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ON h-BASES FOR n I

OYSTEIN J. RODSETH

1. Introduction.

Given a sequence B: by <b, <. .. <b, of non-negative integers, we say that
an integer M is dependent on B if there exist non-negative integers x; such that

M = byxo+byx,+ ... +bx, .

If ged B=1, it is well known that every sufficiently large integer is dependent
on B. In this case we denote the largest integer not dependent on B, the
Frobenius number of B, by g(B).

For a positive integer h we write hB for the set of integers which can be
written as the sum of h elements of B, allowing repetition of summands.

To B we also make correspond the sequence B*: b <b¥ < ... <b¥, where

b¥ = b,—b,_;, i=0,1,.. k.

Note that b¢ =0, and if b,=0, then b¥=>b, and gcd B* =gcd B.
An integer sequence

(1.1) Ayt ap =0< 1 =4qa,<a, < ... <ag

is called an h-basis for a non-negative integer n if all the integers 0,1,2,...,n
belong to hA, (Rohrbach [8]). The h-range n(h, A,) of A, is the largest n for
which A, is an h-basis.

The following important result connecting the h-range and the Frobenius
number was obtained by Meures [4]: Given A4,, if h is sufficiently large, then

(1.2) n(h,4) = ah—g(Af)—1.

Let hy=hy(A,) be the smallest h for which a, <n(h, A,), and let h, =h,(A,) be
the smallest h=h,— 1 for which (1.2) is true. Then (1.2) is valid for all h=h,.
(See [7].)

In [7] we gave some general upper bounds for ;. A combination of Lemma

1 in [7] with ideas from [5] also led us to a new proof of the known result
hy(A3) S ho(43).
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In this paper we combine ideas introduced in [7] with ideas from [6] to
determine the h, of the integer sequence

(1.3) A:0<l<d<2d< ... <(k=-2)d <a, k23.
We also study the sequence
(1.4) A:0<l <2< ... <k-2<aq.,<a k23.

However, the h, of this sequence seems to behave more irregularly than that of
(1.3), and we settle for, though sharp, less precise results.

The common feature of these two sequences is that the sequence A forms
an almost arithmetic sequence, i.e. k — 1 of the non-zero elements of 4} form an
ordinary arithmetic sequence. The Frobenius number of an almost arithmetic
sequence was determined in [6].

There is also a third case where 4} forms an almost arithmetic sequence;

namely
A O0<l <l+d<14+2d < ... <1+(k=-2d<aq, d=2kz=3.

However, for this sequence our present technique does not enable us to
improve the general bounds for h; given in [7], unless we impose rather heavy
additional conditions upon 4,.

2. Preliminaries.

In the following we write [ x] for the integral part of a real number x, and we
use (x) to denote the smallest integer greater than or equal to x.
Given the sequence (1.1), k fixed, we write A4; for the sequence

Aiay=0<l =g, <a,< ... <a, 1=52igk.

For a positive integer M we write A;(M) for the least number of elements of A4,
with sum M. Also put 4,(0)=0. Then M € hA, if and only if A,(M)<h.

For the notion of a “pleasant” sequence we refer the reader to [7, § 1], and
for the fact that pleasantness implies h, =h,—1, to [7, § 2].

Given integers s_, >s,>0, we use the Euclidean algorithm in the form

S—y = {4150 —5ps 0=s <5
So = (51— S 05, <5
5, = (35, —S3, 0<s5;<s,
Sm—2 = dmSm-1"Sm» 0 -5— S < Sy

Sm-1 = qm+15m 0= Sm+1 < Sp -
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We also recursively define integers P;,Q; for i= —1,0,...,m+1, by

(2.1) {Pi+l = q.-+1P,»——Pi_l, PO=1! P—l=0
Qit1 = ;41— Qi-y,  Qo=0,0_,=-1.
Now,
(22) PQivi—Pi1Q =1
(23) 5-1Qi = soPi—s;
(2.4) 5:Qi+1— 51419 = So»

and, since ¢;=2, we also have P;<P,,,, 0;<Q;,,.
For —1=<i<m, we define sets X, Y; of lattice points by

X; = {(x,y)| 0<x<s5;—8;41,» 0Zy< Py}
Y, = {(x,y)| 0<x<s;, 0Zy<P,,,—P;}.
We say that two lattice points (x,y) and (x',y’) are congruent if
X435y = X' +5y (mods_,).
It was shown in [7] that for each i=0,1,...,m, there is a bijection
o: X, UY_, - X;UY,
given by

X X
(2:5) p(x,y) = (x—s,-[s—i], y+ P{;J) .

