ON THE CONVERGENCE OF ITERATES OF CONVOLUTION OPERATORS IN BANACH SPACES

HEYBETKULU MUSTAFAYEV

Abstract

Let G be a locally compact abelian group and let M(G) be the measure algebra of G. A measure $\mu \in M(G)$ is said to be power bounded if $\sup_{n\geq 0} \|\mu^n\|_1 < \infty$. Let $\mathbf{T} = \{T_g : g \in G\}$ be a bounded and continuous representation of G on a Banach space X. For any $\mu \in M(G)$, there is a bounded linear operator on X associated with μ , denoted by \mathbf{T}_{μ} , which integrates T_g with respect to μ . In this paper, we study norm and almost everywhere behavior of the sequences $\{\mathbf{T}_{\mu}^n x\}$ ($x \in X$) in the case when μ is power bounded. Some related problems are also discussed.

1. Introduction

For a complex Banach space X, we denote by B(X) the algebra of all bounded linear operators on X. Let G be a locally compact group and let $T = \{T_g : g \in T_g : g \in T_g : g \in T_g : g \in T_g \}$ G} be a bounded and continuous representation of G on X. For an arbitrary finite regular Borel measure μ on G, we can define an operator \mathbf{T}_{μ} in B(X)associated with μ , which integrates T_g with respect to μ . In case of probability measure μ , the papers [3], [4], [5], [6], [7], [11] studied the norm and almost everywhere behavior of iterates of T_{μ} . Recall that μ is said to be *adapted* if supp μ generates a dense subgroup of G and strictly aperiodic if supp μ is not contained in a proper closed left coset of G. Assume that X is uniformly convex and μ is an adapted, strictly aperiodic probability measure such that for some $n \in \mathbb{N}$, μ^n is not singular with respect to the Haar measure on G. In [7], it was proved that under the above conditions the sequence $\{\mathbf{T}_{u}^{n}x\}$ converges strongly for every $x \in X$. In [11], norm and almost everywhere convergence of the iterates of \mathbf{T}_{μ} in $L^{p}(\Omega, \Sigma, m)$ spaces was studied, where **T** is a continuous action of G in the positive measure space (Ω, Σ, m) . For related results see also [9], [10], [16], [17], [21], [22].

In this paper, we study norm and almost everywhere convergence of the sequences $\{\mathbf{T}_{\mu}^{n}x\}$ in Banach spaces. We treat the case that G is a locally compact

Received 22 November 2018, in final form 23 June 2019. Accepted 30 July 2019. DOI: https://doi.org/10.7146/math.scand.a-119601

abelian group and μ is an arbitrary power bounded measure on G. For locally compact abelian groups the most comprehensive work on power bounded measures is due to Schreiber [20].

Throughout this paper, G will denote a locally compact abelian group with the Haar measure and with the dual group Γ . As usual, $L^1(G)$ and M(G) will denote the group algebra and the convolution measure algebra of G, respectively. As is well known, equipped with the involution \widetilde{g} given by $\widetilde{\mu}(B) = \overline{\mu(-B)}$, the algebra M(G) becomes a Banach *-algebra. A measure $\mu \in M(G)$ is said to be *symmetric* if $\mu = \widetilde{\mu}$. For $n \in \mathbb{N} \cup \{0\}$, by μ^n we will denote n-th convolution power of $\mu \in M(G)$, where $\mu^0 := \delta_0$ is the Dirac measure concentrated at $\{0\}$. By \widehat{f} and $\widehat{\mu}$ we denote the Fourier and the Fourier-Stieltjes transforms of $f \in L^1(G)$ and $\mu \in M(G)$, respectively. $C_0(G)$ will denote the space of all complex valued continuous functions on G vanishing at infinity.

Recall that an element a of a unital Banach algebra is said to be *power* bounded if $\sup_{n>0} \|a^n\| < \infty$. For $\mu \in M(G)$, we put

$$C_{\mu} = \sup_{n>0} \|\mu^n\|_1,$$

where $\|\cdot\|_1$ is the total variation norm. If *S* is any set, the characteristic function of *S* will be denoted by $\mathbf{1}_S$. As usual, $\sigma(T)$ and $R_{\lambda}(T)$ ($\lambda \notin \sigma(T)$) will denote the spectrum and the resolvent of $T \in B(X)$.

2. Hilbert space operators

In this section, we study strong and almost everywhere convergence of iterates of convolution operators in Hilbert spaces.

Notice that for any $\mu \in M(G)$,

$$F_{\mu} := \overline{(\delta_0 - \mu) * L^1(G)}$$

is a closed ideal of $L^1(G)$ associated with μ and $hull(F_{\mu}) = \mathscr{F}_{\mu}$, where

$$\mathcal{F}_{\mu} = \{ \gamma \in \Gamma : \widehat{\mu}(\gamma) = 1 \}.$$

Assume that $\mu \in M(G)$ is power bounded. Then clearly, $|\widehat{\mu}(\gamma)| \leq 1$ for all $\gamma \in \Gamma$. Moreover, it is easy to check that

$$F_{\mu} = \left\{ f \in L^{1}(G) : \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{i=0}^{n-1} \mu^{i} * f \right\|_{1} = 0 \right\}.$$
 (2.1)

Notice also that

$$E_{\mu} := \left\{ f \in L^{1}(G) : \text{l.i.m. } \|\mu^{n} * f\|_{1} = 0 \right\}$$

is another closed ideal of $L^1(G)$ associated with μ , where l.i.m. is a fixed Banach limit. We claim that l.i.m., $\|\mu^n * f\|_1 = 0$ implies $\lim_{n \to \infty} \|\mu^n * f\|_1 = 0$. Indeed, if l.i.m., $\|\mu^n * f\|_1 = 0$, then as $\underline{\lim}_{n \to \infty} \|\mu^n * f\|_1 = 0$, we have $\|\mu^n * f\|_1 \to 0$ $(k \to \infty)$, for some subsequence $\{n_k\}$. It follows from the relations

$$\|\mu^n * f\|_1 \le \|\mu^{n-n_k}\|_1 \|\mu^{n_k} * f\|_1 \le C_\mu \|\mu^{n_k} * f\|_1$$

that $\|\mu^n * f\|_1 \to 0$. This shows that E_μ does not depend on the choice of the Banach limit and therefore,

$$E_{\mu} = \{ f \in L^{1}(G) : \lim_{n \to \infty} \|\mu^{n} * f\|_{1} = 0 \}.$$

By (2.1) we have $E_{\mu} \subseteq F_{\mu}$. Moreover, $\text{hull}(E_{\mu}) = \mathcal{E}_{\mu}$ ([12, Theorem 2.6] and [16, Proposition 2.1]), where

$$\mathscr{E}_{\mu} = \{ \gamma \in \Gamma : |\widehat{\mu}(\gamma)| = 1 \}.$$

As usual, to any closed subset S of Γ , the following two closed ideals of $L^1(G)$ are associated:

$$I_S := \{ f \in L^1(G) : \widehat{f}(S) = \{0\} \}$$

and $J_S := \overline{J_S^0}$, where

$$J_S^0 = \{ f \in L^1(G) : \text{supp } \widehat{f} \text{ is compact and supp } \widehat{f} \cap S = \emptyset \}.$$

The ideals J_S and I_S are respectively, the smallest and the largest closed ideals in $L^1(G)$ with hull S. When these two ideals coincide, the set S is said to be a set of synthesis (for instance, see [14, §8.3]).

We know that if $\mu \in M(G)$ is power bounded, then \mathscr{E}_{μ} is a set of synthesis (for instance, see [10] and references therein). Further if $\nu := \frac{\delta_0 + \mu}{2}$, then ν is power bounded and as $\mathscr{F}_{\mu} = \mathscr{E}_{\nu}$, the set \mathscr{F}_{μ} is also a set of synthesis. It follows that $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$ if and only if

$$\lim_{n \to \infty} \|\mu^n * f - \mu^{n+1} * f\|_1 = 0, \quad \forall f \in L^1(G).$$

Moreover, we can write

$$\mathscr{F}_{\mu} = \mathscr{E}_{\mu} \Longleftrightarrow \widehat{\mu}(\mathscr{E}_{\mu}) = \{1\} \Longleftrightarrow \lim_{n \to \infty} \left| \widehat{\mu}(\gamma)^n - \widehat{\mu}(\gamma)^{n+1} \right| = 0, \ \forall \gamma \in \Gamma.$$

It can be seen that if $\mu \in M(G)$ is a probability measure, then μ is adapted (resp. aperiodic) if and only if $\mathscr{F}_{\mu} = \{0\}$ (resp. $\mathscr{E}_{\mu} = \{0\}$). In the sequel, the sets \mathscr{F}_{μ} and \mathscr{E}_{μ} turn out to be very important (see [9], [10], [12], [16], [17]).

Let $\mu \in M(G)$ be power bounded. The classical Foguel's theorem [9] asserts that $\lim_{n\to\infty} \|\mu^n * f\|_1 = 0$ for all $f \in L^1(G)$ with $\widehat{f}(0) = 0$ if and only if $\mathscr{E}_{\mu} \subseteq \{0\}$. Granirer [10, Theorem 2] proved that $\lim_{n\to\infty} \|\mu^n * f\|_1 = 0$ if and only if \widehat{f} vanishes on \mathscr{E}_{μ} . In [16, Corollary 2.5], it was proved that if $\|\mu\|_1 \le 1$ and if \mathscr{E}_{μ} is a scattered compact (a locally compact Hausdorff space is said to be *scattered* if it contains no non-empty perfect subset), then

$$\lim_{n\to\infty} \|\mu^n * f\|_1 = \operatorname{dist}(f, I_{\mathcal{E}_{\mu}}), \quad \forall f \in L^1(G).$$

Let $\mathbf{U} = \{U_g : g \in G\}$ be a (strongly) continuous unitary representation of G on a complex Hilbert space H. For any $\mu \in M(G)$, we can define a bounded linear operator \mathbf{U}_{μ} on H by

$$\mathbf{U}_{\mu}x = \int_{G} U_{g}^{-1}x \, d\mu(g), \quad x \in H.$$
 (2.2)

The map $\mu \mapsto \mathbf{U}_{\mu}$ is a contractive algebra *-homomorphism. Moreover, as $\mathbf{U}_{\mu}^* = \mathbf{U}_{\mu}$, \mathbf{U}_{μ} is a normal operator and $\mathbf{U}_{\mu}^n = \mathbf{U}_{\mu}^n$ for all $n \in \mathbb{N}$. It follows that if μ is power bounded, so is \mathbf{U}_{μ} and therefore \mathbf{U}_{μ} is a contraction (a normal operator on a Hilbert space is power bounded if and only if it is a contraction).

