end-sets or empty and ¢t minimal. I is said to be of type s if in the
minimal representation there are exactly s of the X’s of odd cardinality. The
result is: If Card (I)=d + 1, then I is a face of C(n,d) if and only if I is of type s
for some 0 < s <d—card (I). Since all Ryc,2q) are extremal Gorenstein rings, all
(minimal) relations are of the same degree [15], in fact of degree d + 1. So to get
the relations in Rjc(s,24) We should determine all subsets of {1,2,...,2d +3}
(respectively {1,2,...,d +4}) which are of cardinality d + 1 and which are non-
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faces. So we should determine all subsets of {1,2,...,2d+3} (respectively
{1,2,...,2d +4}) of cardinality d+1 and of type s>d —1. It is easily seen that
these are

(*) all subsets of {1,2,...,2d+3} (respectively {1,2,...,2d+4}) which
modulo 2d+3 (respectively modulo 2d +4) contains no pair of adjacent
numbers (so (2d+3,1) respectively (2d+4,1) are also considered to be
adjacent).

Now consider A4,,, 3. Specialize by setting all elements in the first d diagonals
to the right of the main diagonal equal to zero. (The first diagonal to the right
of the main diagonal consists of the pairs (1,2),(2,3),...,(2d+2,2d +3) and
(2d+3.1) and so on with the other diagonals.) Then number the remaining
variables according to the following rule: Let X be X 4., and let X, be the
remaining element in the same row (respectively column) as X, if i is odd
(respectively even). We give an example (d=2):

0 X12 X13 X14 XlS X16 X17—.
—X12 0 X23 X24 X25 X26 X27
_X13 _X23 0 X34 X35 X36 X37
-X14 ~X24 —'X34 0 X45 X46 X47
_X15 —X25 —X35 —X45 0 X56 X57
—X16 —X26 —X36 —'X46 —X56 0 X67
_—X17 —X27 '_X37 —X47 _-X57 _X67 0___

specializes to

[0 0 0 X, X, 0 0]
0 0 0 0 X, X, 0
0 0 0 0 0 X, X,
-X, 0 0 0o 0 0 X,
-X, -X5; 0 0 0 0 0
0 -X, -X;, 0 0 0 0
0 0 -X, -X, 0 0 0|

Now consider B,, ,. Specialize by setting all elements in d diagonals to the
right of the main diagonal equal to zero and number the remaining variables
according to the same rule as above. An example (d=5): (in a similar way as
above a diagonal consists of d+2 pairs.)
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specializes to

(X, 0 0 0 o0 0 X, |
X, X, 0 0 0 0 0
0 X; X 0 0 0 O
0 0 X, Xg 0 0 0
0 0 0 X, X,0 O O
0 0 0 0 X, X, O
[0 0 0 0 0 X X

Now it is a completely elementary exercise, using the definition of determinant,
to check that the minors of the specialized A4,,, ; when deleting a row and the
same column (respectively the minors of the specialized B,,, when deleting a
row and a column) are exactly + the squares of the elements X, -...' X
where {i;,...,iz,,} fulfills (*) (respectively + the elements X, ... X
where {i,,...,i;,} fulfills (¥)).

Note. R could be replaced by any field (respectively any field of
characteristic =+2).

[ PR

ig+ 12

Monomial rings.

Call aring R=k[X,..., X, 1/(M,,..., M), where the M,’s are monomials in
{X,} and k a field, a monomial ring. If the M/’s are squarefree we say that Ris a
squarefree monomial ring. We denote k[X,,...,X,] by 4. Let p=3 a, X"
belong to 4. We say that the monomial X appears in p if o +0. Let M;;
denote the least common multiple of M; and M; and let |M| denote the degree
of M,

PRrROPOSITION. If R= A/l is a monomial ring, there is an N = n and a squarefree
monomial ring R'=k[X,,...,XN1/(Ny,...,N,), such that R=R'/(f},..., fn-nh
where f,,..., fn_, is a regular sequence of forms of degree one in R
Furthermore,
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MIM]
M

N.N.
= 1-~—’ L for any i,j.

IMi| = IN{|  and
N,

ij

ProoOF. Let
I =M,...M)= (XiM,,.. X*M,M,, ... . M),

where X, neither divides M}, 1 i<k, nor M, k+1<j<r, and where all i;>0.
Let R, =A/I', where

I''= (XoX{ "My, X X4 "M M, 4 y,. . M) .

Then R=R,/(X,— X,). It suffices to show that X, — X, is a non-zerodivisor in
R, since the construction could then be repeated until a squarefree monomial
ring is achieved. Suppose that p(X,— X,) € I, where p € A. We shall show that
pel.