¢ also has the property that if (x,y) € X;_, U Y,_,, then the lattice points (x, y)
and ¢(x,y) are congruent.
It follows that the set

{x+s0y I (x.y) e X;UY}

forms a complete residue system modulo s_, for each i=—1,0,...,m.
Now fix r, 0=r<s_,. Let (x;,y;) be the unique lattice point in X;U Y; which
is congruent to (r,0), i=—1,0,...,m. Then
Xi-1 .
(2.6) Xi+Soyi = Xi—1+SoVi-1+5-1Q; 5 | i20,
and

@7 r=x_y+s0y-1 = XotSo¥o = Xy +Soy1 = ... = Xpt+SoVm -
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3. The sequence (1.3).
We now consider the sequence
A:ay=0<ag =l<ag=d<a;=2d< ... <a_; =xd < q,

where x=k—-22>1.

Put
s_l = ak’ SO = d B
and
1
R; = — ((a,— 1)xs;— (a,— xd)P)) .
ay
Since

R_, = (g—1)x, Ry = nd—1
Riyi = i Ri—Ri—y
all the R, are integers. Further

a,—xd

=R,.; <R,< ... <Ry=xd-1.
S,

m

Hence there is a unique integer v=v(4,), 0<v<m, satisfying

R,,; =0 <R,.
We also have
(3.1) R, = xs8;—P;+xQ; .
It is easily seen that the sequence A, ., is pleasant, and
(3.2 A (M) = r+<£Z—> fM=r+dN,0=sr<d
3.3 nth,A,_y) = xdth+1-d)y+2d—-2, h = ho(A,-,)—1,
where
d—-1 if x=1
ho(Ax-y) =
o(Ae-1) {d if x22.

(Alternatively, see Djawadi [2, Satz 1] and Hofmeister [3, Satz 1].)
It follows that hy,=hy(A,) is given by

_ a,—2d
i [B],
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and in particular that

(3.4) hy = d—1+<h:2> if v>1.

Putting

P R,—
(3.5) W= s,—s,,,—2+ <’"2‘_1+_"1> .
x

we are now in the position to state

THEOREM 1. For the integer sequence

A 0<l<d<2d< ... <xd < aq,

where x=k—221, we have

lho—~1 if v=0
hy = hy if v21 and R, Zx
l max {ho, '} if v=1 and R,<x .

We prove this theorem by going through the following steps:

(3.6) v=0= h = hy—1

(3.7 vl = h Zh

(3.8) v=1 and R, 2 x = h, < h,

3.9) vzl and R, < x = h; £ max{hyh'}
(3.10) vzl and R, <x = h, =2Hh.

PRrOOF OF (3.6). Let

q, = <(L—l>k—t.
a, = <q;l> xd—(td+s,),

0 < td+s; < xd.

Then

where

According to Satz 1 of Djawadi [2] we now have that 4, is pleasant if and only
if
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% x
that is, if and only if v=0.

Thus, if v=0, then A, is pleasant, whence h, =h,—1.

Proor of (3.7). Suppose that h; =hy,— 1. Then
n(hg—1,A4,_y) = nthg—1,4) = a,(hg—1)—g(4}) -1,
and, by (3.3),
g(A¥) = ay(hg+1—d+s)—d(x(hg—d)+1+q,)+af (d—1-s,).
Now, if v=1, then by (3.4) and (3.1),
0= xthg—d)+1+4q, £ x(thg+1—d+s,),

and by Lemma 1 in [6], g(A4}) is dependent on A}; a contradiction.