By the general Stone's theorem [1], there exists a spectral measure P on Γ such that

$$U_g = \int_{\Gamma} \gamma(g) \, dP(\gamma), \quad \forall g \in G. \tag{2.3}$$

The spectral measure P obtained in Stone's theorem will be called the *spectral measure* for U. Taking into account (2.3) in (2.2), we have

$$\mathbf{U}_{\mu}x = \int_{\Gamma} \widehat{\mu}(\gamma) \, dP(\gamma)x, \quad x \in H. \tag{2.4}$$

Let N be a normal contraction operator on H with spectral measure Q. It is easy to check that

$$\frac{1}{n} \sum_{i=0}^{n-1} N^i x \to Q(\{1\}) x \quad \text{in norm, for every } x \in H.$$

Now, let $\mu \in M(G)$ and let Q be the spectral measure for \mathbf{U}_{μ} . Then,

$$Q(B) = P(\widehat{\mu}^{-1}(B)),$$

for each Borel subset B of complex plane, where P is the spectral measure for U. It follows that if μ is power bounded, then as

$$Q(\{1\}) = P(\widehat{\mu}^{-1}(1)) = P(\mathscr{F}_{\mu}),$$

we have

$$\frac{1}{n} \sum_{i=0}^{n-1} \mathbf{U}_{\mu}^{i} x \to P(\mathcal{F}_{\mu}) x \quad \text{in norm, for every } x \in H.$$
 (2.5)

Notice also that if \mathscr{F}_{μ} is a clopen subset of Γ , then there exists an idempotent measure $\nu \in M(G)$ such that

$$\frac{1}{n}\sum_{i=0}^{n-1}\mathbf{U}_{\mu}^{i}x\to\mathbf{U}_{\nu}x\quad\text{in norm, for every }x\in H.$$

Indeed, since $\mathbf{1}_{\mathscr{F}_{\mu}}$ is a continuous function on Γ and

$$\frac{1}{n}\sum_{i=0}^{n-1}\widehat{\mu}(\gamma)^i\to \mathbf{1}_{\mathscr{F}_{\mu}}(\gamma)\quad (\forall \gamma\in\Gamma),$$

by [19, Theorem 1.9.2], $\mathbf{1}_{\mathscr{F}_{\mu}} = \widehat{\nu}$ for some $\nu \in M(G)$. Clearly, ν is an idempotent measure and by (2.4),

$$\mathbf{U}_{\nu}x = \int_{\Gamma} \mathbf{1}_{\mathscr{F}_{\mu}}(\gamma) \, dP(\gamma)x = P(\mathscr{F}_{\mu})x.$$

If $\mu \in M(G)$ is power bounded, then by the mean ergodic theorem,

$$H = \ker(I - \mathbf{U}_{u}) \oplus \overline{(I - \mathbf{U}_{u})H}, \tag{2.6}$$

where $P(\mathcal{F}_{\mu})$ is the orthogonal projection (often called *mean ergodic projection*) onto $\ker(I - \mathbf{U}_{\mu})$.

The following theorem improves [17, Proposition 3.1].

THEOREM 2.1. Let $\mu \in M(G)$ be power bounded and assume that $\mathcal{F}_{\mu} = \mathcal{E}_{\mu}$. Then, there exists a (not necessarily closed) linear subspace E of H with the properties:

- (i) $H = \ker(I \mathbf{U}_{\mu}) \oplus \overline{E}$;
- (ii) $\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^n x\| < \infty$, for all $x \in E$;
- (iii) the sequence $\{\mathbf{U}_{\mu}^{n}x\}$ converges for every $x \in H$, that is, $\mathbf{U}_{\mu}^{n}x \to P(\mathscr{F}_{\mu})x$ strongly.

Given $x \in H$, let λ_x be the measure on Γ defined by

$$\lambda_x(B) = \langle P(B)x, x \rangle = \|P(B)x\|^2, \tag{2.7}$$

where P is the spectral measure for U.

LEMMA 2.2. Under the above notations, we have:

- (a) supp $\lambda_{x+y} \subseteq \text{supp } \lambda_x \cup \text{supp } \lambda_y$, $\forall x, y \in H$;
- (b) supp $\lambda_{\mathbf{U}_f x} \subseteq \text{supp } \widehat{f} \cap \text{supp } \lambda_x, \forall f \in L^1(G), \forall x \in H;$
- (c) if S is a closed subset of Γ , then $\{x \in H : \text{supp } \lambda_x \subseteq S\}$ is a closed subspace of H.

PROOF. (a) Let $x, y \in H$ and assume that $\gamma \notin \operatorname{supp} \lambda_x \cup \operatorname{supp} \lambda_y$. Then, there is a neighborhood V of γ such that

$$||P(V)x||^2 = \lambda_x(V) = 0$$
 and $||P(V)y||^2 = \lambda_y(V) = 0$.

Consequently, we have

$$||P(V)(x+y)|| \le ||P(V)x|| + ||P(V)y|| = 0$$

and so $\lambda_{x+y}(V) = 0$. This shows that $\gamma \notin \text{supp } \lambda_{x+y}$.

(b) Let $f \in L^1(G)$, $x \in H$, and assume that $\gamma \notin \operatorname{supp} \widehat{f} \cap \operatorname{supp} \lambda_x$. Then, there is a neighborhood V of γ such that either $\widehat{f}(V) = \{0\}$ or $\lambda_x(V) = 0$. It follows from the identity

$$\lambda_{\mathbf{U}_f x}(V) = \|P(V)\mathbf{U}_f x\|^2 = \int_V |\widehat{f}(\gamma)|^2 d\lambda_x(\gamma)$$

that in both cases $\lambda_{\mathbf{U}_f x}(V) = 0$. Hence, $\gamma \notin \operatorname{supp} \lambda_{\mathbf{U}_f x}$.

(c) By (a), the set $\{x \in H : \operatorname{supp} \lambda_x \subseteq S\}$ is linear. Let $\{x_n\}$ be a sequence in H such that $\operatorname{supp} \lambda_{x_n} \subseteq S$ for all n and $x_n \to x$. We must show that $\operatorname{supp} \lambda_x \subseteq S$. Assume that the Fourier transform of $f \in L^1(G)$ vanishes on S. It suffices to show that \widehat{f} vanishes on $\sup \lambda_x$. Since $\sup \lambda_{x_n} \subseteq S$, the function \widehat{f} vanishes on $\sup \lambda_{x_n}$ for all n. It follows from the identity

$$\|\mathbf{U}_f x\|^2 = \int_{\Gamma} |\widehat{f}(\gamma)|^2 d\lambda_x(\gamma), \quad \forall f \in L^1(G), \ \forall x \in H,$$
 (2.8)

that $\mathbf{U}_f x_n = 0$ for all n. As $x_n \to x$, we have $\mathbf{U}_f x = 0$. By (2.8), \widehat{f} vanishes on supp λ_x .

Now, we can prove Theorem 2.1.

Proof of Theorem 2.1. By (2.4),

$$\mathbf{U}_{\mu}x = \int_{\Gamma} \widehat{\mu}(\gamma) \, dP(\gamma)x \quad (x \in H),$$

where *P* is the spectral measure for **U**. We put $S := \mathcal{F}_{\mu} = \mathcal{E}_{\mu}$. Given $x \in H$, let λ_x be the measure on Γ defined by (2.7) and

 $E := \{x \in H : \text{supp } \lambda_x \text{ is compact and supp } \lambda_x \cap S = \emptyset\}.$

By Lemma 2.2, E is linear. If $x \in E$, then as supp $\lambda_x \cap S = \emptyset$, we have

$$\sup_{\gamma \in \operatorname{supp} \lambda_x} |\widehat{\mu}(\gamma)| := \delta < 1.$$

It follows from the identity

$$\|\mathbf{U}_{\mu}^{n}x\|^{2} = \int_{\operatorname{supp}\lambda_{x}} |\widehat{\mu}(\gamma)|^{2n} d\lambda_{x}(\gamma)$$
 (2.9)

that

$$\|\mathbf{U}_{\mu}^{n}x\|^{2} \le \delta^{2n}\|x\|^{2}$$
, for all $n \in \mathbb{N}$,

and so

$$\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^{n} x\| < \infty.$$

It remains to show that $\mathbf{U}_{\mu}x = x$ for all $x \in E^{\perp}$. Firstly, let us show that $\operatorname{supp} \lambda_x \subseteq S$ for all $x \in E^{\perp}$. To see this, let $x \in E^{\perp}$ and assume that the Fourier transform of $f \in L^1(G)$ vanishes on S. We must show that \widehat{f} vanishes on $\sup \lambda_x$. Since S is a set of synthesis, there exists a sequence $\{f_n\}$ in $L^1(G)$ such that $\sup \widehat{f_n}$ is compact, $\widehat{f_n}$ vanishes in a neighborhood O_n of S, and $\|f_n - f\|_1 \to 0$. Let an arbitrary $y \in H$ be given. By Lemma 2.2,

$$\operatorname{supp} \lambda_{\mathbf{U}_{f_n} y} \subseteq \operatorname{supp} \widehat{f_n} \cap \operatorname{supp} \lambda_y$$

and therefore supp $\lambda_{U_{f_n}y}$ is compact. On the other hand, as supp $\widehat{f_n}\cap S=\emptyset$, we have

$$\operatorname{supp} \lambda_{\mathbf{U}_{f_n} y} \cap S = \emptyset.$$

Hence, $\mathbf{U}_{f_n}y \in E$, so that $\langle \mathbf{U}_{f_n}y, x \rangle = 0$ or $\langle y, \mathbf{U}_{f_n}^*x \rangle = 0$ for all n and for all $y \in H$. Consequently, $\mathbf{U}_{f_n}^*x = 0$. Since \mathbf{U}_{f_n} is a normal operator, $\mathbf{U}_{f_n}x = 0$. It follows from (2.8) that $\widehat{f_n}$ vanishes on supp λ_x for all n. Since $\widehat{f_n} \to \widehat{f}$ uniformly on Γ , \widehat{f} vanishes on supp λ_x . Now since supp $\lambda_x \subseteq S$, we have

$$\|\mathbf{U}_{\mu}x - x\|^2 = \int_{S} |\widehat{\mu}(\gamma) - 1|^2 d\lambda_x(\gamma) = 0$$

and so $\mathbf{U}_{\mu}x = x$.