Let M be the monomial of lowest lexicographical order appearing in p such
that XoM ¢ I', if there is any such monomial, and let M = X{M’, where X,
does not divide M'. But since XM ¢ I’ and (X,— X,)pe I', X, X4~ *M’ must
appear in p. But this contradicts the minimality of M since X2X{™'M’ ¢ I' if
XoXi™'M’' ¢ I'. Hence X, multiply all monomials appearing in p into I, so
they are all contained in (X} 'M),...,X% 'M,). But then also X, must
multiply all monomials appearing in p into I’, whence they are all contained in
(X,). It follows that all monomials appearing in p are contained in

(Xu~'M,,.. ., XE M) N (X)) < I'.

CoROLLARY. With the notations above
a) Pp=(1+2)N""Pg.
b) R is a complete intersection iff R’ is.
c) R is Gorenstein iff R’ is.
d) R is Cohen-Macaulay iff R’ is.
e) R is Golod iff R is.

ProoF. If x is a non-zerodivisor in m\ m? in (S,m), it is well known that
(1+ Z)Pg;(Z)=Ps(Z) so a) holds. Complete intersections are characterized
by their Poincaré series, so b) follows from a).

It is well known that if x € m is a non-zerodivisor in (S,m), then S/(x) is
Gorenstein (Cohen—Macaulay) iff S is Gorenstein (Cohen—Macaulay) whence
¢) and d) hold.

Given their Koszul homology, Golod rings are characterized by their
Poincaré series; since R and R’ have the same Koszul homology, e) follows.
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REMARK. We have been informed that a similar proposition has independently
been proved by Weyman.

Let R=k[X,,...,X,1/I be a monomial ring and let x; denote the image of
X, in R. An element of the form

M = xit... xT§ ... T
in the Koszul complex KR=R(T,,...,T,;dT,=x;> is called a Koszul
monomial. Let Deg(M)=(i; +j,,...,i,+Jj,), then the differential in KR® is
homogenous in Deg of Deg=(0,. . .,0), so the homology of KX H(K®), can be
represented by multihomogenous cycles, ie. elements which are sums of
Koszul monomials of the same Deg. We say that a Koszul monomial M

contains a multisquare if i +j,=2 for some k. Otherwise we call M
multisquarefree.

LEMMA. Suppose R is a squarefree monomial ring. Then a basis over k of
H(K®) can be represented by multisquarefree multihomogenous cycles in KR,

PROOF. Suppose z is a multithomogenous cycle with Deg (z)= (d,,. . .,d,), and
say d, = 2. Then we can write z=x?Y, + x, T, Y,, where neither x, nor T, divide
Y,. Now

7 = z—d(x, T, Y)) = x}Y, +x, T\ Y,— x3Y, +x, T,dY, = x;T,(Y,+dY))
and
0 = dz = x3(Y,+dY)—x,T,dY, .
But then x3(Y,+dY,)=0, since x, cannot divide dY,. Thus x,(Y,+dY,)=0,
since the m;’s are squarefree, so z'=0, i.e. z is a boundary.
THEOREM 3. Let R=k[X,,..., X,]/I, I generated by squarefree monomials of
degree 2d (d=2). If

(a) all squarefree monomials of degree 2d —2 belong to I or if
(b) 2d>n,

then R is a Golod ring. In particular
Pr(2) = (1+2)"/(1 —cy 22—z — ... —c,2"Y),
where c¢;=dim, (H,(K®)).
Proor. Choose multisquarefree elements z; in Z(K) representing a basis for

H(K). If z;- z, contains a multisquare, it is a boundary according to the lemma
(this is always the case in (b)). If z;- z, does not contain a multisquare it is zero
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since ring deg (z;z,)=2d —2. The same argument applies to higher Massey
products since

deg (y(zy,. . ., 2z) = deg(z, ... z)

and ring
deg(j(zys- ... 2) 2 j(d—2)+2
which is 22d -2 if j=2 and d=2.

Reisner gave an example in [13] of a squarefree monomial ring which is
Cohen-Macaulay if char (k) %2, but not Cohen—-Macaulay if char (k)=2. We
will show that also the Poincaré series of this ring depends on char (k).

Reisner’s example was

KX 1o X)X X5 X3 X, XX 0, X X3 X5, X, Xy X X, X s X, X, XX,
X2XaX5 X3 X5X g X3X X5, X3 X, X )

The Krull dimension of this ring is 3, since its Hilbert polynomial is 1 4 5n%. We
have dim, H,(K)=10, dim, H,(K) =15, dim, H;(K)=6, and dim H;(K)=0 if
i> 3 for char (k) +2, but we have dim; H,(K) =10, dim, H,(K) =15, dim, H,(K)
=7, dim, H,(K)=1 and dim, H,(K)=0 if i>4 for char (k)=2. Thus the depth
is 3 if char (k) %2 and 2 if char (k)=2.

CoRoOLLARY. The Reisner ring has different Poincaré series for char (k) +2 and
for char (k)=2. In fact

Pr(Z) = (1+2)%/(1-10Z2—15Z3—6Z% if char(k)%2
and

Pr(Z) = (1+2)5/(1-10Z*—1523~7Z*~Z% if char (k)=2.

Proor. All squarefree monomials of degree 4 are zero, so the theorem
applies.
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