Proor oF (3.8). Let t;* be the smallest integer dependent on A} and =/
(mod a,). By Lemma 1 in [6], we then have

G.11) t* = (- 1)x+ak<§>—dy ,

and the same technique as used in [6, § 4] shows that we can take
(3.12) (x.y)e X, UY,.

We now want to express t* on the form
x
— { (]
tf = (q—1x+ Z af_ X, X0 20,
i=1

and the proof of Lemma 1 in [6] tells us how to do this: If y=0, put x{? =0,
i=12,...,%
If y>0, let

y=gx—s,0=s<x s=09+9, 0= ¢ <gq;
j=x—0—1x =g x\, = g—o, x = 0 otherwise .
(Here we only have 0 <j < x. However, if j=0, then x{"=0.) Then it follows that

x
X+ Z a,-+1x§” = x+dy
i=1

Hence, by (3.12) and Lemma 1 in [7], if for each r, 0<r <a,, all the integers
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(3.13) r<r+4+a <r+2ag < ... < x,+dy,—a,

belong to hA, for some h=hy,—1, then h=h,.

If v=0, then the set (3.13) is empty, and again we have (3.6).

Suppose that v=1, and let M be an arbitrary integer in the sequence (3.13).
By (2.6) and (2.7), we then have

(3.14) M= x_,+dy,_;+az 0=z < Q,»[xishl] ,

for some i, 1ZiZv.
As in [7, § 4] we have, by (2.3),

M = X +dy'+az .,

where

X = Xx —s[i]>0 § = +P[i] z’—z—Q[i]
= X .'Qizs Yy =JYi— iQi’ = .'Qi-

so that, by (3.2),
A LY ,
(M) < x +<;—>+z .

xX'+y +xz S kxj +yio+x(Q;—1)+ (Pi—ksi)[Qi] ,

x+<>+z < x;_ ,+<' >+Q,—1 if P;<xs;.

and, by (2.5) and (3.1),

.+ R,
x+< >+z < x,-+<~'—-:/—'>-—l if P; > xs;.

If R,Zx, then R;=x for i=1,2,...,v. Hence, by Lemma 1 below, we have
M € hyA,, so that h, <h,,.
Thus the proof of (3.8) is complete as soon as we have proved the following

We have

so that

LemMma 1. If i=1, then

(3.15) x,._,+<‘;‘>+Q,.—1 <hy, ifPi< s
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4R
(3.16) x,~+<%>—l <hy, ifP;,>us;and R, 2 .

ProoOF. Put

y; = max {xx+y}
x,y)eX,;

x(si—sip1— )+ P —1

0; = max {xx+y}

x(s;—1)+P;,,—P;—1.
(x.y)eY;

Suppose that P; < xs;. Then y;,_, <d,_,, and we prove (3.15) by showing that

420, where (cf. (3.4))
4 =xd+q,—x—2-9;_,—x(Q;,—1).
By (2.4), we have
4= (Qi—1xs;_1—Q;_xs;—xQ;—P;+P,_+x+q,—1,
and, since s;_, =s;+1,
42 Q;—-Qi_i—Uxs;—P;+P;_,+q,—1.

Using the assumption P; < xs; we further have
(3.17) 42 Q—-0,_,-2P;+P;_+q,—1.

If Q;—Q,_{—22=0, then i=2 and

4z P+q,—-123.

If Q;—Q;_,—2< —1, then we have as in the proof of Lemma 5 in [7], thati=1
or qg,=...=q;=2, whence

(3.18) Q;=J Pj=(q-Dj+1

for 0<j<i, and the right hand side of (3.17) equals 0. This completes the proof
of (3.15).

Next, suppose that P;> xs; and R;=x. Then y,>J,, and we prove (3.16) by
showing that I’ =0, where

I' =xd+q,-2—y,—R
By (2.4) and (3.1), we have

i

= (Qiv1—2xs;—(Qi— Dxs;py — Py +Pi—xQi+q +x—1,

and, since s;,, £5;—1,

Iz (Qis1—Qi—xs;— Py +Pi+q,—1.
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Since R; 2 x, we have by (3.1), that xs; = x + P, — xQ,, and using (2.1), we further
get

G19) I 2 (Qiv1=Qi=qis )Pi=xQ)+ Py —xQ;_+q; —x—1.
By (2.2), we ha;ve
Qa1 (Pi=xQ) = 1+0Q,(Pjuy —%Qys1) .
and, since P, —xQ,=q, —x=1=Py—xQ,, it follows that
(3.20) Pi—xQ; £ Pj,,—xQ;4y. j=01,....m.