(iii) is an immediate consequence of (i), (ii), and (2.5).

EXAMPLE 2.3. (a) There exists a power bounded measure $\mu \in M(G)$ with norm > 1. To see this, let λ , ν be two probability measures on G such that $\lambda * \nu = 0$ and $\mu := \lambda + \nu$. Then, $\|\mu\|_1 = 2$ and as $\mu^n = \lambda^n + \nu^n$, we have $\|\mu^n\|_1 \le 2$ for all $n \in \mathbb{N}$.

(b) Let δ_n be the Dirac measure concentrated at $n \in \mathbb{Z}$ and let

$$\mu = \frac{1}{2i}\delta_{-1} - \frac{1}{2i}\delta_1.$$

Then, $\|\mu\|_1 = 1$ and as $\widehat{\mu}(\lambda) = \sin \lambda$ we have $\mathscr{F}_{\mu} = \left\{\frac{\pi}{2} + 2k\pi : k \in \mathbb{Z}\right\}$ and $\mathscr{E}_{\mu} = \left\{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\right\}$.

(c) If $v \in M(G)$ is power bounded and $\mu := \frac{1}{n} \sum_{i=0}^{n-1} v^i$ (n > 1), then μ is power bounded and $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$ (see the proof of Corollary 3.2 in [17]).

As a consequence of Theorem 2.1 and Example 2.3(c), we have the following:

COROLLARY 2.4. Let $v \in M(G)$ be power bounded and $\mu := \frac{1}{k} \sum_{i=0}^{k-1} v^i$, where k > 1 is a fixed integer. Then, the sequence $\{\mathbf{U}_{\mu}^n x\}$ converges strongly for all $x \in H$.

We will always denote by (Ω, Σ, m) a σ -finite positive measure space (the Haar measure on G is σ -finite if and only if G is σ -compact). In the case when Ω is a locally compact Hausdorff space, m will denote a regular Borel measure on Ω . By $L(\Omega)$ we will denote the space of all measurable simple functions on Ω that vanish outside of a set of finite measure.

Recall that an *action* Θ of G in (Ω, Σ, m) is a family $\Theta = \{\theta_g : g \in G\}$ of invertible measure preserving transformations of (Ω, Σ, m) satisfying:

- (1) $\theta_0 = id$;
- (2) $\theta_{g+s} = \theta_g \theta_s$, for all $g, s \in G$;
- (3) Θ is jointly measurable in the sense that the mapping $G \times \Omega \to \Omega$ defined by $(g, \omega) \to \theta_g \omega$ is measurable with respect to the product σ -algebra $\Sigma_G \times \Sigma$ in $G \times \Omega$.

If
$$\lim_{g \to 0} \|f \circ \theta_g - f\|_p = 0 \quad \text{for any } 1$$

then the action Θ is called *continuous*. For example, if G is σ -compact and $L^p(\Omega)$ $(1 is separable (this is the case if <math>\Sigma$ is countably generated), then the assumption of joint measurability of Θ implies that Θ is continuous (see [11] and references therein). We will assume the continuity of Θ throughout in what follows.

A continuous action Θ induces a continuous representation $\mathbf{T} = \{T_g : g \in G\}$ of G on $L^p(\Omega)$ (1 by invertible isometries defined by

$$(T_g f)(\omega) = f(\theta_g \omega) \quad (\omega \in \Omega).$$

Consequently, for any $\mu \in M(G)$, we can define a bounded linear operator \mathbf{T}_{μ} on $L^{p}(\Omega)$ by

$$(\mathbf{T}_{\mu}f)(\omega) = \int_{G} f(\theta_{g}^{-1}\omega) d\mu(g). \tag{2.10}$$

The map $\mu \mapsto \mathbf{T}_{\mu}$ is an algebra homomorphism and

$$\|\mathbf{T}_{\mu}f\|_{p} \leq \|\mu\|_{1}\|f\|_{p}, \quad \forall f \in L^{p}(\Omega).$$

It follows that if μ is power bounded, then so is \mathbf{T}_{μ} ;

$$\sup_{n>0} \|\mathbf{T}_{\mu}^n\|_p \leq C_{\mu}.$$

DEFINITION 2.5. Let Ω be a locally compact Hausdorff space. We say that an action Θ of G in (Ω, Σ, m) has the separation property if for any two compact subsets K_1 , K_2 of Ω , there exists a compact subset K of G such that $\theta_g K_1 \cap K_2 = \emptyset$ for all $g \in G \setminus K$.

Notice that the regular action in G has the separation property. Indeed, if K_1 , K_2 are two compact subsets of G, then $(g + K_1) \cap K_2 = \emptyset$ for all $g \in G \setminus (-K_1 + K_2)$.

PROPOSITION 2.6. Let Ω be a locally compact Hausdorff space and let Θ be a continuous action of G in (Ω, Σ, m) with the separation property. Then, the function

$$k(g) := \int_{\Omega} f(\theta_g^{-1}\omega)h(\omega) dm(\omega)$$

is in $C_0(G)$ for every $f \in L^p(\Omega)$ $(1 and <math>h \in L^q(\Omega)$ (1/p + 1/q = 1).

PROOF. Clearly, k is a bounded continuous function. Let A, B be two sets in Σ with finite measure. If $f = \mathbf{1}_A$ and $h = \mathbf{1}_B$, then

$$\int_{\Omega} f(\theta_g^{-1}\omega)h(\omega) dm(\omega) = m(\theta_g A \cap B).$$

Firstly, let us show that the function $g \to m(\theta_g A \cap B)$ is in $C_0(G)$. Let $\varepsilon > 0$ be given. Since m is regular, there is a compact $K_1 \subset A$ such that $m(A) - m(K_1) < \varepsilon/2$ which implies

$$m(\theta_g A) - m(\theta_g K_1) < \varepsilon/2, \quad \forall g \in G.$$

Similarly, there is a compact $K_2 \subset B$ such that $m(B) - m(K_2) < \varepsilon/2$. Since

$$(\theta_g A \cap B) \setminus (\theta_g K_1 \cap K_2) \subseteq (\theta_g A \setminus \theta_g K_1) \cup (B \setminus K_2),$$

we have

$$m(\theta_{\varrho}A \cap B) - m(\theta_{\varrho}K_1 \cap K_2) \leq m(\theta_{\varrho}A) - m(\theta_{\varrho}K_1) + m(B) - m(K_2) < \varepsilon.$$

Since Θ has the separation property, there exists a compact subset K of G such that $\theta_g K_1 \cap K_2 = \emptyset$ for all $g \in G \setminus K$. So we have

$$m(\theta_{g}A \cap B) < \varepsilon, \quad \forall g \in G \setminus K.$$

This shows that the function $g \to m(\theta_g A \cap B)$ is in $C_0(G)$. Consequently, if f and h is in $L(\Omega)$, then the corresponding function k is in $C_0(G)$. Now, let an arbitrary $f \in L^p(\Omega)$ and $h \in L^q(\Omega)$ be given. Since m is σ -finite, there exist sequences $\{f_n\}$ and $\{h_n\}$ in $L(\Omega)$ such that $\|f_n - f\|_p \to 0$ and $\|h_n - h\|_q \to 0$. Since

$$\int_{\Omega} f_n(\theta_g^{-1}\omega) h_n(\omega) \, dm(\omega) \to k(g) \quad \text{uniformly in } G,$$

we have that $k \in C_0(G)$.

The following result was proved in [17, Theorem 4.1].

Theorem 2.7. If $\mu \in M(G)$ is power bounded, then the limit

$$\nu := \underset{n \to \infty}{\mathbf{w}^* \text{-}\lim} \frac{1}{n} \sum_{i=0}^{n-1} \mu^i$$

exists in the weak *-topology of M(G).

The measure ν obtained in this theorem will be called *limit measure associated with* μ .

PROPOSITION 2.8. Let Ω be a locally compact Hausdorff space and let Θ be a continuous action of G in (Ω, Σ, m) with the separation property. If $\mu \in M(G)$ is power bounded and 1 , then

$$\frac{1}{n}\sum_{i=0}^{n-1}\mathbf{T}_{\mu}^{i}f\to\mathbf{T}_{\nu}f\quad \text{in }L^{p}\text{-norm, for every }f\in L^{p}(\Omega),$$

where v is the limit measure associated with μ .

PROOF. If $f \in L^p(\Omega)$, then by the mean ergodic theorem,

$$\frac{1}{n}\sum_{i=0}^{n-1}\mathbf{T}_{\mu}^{i}f\to k\quad\text{in }L^{p}\text{-norm, for some }k\in L^{p}(\Omega).$$

On the other hand, by Theorem 2.7,

$$\nu = \underset{n \to \infty}{\mathbf{w}^* \text{-}\lim} \frac{1}{n} \sum_{i=0}^{n-1} \mu^i.$$

If $h \in L^q(\Omega)$ (1/p + 1/q = 1), then by Proposition 2.6, the function

$$g \to \int_{\Omega} f(\theta_g^{-1}\omega)h(\omega) dm(\omega)$$

is in $C_0(G)$. Consequently, we can write

$$\begin{split} \langle k,h \rangle &= \lim_{n \to \infty} \left\langle \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{T}_{\mu}^{i} f, h \right\rangle \\ &= \lim_{n \to \infty} \left\langle \frac{1}{n} \sum_{i=0}^{n-1} \mu^{i}, \int_{\Omega} f(\theta_{g}^{-1} \omega) h(\omega) \, dm(\omega) \right\rangle \\ &= \left\langle \mathbf{V}, \int_{\Omega} f(\theta_{g}^{-1} \omega) h(\omega) \, dm(\omega) \right\rangle \\ &= \langle \mathbf{T}_{\nu} f, h \rangle. \end{split}$$

So we have $k = \mathbf{T}_{\nu} f$.

Next, we have the following:

THEOREM 2.9. Let Θ be a continuous action of G in (Ω, Σ, m) and let $\mu \in M(G)$ be power bounded. If $\mathcal{E}_{\mu} = \mathcal{F}_{\mu}$, then the sequence $\{\mathbf{T}_{\mu}^{n}f\}$ converges in L^{p} -norm for every $f \in L^{p}(\Omega)$ $(1 . Moreover, if <math>\Theta$ has the separation property, then

$$\mathbf{T}_{\mu}^{n}f \rightarrow \mathbf{T}_{\nu}f$$
 in L^{p} -norm,

where v is the limit measure associated with μ .

PROOF. If $\mathscr{E}_{\mu} = \mathscr{F}_{\mu}$, then by Theorem 2.1 the sequence $\{\mathbf{T}_{\mu}^n f\}$ converges in L^2 -norm for every $f \in L^2(\Omega)$. Hence, we may assume that $p \neq 2$. Let $f \in L(\Omega)$ be given. If $v \in M(G)$, then $\mathbf{T}_v f \in L^p(\Omega)$ for all $1 \leq p \leq \infty$. By the Riesz-Thorin convexity theorem [8, Chapter VI, §10], $\alpha \to \log \|\mathbf{T}_v f\|_{\frac{1}{\alpha}}$ is

a convex function on [0, 1]. Choose q such that q > p if p > 2 and 1 < q < p if $1 . If <math>\lambda := \frac{2q-2p}{pq-2p}$, then $0 < \lambda < 1$ and $\frac{1}{p} = \frac{1-\lambda}{q} + \frac{\lambda}{2}$. Consequently, we have

 $\|\mathbf{T}_{\nu}f\|_{p} \leq \|\mathbf{T}_{\nu}f\|_{q}^{1-\lambda}\|\mathbf{T}_{\nu}f\|_{2}^{\lambda}, \quad \forall \nu \in M(G).$

Replacing ν by $\mu^n - \mu^{n+1}$ $(n \in \mathbb{N})$ and taking into account that $\sup_{n \geq 0} \|\mathbf{T}_{\mu}^n\|_p \leq C_{\mu}$, we can write

$$\|\mathbf{T}_{\mu}^{n}f - \mathbf{T}_{\mu}^{n+1}f\|_{p} \leq \|\mathbf{T}_{\mu}^{n}f - \mathbf{T}_{\mu}^{n+1}f\|_{q}^{1-\lambda}\|\mathbf{T}_{\mu}^{n}f - \mathbf{T}_{\mu}^{n+1}f\|_{2}^{\lambda}$$

$$\leq (2C_{\mu}\|f\|_{q})^{1-\lambda}\|\mathbf{T}_{\mu}^{n}f - \mathbf{T}_{\mu}^{n+1}f\|_{2}^{\lambda}.$$

Since $\|\mathbf{T}_{\mu}^{n} f - \mathbf{T}_{\mu}^{n+1} f\|_{2} \to 0$, it follows that

$$\lim_{n\to\infty} \|\mathbf{T}_{\mu}^n f - \mathbf{T}_{\mu}^{n+1} f\|_p = 0, \quad \forall f \in L(\Omega).$$

Also since $L(\Omega)$ is dense in $L^p(\Omega)$, we get

$$\lim_{n\to\infty} \|\mathbf{T}_{\mu}^n (I - \mathbf{T}_{\mu}) f\|_p = 0, \ \forall f \in L^p(\Omega)$$

or

$$\lim_{n\to\infty} \|\mathbf{T}_{\mu}^n f\|_p = 0, \quad \forall f \in \overline{(I-\mathbf{T}_{\mu})L^p(\Omega)}.$$

On the other hand, by the mean ergodic theorem,

$$L^{p} = \ker(I - \mathbf{T}_{\mu}) \oplus \overline{(I - \mathbf{T}_{\mu})L^{p}}.$$

It follows that the sequence $\{\mathbf{T}_{\mu}^{n}f\}$ converges in L^{p} -norm for every $f \in L^{p}(\Omega)$. If Θ has the separation property, then by Proposition 2.8,

$$\lim_{n\to\infty} \mathbf{T}_{\mu}^{n} f = \lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{T}_{\mu}^{i} f = \mathbf{T}_{\nu} f.$$

In $L^2(\Omega)$, the representation **T** and the operator \mathbf{T}_{μ} will be denoted by **U** and \mathbf{U}_{μ} , respectively.

PROPOSITION 2.10. Let $\mu \in M(G)$ be power bounded and assume that $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. Then, the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every f in a dense subspace of $L^2(\Omega)$.

PROOF. By Theorem 2.1, there exists a linear subspace E of $L^2(\Omega)$ such that

$$L^2(\Omega) = \ker(I - \mathbf{U}_{\mu}) \oplus \overline{E}$$
 and $\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^n f\|_2 < \infty, \ \forall f \in E.$

Since $\ker(I - \mathbf{U}_{\mu}) \oplus E$ is dense in $L^2(\Omega)$, it suffices to show that

$$(\mathbf{U}_{\mu}^{n} f)(\omega) \to 0 \text{ a.e. } \forall f \in E.$$

Indeed, if $f \in E$ then as

$$\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^n f\|_2^2 < \infty,$$

we have

$$\sum_{n=0}^{\infty} \int_{\Omega} |(\mathbf{U}_{\mu}^{n} f)(\omega)|^{2} dm(\omega) < \infty.$$

By Beppo-Levi's theorem, the series

$$\sum_{n=0}^{\infty} |(\mathbf{U}_{\mu}^{n} f)(\omega)|^{2}$$

converges almost everywhere. It follows that $(\mathbf{U}_u^n f)(\omega) \to 0$ a.e.

As a consequence of Proposition 2.10 and Example 2.3(c), we have the following:

COROLLARY 2.11. Let $v \in M(G)$ be power bounded and $\mu := \frac{1}{k} \sum_{i=0}^{k-1} v^i$, where k is a fixed integer > 1. Then, the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every f in a dense subspace of $L^2(\Omega)$.

Let T be a linear operator which is simultaneously defined and bounded on $L^1(\Omega)$ to itself and $L^{\infty}(\Omega)$ to itself. Moreover, if

$$||Tf||_1 \le ||f||_1, \ \forall f \in L^1(\Omega), \quad \text{and} \quad ||Tf||_\infty \le ||f||_\infty, \ \forall f \in L^\infty(\Omega),$$

then T is called Dunford-Schwartz operator. By the Riesz-Thorin convexity theorem, Dunford-Schwartz operator can be extended to a contraction on $L^p(\Omega)$ ($1). Notice that if <math>\|\mu\|_1 \le 1$, then the operator \mathbf{T}_μ defined by (2.10) is a Dunford-Schwartz operator. The Dunford-Schwartz theorem [8, Chapter VIII, §6] states that if T is a Dunford-Schwartz operator, $f \in L^p(\Omega)$ (1), and

$$f^*(\omega) := \sup_{n>1} \left| \frac{1}{n} \sum_{k=0}^{n-1} (T^k f)(\omega) \right|,$$

then there exists a constant $C_p > 0$ such that

$$||f^*||_p \le C_p ||f||_p, \quad \forall f \in L^p(\Omega).$$
 (2.11)

It follows that the sequence $\left\{\frac{1}{n}\sum_{k=0}^{n-1}(T^kf)(\omega)\right\}$ converges a.e. for every $f \in L^p(\Omega)$.

COROLLARY 2.12. Let $\mu \in M(G)$ be a symmetric measure with $\|\mu\|_1 \le 1$. If

$$\{\gamma \in \Gamma : \widehat{\mu}(\gamma) = -1\} = \emptyset,$$

then the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every $f\in L^2(\Omega)$.

PROOF. As we have noted above, \mathbf{U}_{μ} is a Dunford-Schwartz operator. Since \mathbf{U}_{μ} is a self-adjoint contraction, by the maximal ergodic theorem of Stein [22], there exists a constant C>0 such that

$$\left\| \sup_{n>1} |\mathbf{U}_{\mu}^{n} f| \right\|_{2} \le C \|f\|_{2}, \quad \forall f \in L^{2}(\Omega).$$

It follows that

$$\sup_{n\geq 1} |(\mathbf{U}_{\mu}^n f)(\omega)| < \infty \text{ a.e.} \quad \forall f \in L^2(\Omega).$$

Since the function $\gamma \to \widehat{\mu}(\gamma)$ is real valued, the condition $\{\gamma \in \Gamma : \widehat{\mu}(\gamma) = -1\} = \emptyset$ implies $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. By Proposition 2.10, the limit $\lim_{n \to \infty} (\mathbf{U}_{\mu}^{n} f)(\omega)$ exists a.e. for every f in a dense subspace of $L^{2}(\Omega)$. By the Banach principle [13, Chapter 1, Theorem 7.2], the limit $\lim_{n \to \infty} (\mathbf{U}_{\mu}^{n} f)(\omega)$ exists a.e. for every $f \in L^{2}(\Omega)$.

Let $\mu \in M(G)$ be power bounded and assume that

$$|1 - \widehat{\mu}(\gamma)| \le C(1 - |\widehat{\mu}(\gamma)|), \quad \text{for some } C > 0 \text{ and for all } \gamma \in \Gamma.$$

Notice that this is a quantitative generalization of the condition $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. Next, we will show that under this condition the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every $f \in L^2(\Omega)$.

Let Θ be a continuous action of G in (Ω, Σ, m) and let U be the induced continuous unitary representation of G on $L^2(\Omega)$. Recall that the *Arveson spectrum* sp(U) of U [2] is defined as the hull in $L^1(G)$ of the ideal

$$I_{\mathbf{U}} := \{ f \in L^1(G) : \mathbf{U}_f = 0 \}.$$

It is easy to check that if U is a unitary operator on H, then $\sigma(U)$ is the Arveson spectrum of the representation $n \mapsto U^n$ $(n \in \mathbb{Z})$.

PROPOSITION 2.13. Let $\mu \in M(G)$ be such that $\|\mu\|_1 \le 1$. If $S := \mathscr{F}_{\mu} = \mathscr{E}_{\mu}$ and $|1 - \widehat{\mu}(\gamma)|$

 $K_{\mu} := \sup_{\gamma \in \operatorname{sp}(\mathbf{U}) \setminus S} \frac{|1 - \widehat{\mu}(\gamma)|}{1 - |\widehat{\mu}(\gamma)|} < \infty,$

then the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every $f\in L^2(\Omega)$.