Since P;>xs; and R;=2x, we have i=22. If Q,,, —Q;—¢q;+, =0, we thus get by
(3.19) and (3.20) that

rgpl"%Ql‘i'ql“-k“lgl.

fQiv1—0i—q;+1 < —1, we have as in the proof of Lemma 5 in [7], that ¢,
=...=¢;;;=2, and (3.18) holds for 0<j<i+ 1. Then the right hand side of
(3.19) equals 0. This completes the proof of Lemma 1.

ProoF of (3.9). Now suppose that v=1 and R, <x. Again we consider the
M given by (3.14).
By (3.1) and (3.20), it follows that

Ri—Rj;; 2 % j=0.1,....m,

so that R;>x if 1<i<v. Thus we have, by Lemma 1, that if 1 Si<uv, then
M € hyA,.
Moreover, P,> xs,, and

A M) < <V+—R1> — W ifi=v.

P

Thus M € hA,, where h<max {hy, h'}.

Proor ofF (3.10). Putting
y=ax—p, O0Zf<ux,
we have, by (3.11),
t¥ = (a,— Dx+(a,—xd)ya+df ,

and, by (3.12), we see that
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max t¥ = §

(x.y)ekX,
max t'* = (ak—l)(s”.—l) if Pv+l—Pv_1=0
(x.y)eY, T otherwise , .

where

(3.21) S = (ak—1)(su—sv+,—1)+(ak~xd)<5+—y‘_—l>+d(x—1)

—-P,—1
T = (a,—1)(s,— )+ (ak—xd)<£'%~P—”~>+d(x— 1.
Since R, <x, we have by (3.1) and (2.3),

P R,~1
T= —ak(Q,,+1)~s,,+1+xd(s,,+Q,,)+(ak—zd)<~iﬂjy—"——>+d(x—1)

P —_
< de—xd+1+(a,,—xd)<"—+x‘—1>+d(x—1) <s.

Thus
(3.22) maxt* = §.

Next, consider

P,.,—P,—1
(323) M = 2Sv'—sv+l“’1+d<%<’L‘y—Pv~—‘>—%+l>+ak(Qv"l)-

Then, by (3.1) and (2.3), we also have

P,..+R,—1
324 M = s,,—svH-l+d(k<—”+—1—-—5’—>—Rv—x+l)—ak.

x
Suppose that h; <h'. By (1.2), (3.21), (3.22), (3.24), and the formula
(3.25) g(A¥) = —a +maxt}
of Brauer and Shockley [1], we then have
nh'—1,4) = qh'—S—1

- —1
M+(ak—kd)(<Pv+l-:‘Rv 1>_<Pu+; >)+de_1 .

Since v 1, we also get, using (3.23),
M g 2sv‘sv+1 -1 +d(Pv+1 _Pv—%)+ak(Qv— 1)

2 s,+d(g,—1—x) = s, .
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Thus we have
0= M<=<nh-14,),
and in particular,
AM) S h-1.

We continue to show that this leads to a contradiction, thus proving (3.10).
By (3.2), there are three-tuples (x,y,z) of non-negative integers such that

(3.26) M = x+dy+a,z

A (M) = x+<X>+Z ,
x

and where A=xx+y+ xz is minimal. Among these three-tuples choose the one
where y is minimal. Then

<i> = A4M) £ h-1,
%

(3.27) AS x(h=1).

.

so that

There is a unique lattice point (x,,y,) € X,U Y, such that

x,+dy, = M (moda,) .

P —
0< x<—"f££>—&,—x+l <P,y
x

so that, by (3.24),

Now,

M = x,+dy,—ay .
Hence, by (3.26),
(3.28) xynéeX,UY,.
By (2.3), we have
= (x—s,)+dy+P)+a/(z2—-0Q,),
where, by (3.1),
x(x—s)+ (y+P)+x(z—Q,) = A—R,.