PROOF. We basically follow the proof by Bellow-Jones-Rosenblatt [4]. For $f \in L^2(\Omega)$ we put

 $f^{**}(\omega) := \sup_{n>1} |(T^n f)(\omega)|,$

where $T = \mathbf{U}_{\mu}$. Since T is a Dunford-Schwartz operator, by (2.11) there exists a constant L > 0 such that

$$||f^*||_2 \le L||f||_2, \quad \forall f \in L^2(\Omega).$$

We refer to [4] for an argument showing the inequality

$$||f^{**}||_2 \le ||f^*||_2 + \left(\sum_{k=0}^{\infty} k ||(T^{k+1} - T^k)f||_2^2\right)^{1/2}.$$

If P is the spectral measure for U, then it follows from (2.8) that supp $P = \operatorname{sp}(U)$. Since

$$T = \mathbf{U}_{\mu} = \int_{\mathrm{sp}(\mathbf{U})} \widehat{\mu}(\gamma) \, dP(\gamma),$$

we can write

$$\begin{split} \sum_{k=0}^{\infty} k \left\| (T^{k+1} - T^k) f \right\|_2^2 &= \int_{\text{sp}(\mathbf{U}) \setminus S} \left(\sum_{k=0}^{\infty} k |\widehat{\mu}(\gamma)|^{2k} \right) |1 - \widehat{\mu}(\gamma)|^2 d\lambda_f(\gamma) \\ &= \int_{\text{sp}(\mathbf{U}) \setminus S} \frac{|\widehat{\mu}(\gamma)|^2}{(1 + |\widehat{\mu}(\gamma)|)^2} \left(\frac{|1 - \widehat{\mu}(\gamma)|}{1 - |\widehat{\mu}(\gamma)|} \right)^2 d\lambda_f(\gamma) \\ &\leq K_{\mu}^2 \|f\|_2^2, \end{split}$$

where λ_f is the measure on Γ defined by (2.7). So we have

$$||f^{**}||_2 \le (L + K_\mu)||f||_2$$

which implies

$$\sup_{n>1} |(\mathbf{U}_{\mu}^n f)(\omega)| < \infty \text{ a.e.} \quad \forall f \in L^2(\Omega).$$

By Proposition 2.10, the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every f in a dense subspace of $L^2(\Omega)$. Now, it follows from the Banach principle [13, Chapter 1, Theorem 7.2] that the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every $f \in L^2(\Omega)$.

Below, we give an example of a measure which satisfies the hypotheses of Proposition 2.13.

If $\nu \in M(G)$ is power bounded, then $|1 \pm \widehat{\nu}(\gamma)| \le 2$ for all $\gamma \in \Gamma$. Assume that

$$|1+\widehat{\nu}(\gamma)| \le \frac{2C-2}{C}$$
, for some $C > 1$ and for all $\gamma \in \Gamma$.

If $\mu := \frac{\delta_0 + \nu}{2}$, then μ is power bounded and $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. Since $2 - |1 + \widehat{\nu}(\gamma)| \ge \frac{2}{C}$, we have

$$\frac{|1 - \widehat{\mu}(\gamma)|}{1 - |\widehat{\mu}(\gamma)|} = \frac{\left|1 - \frac{1 + \widehat{\nu}(\gamma)}{2}\right|}{1 - \left|\frac{1 + \widehat{\nu}(\gamma)}{2}\right|} = \frac{|1 - \widehat{\nu}(\gamma)|}{2 - |1 + \widehat{\nu}(\gamma)|} \le \frac{2}{2/C} = C.$$

Recall that a bounded linear operator T on a Banach space satisfies Ritt's condition if

$$\sup_{|\lambda|>1} |\lambda-1| \|R_{\lambda}(T)\| < \infty.$$

By the Nagy-Zemanek result [18], T satisfies Ritt's condition if and only if T is power bounded with

$$\sup_{n\in\mathbb{N}}n\|T^n-T^{n+1}\|<\infty.$$

PROPOSITION 2.14. Assume that $\mu \in M(G)$ is power bounded and $S := \mathscr{E}_{\mu} = \mathscr{F}_{\mu}$. If

$$K_{\mu} := \sup_{\gamma \in \operatorname{sp}(\mathbb{U}) \setminus S} \frac{|1 - \widehat{\mu}(\gamma)|}{1 - |\widehat{\mu}(\gamma)|} < \infty,$$

then

$$\overline{\lim_{n\to\infty}} n \|\mathbf{U}_{\mu}^n - \mathbf{U}_{\mu}^{n+1}\| \le \frac{K_{\mu}}{e}.$$

Proof. We can write

$$|\widehat{\mu}(\gamma)^{n} - \widehat{\mu}(\gamma)^{n+1}| = |\widehat{\mu}(\gamma)|^{n} |1 - \widehat{\mu}(\gamma)|$$

$$\leq K_{\mu} (|\widehat{\mu}(\gamma)|^{n} - |\widehat{\mu}(\gamma)|^{n+1}), \quad \forall \gamma \in \operatorname{sp}(\mathbf{U}) \setminus S.$$

Since $0 \le |\widehat{\mu}(\gamma)| \le 1$ and

$$\max_{x \in [0,1]} (x^n - x^{n+1}) = \frac{n^n}{(n+1)^{n+1}},$$

we have

$$n|\widehat{\mu}(\gamma)^n - \widehat{\mu}(\gamma)^{n+1}| \le K_\mu \frac{n^{n+1}}{(n+1)^{n+1}}, \quad \forall \gamma \in \operatorname{sp}(\mathbf{U}) \setminus S.$$

On the other hand, we know [15, p. 450] that

$$\sigma(\mathbf{U}_{\mu}) = \overline{\widehat{\mu}(\mathrm{sp}(\mathbf{U}))}.$$

Since U_{μ} is a normal operator, we get

$$n\|\mathbf{U}_{\mu}^{n} - \mathbf{U}_{\mu}^{n+1}\| = n \sup_{\gamma \in \text{sp}(\mathbf{U}) \setminus S} |\widehat{\mu}(\gamma)^{n} - \widehat{\mu}(\gamma)^{n+1}|$$

$$\leq K_{\mu} \frac{n^{n+1}}{(n+1)^{n+1}} = K_{\mu} \frac{1}{\left(1 + \frac{1}{n}\right)^{n}} \frac{n}{n+1}.$$

It follows that

$$\overline{\lim}_{n\to\infty} n \|\mathbf{U}_{\mu}^n - \mathbf{U}_{\mu}^{n+1}\| \le \frac{K_{\mu}}{e}.$$

Let $M_0(G)$ be the set of all $\mu \in M(G)$ such that $\widehat{\mu}(\infty) = 0$. Then, $M_0(G)$ is a closed ideal of M(G). Notice that if $\mu \in M_0(G)$, then both \mathscr{F}_{μ} and \mathscr{E}_{μ} are compact. If G is compact and $\mu \in M_0(G)$, then both \mathscr{F}_{μ} and \mathscr{E}_{μ} are finite.

PROPOSITION 2.15. Let $\mu \in M_0(G)$ be power bounded and assume that $S := \mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. If S is a clopen subset of Γ , then there exists a closed subspace E of H with the properties:

- (i) $H = \ker(I \mathbf{U}_{\mu}) \oplus E$;
- (ii) $\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^n x\| < \infty$, for all $x \in E$;
- (iii) $E = (I \mathbf{U}_{\mu})H$ and consequently $(I \mathbf{U}_{\mu})H$ is closed.

Proof. Let

$$E := \{x \in H : \operatorname{supp} \lambda_x \subset \Gamma \setminus S\},\$$

where λ_x is the measure on Γ defined by (2.7). Since $\Gamma \setminus S$ is closed, by Lemma 2.2, E is a closed subspace of H. Let $x \in E$ be given. Let us show that $\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^n x\| < \infty$. Since $\mu \in M_0(G)$, there is a compact subset K of Γ such that

$$\sup\{|\widehat{\mu}(\gamma)|: \gamma \in \Gamma \setminus K\} := \delta_1 < 1$$

which implies

$$\sup\{|\widehat{\mu}(\gamma)|: \gamma \in \operatorname{supp} \lambda_{x} \cap \Gamma \setminus K\} \leq \delta_{1}.$$

Also since $|\widehat{\mu}(\gamma)| < 1$ for all $\gamma \in \text{supp } \lambda_x$, we have

$$\sup\{|\widehat{\mu}(\gamma)| : \gamma \in \operatorname{supp} \lambda_x \cap K\} := \delta_2 < 1.$$

Hence.

$$\sup\{|\widehat{\mu}(\gamma)| : \gamma \in \operatorname{supp} \lambda_x\} \le \max\{\delta_1, \delta_2\} := \delta < 1.$$

It follows from (2.9) that

$$\|\mathbf{U}_{\mu}^{n}x\| \leq \delta^{n}\|x\|, \quad \text{for all } n \in \mathbb{N}$$

and so

$$\sum_{n=0}^{\infty} \|\mathbf{U}_{\mu}^{n} x\| < \infty.$$

If $x \in E^{\perp}$, then as in the proof of Theorem 2.1, we can see that supp $\lambda_x \subseteq S$ and therefore,

$$\|\mathbf{U}_{\mu}x - x\|^2 = \int_{S} |\widehat{\mu}(\gamma) - 1|^2 d\lambda_x(\gamma) = 0.$$

To show (iii), let $x \in E$ and

$$y = \sum_{n=0}^{\infty} \mathbf{U}_{\mu}^{n} x.$$

Then as $(I - \mathbf{U}_{\mu})y = x$, we have $E \subseteq (I - \mathbf{U}_{\mu})H$. On the other hand, since E is closed, by (2.6) we get

$$\overline{(I - \mathbf{U}_{\mu})H} = E \subseteq (I - \mathbf{U}_{\mu})H.$$

Notice that under the hypotheses of Proposition 2.15, the operator \mathbf{U}_{μ} is uniformly mean ergodic. Consequently by (2.5),

$$\frac{1}{n}\sum_{i=0}^{n-1}\mathbf{U}_{\mu}^{i}\to P(\mathscr{F}_{\mu})\quad\text{in operator norm.}$$

We have the following two corollaries.

COROLLARY 2.16. Let $\mu \in M_0(G)$ be power bounded and assume that $S := \mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. If S is a clopen subset of Γ , then the limit $\lim_{n \to \infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every $f \in L^2(\Omega)$.

COROLLARY 2.17. Let G be a compact and let $\mu \in M_0(G)$ be power bounded. If $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$, then the limit $\lim_{n\to\infty} (\mathbf{U}_{\mu}^n f)(\omega)$ exists a.e. for every $f \in L^2(\Omega)$.

3. Banach space operators

In this section, we study strong and almost everywhere convergence of iterates of convolution operators in Banach spaces.

Let X be a complex Banach space. Recall that an operator $T \in B(X)$ is called *mean ergodic* if the

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} T^i x \quad \text{exists in norm for all } x \in X.$$

It can be seen that the condition $||T^nx||/n \to 0$ ($\forall x \in X$) is necessary for the mean ergodicity of T (it is satisfied when T is power bounded). Now, assume that T is power bounded. Then, T is mean ergodic if and only if we have the decomposition

 $X = \ker(I - T) \oplus \overline{(I - T)X}$ (3.1)

[13, Chapter 2, Theorem 1.2]. On the other hand, it is easy to check that

$$\overline{(I-T)X} = \left\{ x \in X : \lim_{n \to \infty} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^i x \right\| = 0 \right\}.$$
 (3.2)

If *X* is reflexive, then *T* is mean ergodic [13, Chapter 2, Theorem 1.3].

Let $T = \{T_g : g \in G\}$ be a bounded and (strongly) continuous representation of G on X (by passing to an equivalent norm T becomes representation by invertible isometries). For each $\mu \in M(G)$, we can define a bounded linear operator T_{μ} on X by

$$\mathbf{T}_{\mu}x = \int_{G} T_{g}^{-1}x \, d\mu(g), \quad x \in X.$$

The map $\mu \mapsto T_{\mu}$ is a continuous algebra homomorphism. It follows that if μ is power bounded, then so is \mathbf{T}_{μ} ;

$$\sup_{n>0} \|\mathbf{T}_{\mu}^{n}\| \le C_{\mu} \sup_{g \in G} \|T_{g}\|.$$

Furthermore, it is easy to verify that

$$\overline{\operatorname{span}}\{\mathbf{T}_f x: f \in L^1(G), \ x \in X\} = X. \tag{3.3}$$

PROPOSITION 3.1. Let G be a compact abelian group. If $\mu \in M(G)$ is power bounded, then the operator \mathbf{T}_{μ} is mean ergodic, that is,

$$\frac{1}{n} \sum_{i=0}^{n-1} \mathbf{T}_{\mu}^{i} x \to \mathbf{T}_{\nu} x \quad strongly for \ every \ x \in X,$$

where v is the limit measure associated with μ .

PROOF. By the mean ergodic theorem, it suffices to show that

$$\frac{1}{n} \sum_{i=0}^{n-1} \mathbf{T}_{\mu}^{i} x \to \mathbf{T}_{\nu} x \quad \text{weakly for every } x \in X.$$

Let $x \in X$ and $\varphi \in X^*$. Since

$$\mathbf{w}^*-\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\mu^i=\nu,$$

we can write

$$\left\langle \varphi, \frac{1}{n} \sum_{i=0}^{n-1} \mathbf{T}_{\mu}^{i} x \right\rangle = \left\langle \frac{1}{n} \sum_{i=0}^{n-1} \mu^{i}, \varphi(T_{g}^{-1} x) \right\rangle \rightarrow \left\langle v, \varphi(T_{g}^{-1} x) \right\rangle = \left\langle \varphi, \mathbf{T}_{v} x \right\rangle.$$

This shows that $\frac{1}{n} \sum_{i=0}^{n-1} T_{\mu}^{i} x \to \mathbf{T}_{\nu} x$ weakly.

LEMMA 3.2. Let $\mu \in M(G)$ be power bounded and assume that $\mathcal{F}_{\mu} = \mathcal{E}_{\mu}$. Then, $\nu := w^*$ - $\lim_{n\to\infty} \mu^n$ exists and ν is the limit measure associated with μ .

PROOF. Let v_1 be a w*-cluster point of the sequence $\{\mu^n\}$;

$$\nu_1 = w^* \text{-} \lim_i \mu^{n_i},$$

where $\{\mu^{n_i}\}_i$ is a subnet of $\{\mu^n\}$. Using the identity

$$\langle v, \widehat{f} \rangle = \int_{\Gamma} \widehat{v}(\gamma) f(\gamma) \, d\gamma$$

which is valid for an arbitrary $\nu \in M(G)$ and $f \in L^1(\Gamma)$, we can write

$$\begin{split} \langle \nu_1, \, \widehat{f} \rangle &= \lim_i \langle \mu^{n_i}, \, \widehat{f} \rangle = \lim_i \int_{\Gamma} \widehat{\mu}(\gamma)^{n_i} f(\gamma) \, d\gamma \\ &= \lim_i \int_{\mathscr{F}_{\mu}} \widehat{\mu}(\gamma)^{n_i} f(\gamma) \, d\gamma + \lim_i \int_{\Gamma \setminus \mathscr{E}_{\mu}} \widehat{\mu}(\gamma)^{n_i} f(\gamma) \, d\gamma \\ &= \int_{\mathscr{F}_{\mu}} f(\gamma) \, d\gamma, \quad \forall f \in L^1(\Gamma). \end{split}$$

If ν_2 is another w*-cluster point of the sequence $\{\mu^n\}$, similarly we have

$$\langle v_2, \widehat{f} \rangle = \int_{\mathscr{F}_{\mu}} f(\gamma) \, d\gamma, \quad \forall f \in L^1(\Gamma).$$

Hence,

$$\langle \nu_1, \widehat{f} \rangle = \langle \nu_2, \widehat{f} \rangle, \quad \forall f \in L^1(\Gamma).$$

Since $\{\widehat{f}: f \in L^1(\Gamma)\}$ is dense in $C_0(G)$, we obtain $\nu_1 = \nu_2$. This shows that the sequence $\{\mu^n\}$ has only one w*-cluster point and therefore, $\nu := w^*-\lim_{n\to\infty} \mu^n$ exists. Further, we have

$$v = w^* - \lim_{n \to \infty} \mu^n = w^* - \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu^i.$$

Next, we have the following:

PROPOSITION 3.3. Let G be a compact abelian group and let $\mu \in M(G)$ be power bounded. If $\mathcal{F}_{\mu} = \mathcal{E}_{\mu}$, then $\mathbf{T}_{\mu}^{n}x \to \mathbf{T}_{\nu}x$ strongly for every $x \in X$, where ν is the limit measure associated with μ .

PROOF. By Lemma 3.2, $\nu = w^*$ - $\lim_{n\to\infty} \mu^n$. If $\varphi \in X^*$ and $x \in X$, then we can write

$$\langle \varphi, \mathbf{T}_{\mu}^{n} x \rangle = \langle \mu^{n}, \varphi(T_{g}^{-1} x) \rangle \to \langle \nu, \varphi(T_{g}^{-1} x) \rangle = \langle \varphi, \mathbf{T}_{\nu} x \rangle.$$

This shows that $\mathbf{T}_{\mu}^{n}x \to \mathbf{T}_{\nu}x$ weakly. Let K be the norm closure of the absolute convex hull of $\{T_{g}x:g\in G\}$. Since $\{T_{g}x:g\in G\}$ is compact, so is K. On the other hand, $\{(1/C_{\mu})\mathbf{T}_{\mu}^{n}x:n\in\mathbb{N}\}$ is contained in K and therefore the sequence $\{\mathbf{T}_{\mu}^{n}x\}$ is relatively compact. This clearly implies that $\mathbf{T}_{\mu}^{n}x\to\mathbf{T}_{\nu}x$ strongly.

Let A be a complex commutative Banach algebra and let Σ_A be its Gelfand space equipped with the weak* topology. The Gelfand transform of $a \in A$ will be denoted by \widehat{a} . Recall that the algebra A is said to be $\operatorname{regular}$ if given a closed subset S of Σ_A and $\phi \in \Sigma_A \setminus S$, there exists an element $a \in A$ such that $\widehat{a}(S) = \{0\}$ and $\widehat{a}(\phi) \neq 0$. It is well known that if G is a locally compact abelian group, then the measure algebra M(G) is a commutative semisimple Banach algebra with identity, but M(G) fails to be regular, in general. However, there exists a largest closed regular subalgebra of M(G) which we will denote by $M_{\operatorname{reg}}(G)$. Since the algebra $L^1(G)$ and the discrete measure algebra $M_d(G)$ are regular subalgebras of M(G), we have $L^1(G) \oplus M_d(G) \subseteq M_{\operatorname{reg}}(G)$, but in general, $L^1(G) \oplus M_d(G) \neq M_{\operatorname{reg}}(G)$ [15, Example 4.3.11]. This shows that the algebra $M_{\operatorname{reg}}(G)$ is remarkably large.

The proof of the following lemma is based on the standard Banach algebra techniques and therefore is omitted.

LEMMA 3.4. Let A be a commutative, semisimple, and regular Banach algebra and let $\{I_{\lambda}\}_{{\lambda}\in\Lambda}$ be a collection of the closed ideals of A. Then,

$$\operatorname{hull}\left(\bigcap_{\lambda\in\Lambda}I_{\lambda}\right)=\overline{\bigcup_{\lambda\in\Lambda}\operatorname{hull}(I_{\lambda})}^{\operatorname{w}^*}.$$

We have the following:

THEOREM 3.5. Let **T** be a bounded and continuous representation of G on a Banach space X and let $\mu \in M_{reg}(G)$ be power bounded. If $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$, then there exists a (not necessarily closed) linear subspace E of X such that:

- (i) $\overline{E} = \overline{(I \mathbf{T}_{\mu})X}$ and $\sum_{n=0}^{\infty} \|\mathbf{T}_{\mu}^{n}x\| < \infty$, for all $x \in E$;
- (ii) if \mathbf{T}_{μ} is mean ergodic (or if X is reflexive), then $X = \ker(I \mathbf{T}_{\mu}) \oplus \overline{E}$;
- (iii) if \mathbf{T}_{μ} is mean ergodic (or if X is reflexive), then the sequence $\{\mathbf{T}_{\mu}^{n}x\}$ converges strongly for every $x \in X$.

For the proof, we need some preliminary results.

Let **T** be a bounded and continuous representation of G on a Banach space X. The Arveson spectrum $\operatorname{sp}(\mathbf{T})$ of **T** [2] is defined as the hull in $L^1(G)$ of the ideal

$$I_{\mathbf{T}} := \{ f \in L^1(G) : \mathbf{T}_f = 0 \}.$$

It is easy to check that if $T \in B(X)$ is doubly power bounded, that is,

$$\sup_{n\in\mathbb{Z}}\|T^n\|<\infty,$$

then $\sigma(T)$ is the Arveson spectrum of the representation $n \mapsto T^n$ $(n \in \mathbb{Z})$.

By [15, Proposition 4.12.12], every measure $\mu \in M_{\text{reg}}(G)$ has the *spectral mapping property*, that is,

$$\sigma(\mathbf{T}_{\mu}) = \overline{\widehat{\mu}(\operatorname{sp}(\mathbf{T}))}.$$

For $T \in B(X)$ and $x \in X$, we define $\rho_T(x)$ to be the set of all $\lambda \in \mathbb{C}$ for which there exists a neighborhood U_λ of λ with u(z) analytic on U_λ having values in X such that (zI - T)u(z) = x for all $z \in U_\lambda$. This set is open and contains the resolvent set $\rho(T)$ of T. The *local spectrum* of T at $x \in X$, denoted by $\sigma_T(x)$ is the complement of $\rho_T(x)$, so it is a compact subset of $\sigma(T)$. This object is most tractable if the operator T has the *single-valued extension property* (SVEP), i.e., for every open set U in \mathbb{C} , the only analytic function $u: U \to X$ for which the equation (zI - T)u(z) = 0 holds is the constant function $u \equiv 0$. If T has SVEP, then $\sigma_T(x) \neq \emptyset$, whenever $x \in X \setminus \{0\}$ [15, Proposition 1.2.16]. For example, if $\mu \in M_{reg}(G)$, then

the operator \mathbf{T}_{μ} is decomposable [15, Proposition 4.12.3] and therefore it has SVEP [15, Chapter 1].

Given an operator $T \in B(X)$ and $x \in X$, the quantity

$$r_T(x) := \overline{\lim}_{n \to \infty} ||T^n x||^{\frac{1}{n}}$$

is called the *local spectral radius* of T at x. If T has SVEP, then

$$r_T(x) = \sup\{|\lambda| : \lambda \in \sigma_T(x)\}$$

[15, Proposition 3.3.13]. The *local Arveson spectrum* $\operatorname{sp}_{\mathbf{T}}(x)$ of $x \in X$ [2] is defined as the hull in $L^1(G)$ of the ideal

$$I_{\mathbf{T}}(x) := \{ f \in L^1(G) : \mathbf{T}_f x = 0 \}.$$

Clearly, $\operatorname{sp}_{\mathbf{T}}(x) \subseteq \operatorname{sp}(\mathbf{T})$ for all $x \in X$. Since $I_{\mathbf{T}} = \bigcap_{x \in X} I_{\mathbf{T}}(x)$, by Lemma 3.4,

$$\operatorname{sp}(\mathbf{T}) = \overline{\bigcup_{x \in X} \operatorname{sp}_{\mathbf{T}}(x)}^{w^*}.$$

By [15, Proposition 4.12.12], every measure $\mu \in M_{\text{reg}}(G)$ has the *local spectral mapping property*, that is,

$$\sigma_{\mathbf{T}_{u}}(x) = \overline{\widehat{\mu}(\mathrm{sp}_{\mathbf{T}}(x))}, \quad \forall x \in X.$$

LEMMA 3.6. *Under the above notations we have:*

- (a) $\operatorname{sp}_{\mathbf{T}}(x+y) \subseteq \operatorname{sp}_{\mathbf{T}}(x) \cup \operatorname{sp}_{\mathbf{T}}(y), \ \forall x, y \in X;$
- (b) $\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_f x) \subseteq \operatorname{supp} \widehat{f} \cap \operatorname{sp}_{\mathbf{T}}(x), \forall f \in L^1(G), \forall x \in X;$
- (c) if S is a closed subset of Γ , then $\{x \in X : \operatorname{sp}_{\mathbf{T}}(x) \subseteq S\}$ is a closed subspace of X.

PROOF. (a) Since $I_{\mathbf{T}}(x) \cap I_{\mathbf{T}}(y) \subseteq I_{\mathbf{T}}(x+y)$, by Lemma 3.4,

$$sp_{\mathbf{T}}(x + y) = hull I_{\mathbf{T}}(x + y) \subseteq hull[I_{\mathbf{T}}(x) \cap I_{\mathbf{T}}(y)]$$
$$= hull I_{\mathbf{T}}(x) \cup hull I_{\mathbf{T}}(y) = sp_{\mathbf{T}}(x) \cup sp_{\mathbf{T}}(y).$$

(b) Clearly, $I_{\mathbf{T}}(x) \subseteq I_{\mathbf{T}}(\mathbf{T}_f x)$ which implies $\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_f x) \subseteq \operatorname{sp}_{\mathbf{T}}(x)$. It remains to show that $\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_f x) \subseteq \operatorname{supp} \widehat{f}$. If $h \in I_{\operatorname{supp}} \widehat{f}$, then as $\widehat{h} \widehat{f} = 0$ we have h * f = 0 and so $\mathbf{T}_h \mathbf{T}_f x = 0$. Hence, $h \in I_{\mathbf{T}}(\mathbf{T}_f x)$. So we have

$$I_{\text{supp }\widehat{f}} \subseteq I_{\mathbf{T}}(\mathbf{T}_f x)$$

which implies

$$\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_f x) = \operatorname{hull} I_{\mathbf{T}}(\mathbf{T}_f x) \subseteq \operatorname{hull}(I_{\operatorname{supp}} \widehat{f}) = \operatorname{supp} \widehat{f}.$$

(c) By (a), the set $\{x \in X : \operatorname{sp}_{\mathbf{T}}(x) \subseteq S\}$ is linear. Let $\{x_n\}$ be a sequence in X such that $\operatorname{sp}_{\mathbf{T}}(x_n) \subseteq S$ for all n and $x_n \to x$. We must show that $\operatorname{sp}_{\mathbf{T}}(x) \subseteq S$. Since

$$\bigcap_{n=1}^{\infty} I_{\mathbf{T}}(x_n) \subseteq I_{\mathbf{T}}(x),$$

by Lemma 3.4,

$$\operatorname{sp}_{\mathbf{T}}(x) = \operatorname{hull} I_{\mathbf{T}}(x) \subseteq \overline{\bigcup_{n=1}^{\infty} \operatorname{hull} I_{\mathbf{T}}(x_n)}^{\operatorname{w}^*} = \overline{\bigcup_{n=1}^{\infty} \operatorname{sp}_{\mathbf{T}}(x_n)}^{\operatorname{w}^*} \subseteq S.$$

Now, we are in a position to prove Theorem 3.5.

Proof of Theorem 3.5. (i) Let $S:=\mathscr{F}_{\mu}=\mathscr{E}_{\mu}$ and

$$E := \{ x \in X : \operatorname{sp}_{\mathbf{T}}(x) \text{ is compact and } \operatorname{sp}_{\mathbf{T}}(x) \cap S = \emptyset \}.$$

By Lemma 3.6, E is linear. As we have noted above, the operator \mathbf{T}_{μ} has SVEP and therefore,

$$\overline{\lim_{n\to\infty}} \|\mathbf{T}_{\mu}^n x\|^{\frac{1}{n}} = \sup\{|\lambda| : \lambda \in \sigma_{\mathbf{T}_{\mu}}(x)\}, \quad \forall x \in X.$$

On the other hand, the local spectral mapping property holds, that is,

$$\sigma_{\mathbf{T}_{\mu}}(x) = \overline{\widehat{\mu}(\mathrm{sp}_{\mathbf{T}}(x))}.$$

Hence, we have

$$\overline{\lim_{n\to\infty}} \|\mathbf{T}_{\mu}^n x\|^{\frac{1}{n}} = \sup\{|\widehat{\mu}(\lambda)| : \lambda \in \mathrm{sp}_{\mathbf{T}}(x)\}, \quad \forall x \in X.$$

Let $x \in E$ be given. Since $\operatorname{sp}_{\mathbf{T}}(x)$ is compact and $\operatorname{sp}_{\mathbf{T}}(x) \cap S = \emptyset$, we have

$$\sup\{|\widehat{\mu}(\lambda)| : \lambda \in \operatorname{sp}_{\mathbf{T}}(x)\} < 1.$$

Now, since

$$\overline{\lim_{n\to\infty}} \|\mathbf{T}_{\mu}^n x\|^{\frac{1}{n}} < 1,$$

there is $0 < \delta < 1$ such that for sufficiently large n, $\|\mathbf{T}_{\mu}^{n}x\| \leq \delta^{n}$. So we have

$$\sum_{n=0}^{\infty} \|\mathbf{T}_{\mu}^{n} x\| < \infty, \quad \forall x \in E.$$

It remains to show that $\overline{E} = \overline{(I - \mathbf{T}_{\mu})X}$. If $x \in E$, then as $\|\mathbf{T}_{\mu}^n x\| \to 0$, by (3.2), $x \in \overline{(I - \mathbf{T}_{\mu})X}$ and therefore $\overline{E} \subseteq \overline{(I - \mathbf{T}_{\mu})X}$. For the reverse inclusion, let $\varphi \in E^{\perp}$ be given. Since

$$\left[\overline{(I-\mathbf{T}_{\mu})X}\right]^{\perp} = \{\varphi \in X^* : \mathbf{T}_{\mu}^*\varphi = \varphi\},\$$

it suffices to show that $\mathbf{T}_{\mu}^* \varphi = \varphi$.

Assume that the Fourier transform of $f \in L^1(G)$ vanishes on S. Since S is a set of synthesis, there is a sequence $\{f_n\}$ in $L^1(G)$ such that supp $\widehat{f_n}$ is compact, $\widehat{f_n}$ vanishes in a neighborhood O_n of S, and $||f_n - f||_1 \to 0$. Let an arbitrary $x \in X$ be given. By Lemma 3.6,

$$\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_{f_n}x) \subseteq \operatorname{supp} \widehat{f}_n \cap \operatorname{sp}_{\mathbf{T}}(x)$$

and therefore $\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_{f_n}x)$ is compact. On the other hand, as $\operatorname{supp}\widehat{f_n}\cap S=\emptyset$, we have

$$\operatorname{sp}_{\mathbf{T}}(\mathbf{T}_{f_n}x) \cap S = \emptyset.$$

Hence, $\mathbf{T}_{f_n}x \in E$ for all n. Since $\mathbf{T}_{f_n}x \to \mathbf{T}_fx$ in norm, $\mathbf{T}_fx \in \overline{E}$ and therefore,

$$\langle \mathbf{T}_f^* \varphi, x \rangle = \langle \varphi, \mathbf{T}_f x \rangle = 0.$$

Thus, we have shown that if the Fourier transform of $f \in L^1(G)$ vanishes on S, then $\langle \mathbf{T}_f^* \varphi, x \rangle = 0$ for all $x \in X$. Further, since $\widehat{\mu} = 1$ on S, the Fourier transform of $(\mu - \delta_0) * f$ vanishes on S for all $f \in L^1(G)$. Hence, $\langle (\mathbf{T}_{\mu}^* - I)\mathbf{T}_f^* \varphi, x \rangle = 0$ or $\langle (\mathbf{T}_{\mu}^* - I)\varphi, \mathbf{T}_f x \rangle = 0$ for all $x \in X$ and $f \in L^1(G)$. By (3.3) we have $\mathbf{T}_{\mu}^* \varphi = \varphi$.

- (ii) follows from (i) and (3.1).
- (iii) is an immediate consequence of (i) and (ii).

Let us show that the condition " $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$ " in Theorem 3.5 is the best possible, in general. To see this, let G be a compact abelian group, \mathbf{T} be the regular representation of G on $L^1(G)$, and let $\mathbf{T}_{\mu}f = \mu * f$ be the corresponding convolution operator. If $\mu \in M(G)$ is power bounded, then by Proposition 3.1, \mathbf{T}_{μ} is mean ergodic. Now, assume that the sequence $\{\mu^n * f\}$ converges strongly for every $f \in L^1(G)$. Then,

$$\lim_{n \to \infty} \|\mu^n * f - \mu^{n+1} * f\|_1 = 0, \quad \forall f \in L^1(G).$$

As we have seen above, this is the case if and only if $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$.

Recall that a representation $T = \{T_g : g \in G\}$ of G on a Banach space is called *uniformly continuous* if

$$\lim_{g \to 0} \|T_g - I\| = 0.$$

A bounded representation **T** is uniformly continuous if and only if $\operatorname{sp}(\mathbf{T})$ is compact [2, Theorem 2.13]. If **T** is bounded and uniformly continuous, then the spectral mapping property $\sigma(\mathbf{T}_{\mu}) = \widehat{\mu}(\operatorname{sp}(\mathbf{T}))$ and the local spectral mapping property $\sigma_{\mathbf{T}_{\mu}}(x) = \widehat{\mu}(\operatorname{sp}_{\mathbf{T}}(x))$ hold for all $\mu \in M(G)$ and $x \in X$ [15, Proposition 4.12.12].

The proof of the following theorem is similar to the proof of Theorem 3.5.

THEOREM 3.7. Let **T** be a bounded and uniformly continuous representation of G on a Banach space X and let $\mu \in M(G)$ be power bounded. If $\mathcal{F}_{\mu} = \mathcal{E}_{\mu}$, then there exists a (not necessarily closed) linear subspace E of X with the properties:

- (i) $\overline{E} = \overline{(I \mathbf{T}_{\mu})X}$ and $\sum_{n=0}^{\infty} \|\mathbf{T}_{\mu}^{n}x\| < \infty$, for all $x \in E$;
- (ii) if \mathbf{T}_{μ} is mean ergodic (or if X is reflexive), then $X = \ker(I \mathbf{T}_{\mu}) \oplus \overline{E}$;
- (iii) if \mathbf{T}_{μ} is mean ergodic (or if X is reflexive), then the sequence $\{\mathbf{T}_{\mu}^{n}x\}$ converges strongly for every $x \in X$.

Given $\mu \in M(G)$, let \mathbf{T}_{μ} be the corresponding operator defined by (2.10).

PROPOSITION 3.8. Let $\mu \in M_{\text{reg}}(G)$ be power bounded and assume that $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. Then, the limit $\lim_{n\to\infty} (\mathbf{T}_{\mu}^n f)(\omega)$ exists a.e. for every f in a dense subspace of $L^p(\Omega)$ (1 .

PROOF. By Theorem 3.5, there exists a subspace E of $L^p(\Omega)$ such that

$$L^p(\Omega) = \ker(I - \mathbf{T}_{\mu}) \oplus \overline{E}$$
 and $\sum_{n=0}^{\infty} \|\mathbf{T}_{\mu}^n f\|_p < \infty$, $\forall f \in E$.

Since $\ker(I - \mathbf{T}_{\mu}) \oplus E$ is dense in $L^{p}(\Omega)$, it suffices to show that

$$(\mathbf{T}_{u}^{n}f)(\omega) \to 0$$
 a.e. $\forall f \in E$.

Indeed, if $f \in E$ then as

$$\sum_{n=0}^{\infty} \|\mathbf{T}_{\mu}^n f\|_p^p < \infty,$$

we have

$$\sum_{n=0}^{\infty} \int_{\Omega} \left| (\mathbf{T}_{\mu}^{n} f)(\omega) \right|^{p} dm(\omega) < \infty.$$

By Beppo-Levi's theorem, the series

$$\sum_{n=0}^{\infty} |(\mathbf{T}_{\mu}^{n} f)(\omega)|^{p}$$

converges almost everywhere. It follows that $(\mathbf{T}_{\mu}^{n} f)(\omega) \to 0$ a.e.

As a consequence of Proposition 3.8 and Example 2.3(c), we have the following:

COROLLARY 3.9. Let $v \in M_{\text{reg}}(G)$ be power bounded and $\mu := \frac{1}{k} \sum_{i=0}^{k-1} v^i$, where k is a fixed integer > 1. Then, the limit $\lim_{n\to\infty} (\mathbf{T}_{\mu}^n f)(\omega)$ exists a.e. for every f in a dense subspace of $L^p(\Omega)$ (1 .

COROLLARY 3.10. Let $\mu \in M_{\text{reg}}(G)$ be a symmetric measure with $\|\mu\|_1 \leq 1$. If $\{\gamma \in \Gamma : \widehat{\mu}(\gamma) = -1\} = \emptyset$, then the limit $\lim_{n \to \infty} (\mathbf{T}_{\mu}^n f)(\omega)$ exists a.e. for every $f \in L^p(\Omega)$ (1 .

PROOF. Since \mathbf{T}_{μ} is a self-adjoint contraction on $L^2(\Omega)$, by the maximal ergodic theorem of Stein [22], there exists a constant $C_p > 0$ such that

$$\|\sup_{n\geq 1}|\mathbf{T}_{\mu}^n f|\|_p\leq C_p\|f\|_p,\quad \forall f\in L^p(\Omega).$$

It follows that

$$\sup_{n\geq 1} |(\mathbf{T}_{\mu}^n f)(\omega)| < \infty \quad \text{a.e. } \forall f \in L^p(\Omega).$$

On the other hand, the condition $\{\gamma \in \Gamma : \widehat{\mu}(\gamma) = -1\} = \emptyset$ implies $\mathscr{F}_{\mu} = \mathscr{E}_{\mu}$. By Proposition 3.8, the limit $\lim_{n \to \infty} (\mathbf{T}_{\mu}^n f)(\omega)$ exists a.e. for every f in a dense subspace of $L^p(\Omega)$. By the Banach principle [13, Chapter 1, Theorem 7.2], the limit $\lim_{n \to \infty} (\mathbf{T}_{\mu}^n f)(\omega)$ exists a.e. for every $f \in L^p(\Omega)$.

ACKNOWLEDGEMENTS. I am grateful to the referee for his many helpful remarks, suggestions and substantial improvements to the paper.

The author was supported by the TUBITAK 1001 Project MFAG No. 118F410.

REFERENCES

- Ambrose, W., Spectral resolution of groups of unitary operators, Duke Math. J. 11 (1944), 589–595.
- Arveson, W., The harmonic analysis of automorphism groups, in "Operator algebras and applications, Part I (Kingston, Ont., 1980)", Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 199–269.
- Bellow, A., Jones, R., and Rosenblatt, J., Almost everywhere convergence of powers, in "Almost everywhere convergence (Columbus, OH, 1988)", Academic Press, Boston, MA, 1989, pp. 99–120.
- 4. Bellow, A., Jones, R., and Rosenblatt, J., *Almost everywhere convergence of convolution powers*, Ergodic Theory Dynam. Systems 14 (1994), no. 3, 415–432.
- Cohen, G., Cuny, C., and Lin, M., Almost everywhere convergence of powers of some positive L_p contractions, J. Math. Anal. Appl. 420 (2014), no. 2, 1129–1153.

- 6. Conze, J.-P., and Lin, M., *Almost everywhere convergence of convolution powers on compact Abelian groups*, Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 2, 550–568.
- 7. Derriennic, Y., and Lin, M., Convergence of iterates of averages of certain operator representations and of convolution powers, J. Funct. Anal. 85 (1989), no. 1, 86–102.
- 8. Dunford, N., and Schwartz, J. T., *Linear Operators. I. General Theory*, Pure and Applied Mathematics, vol. 7, Interscience Publishers, New York, London, 1958.
- 9. Foguel, S. R., On iterates of convolutions, Proc. Amer. Math. Soc. 47 (1975), 368–370.
- 10. Granirer, E. E., On some properties of the Banach algebras $A_p(G)$ for locally compact groups, Proc. Amer. Math. Soc. 95 (1985), no. 3, 375–381.
- 11. Jones, R., Rosenblatt, J., and Tempelman, A., *Ergodic theorems for convolutions of a measure on a group*, Illinois J. Math. 38 (1994), no. 4, 521–553.
- Kaniuth, E., Lau, A. T., and Ülger, A., Multipliers of commutative Banach algebras, power boundedness and Fourier-Stieltjes algebras, J. Lond. Math. Soc. (2) 81 (2010), no. 1, 255–275.
- Krengel, U., Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985.
- Larsen, R., Banach algebras: an introduction, Pure and Applied Mathematics, no. 24, Marcel Dekker, Inc., New York, 1973.
- Laursen, K. B., and Neumann, M. M., An introduction to local spectral theory, London Mathematical Society Monographs. New Series, vol. 20, The Clarendon Press, Oxford, 2000.
- Mustafayev, H., Distance formulas in group algebras, C. R. Math. Acad. Sci. Paris 354 (2016), no. 6, 577–582.
- Mustafayev, H., Convergence of iterates of convolution operators in L^p spaces, Bull. Sci. Math. 152 (2019), 61–92.
- 18. Nagy, B. and Zemánek, J., A resolvent condition implying power boundedness, Studia Math. 134 (1999), no. 2, 143–151.
- Rudin, W., Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, no. 12, Interscience Publishers, New York-London, 1962.
- Schreiber, B. M., Measures with bounded convolution powers, Trans. Amer. Math. Soc. 151 (1970), 405–431.
- 21. Stam, A. J., On shifting iterated convolutions. I, Compositio Math. 17 (1966), 268–280.
- Stein, E. M., On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1894–1897.

VAN YUZUNCU YIL UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS VAN TURKEY

E-mail: hsmustafayev@yahoo.com