Hence, by the minimality of 4, we have
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(3.29) x<s, or z<Q,.
Further
M = (x+8,01)+d(y—=P o)+ a(z+ Q.1 1)
where
’(x+8,4)+ V= Poi))+x(z+Qy41) = A+R,4y .
If R,,,; <0, we thus have
(3.30) y < P,q.

Because of the minimality of y, (3.30) also holds in the case of R,,,;=0.
We also have

M = (x=s,+5,41)+d(y+P, =P, )+ a(z2-0,+Q,41)
where .
x(x=5, 484 )+ W+ P,—Pu)+x(z—0Q,+ Q1) = 24— (R,—R,y) .
so that
(3.31) X < Ss,—S,4q O y<P,  ,—P,.

Now, if y=zP,,,—P,, then (3.31) and (3.30) imply (x,y) € X,, which
contradicts (3.28). Therefore

(3.32) y <P, ,—P,.

If z>Q,. then (3.29) and (3.32) imply (x.y) € Y,, which also contradicts
(3.28). Hence

(3.33) z<Q,.
Now, by (3.27), (3.5), and (3.1), we have

P,,,—P,—1
xx+y+xz £ x<2sv~sv+,—3+<—u——>+Qv>.
x

Using (3.26) and (3.23) to eliminate x from this inequality, we further get

1 < (nd— l)(y—x<j—tl——:—‘—PLj—l>+k—l>+ (@~ Dx(z—0Q,+1),

so that, by (3.32),
1 £ (Wd—)(x—1)+(a—Dx(z—Q,+1).
It follows that z=Q,—1; hence, by (3.33), we have
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z=0Q,—-1.
Clearly x<d, and since
25, —Spr1—1 S 51+ (5,—=S,41)—1 £ s, +(sp—s;)—1 < d,

it follows from (3.26) and (3.23) that we also have

P, —P,—1
x = 25,541~k y= %<L"—>—x+1 .
b

Hence, by (3.5),
A=x(-1)+1,
which contradicts (3.27).
REMARK 1. For the sequence 0, 1, 6, 12,20 we have v=2, R,=1<x =2, hy=6
>h =5, so that
max {hg, '} = hy .

For the sequence 0, 1, 4, 8, 11 we have v=1, R,=1<x=2, ho=4<h' =5, s0
that

max {ho, '} = I .
REMARK 2. The value of maxt} is given at the beginning of the “proof of

(3.10)". Hence, by (3.25) and (1.2), we know the value of n(h, 4,) for all h=h,.
We also note that

maxt* = max {S,T} if x=22.

Forif P,,,—P,—1=0,theng,=...=q,+;=2,and s,,, = (v+2)d— (v+ 1)a,.
Since v=0 and a, > xd, we then have s,., <0 if x=2, which is impossible.
Hence P,,,—P,—1>0if x=2.

4. The sequence (1.4).

We now consider the sequence

A:ay=0<ag =1<a,=2< ... <a,=x<a,_; < a.

where x=k—221.
Put

S—1 = G So T Ok-y

and

Math. Scand. 51 — 2
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1
Ri = ;—((ak'—)()si“’(ak“ak—l)kpi) .
k

Then

b
—;—»(ak—-a,‘_l) =R, <R,< ... <Ry=ag_;—x,

and there is a unique integer v=0v(4,), 0 <v<m, satisfying
R,,; =0 <R,.
We also have
R; = s;—xP;+xQ,
Rivy = qivsRi—R;_; .

The sequence A,_, is pleasant, and

Ay (M) = <£»>+N if M =r+a,_,N.0<r < a,_,

a_—2 a_,—2
n(h, Ay_,) = ak-1h~(ak-1—x)[%—], h > [gﬁ_]

x

This gives us

ak——2—k|:—a~%—2f:| + a,‘_l—2:|+1
hy = ho(A4y) = - - '

Ay -1

and in particular that

ak__l_z

h0=q1+[ ]—1 lfv;l.

Let t* be the smallest integer dependent on 4} and =I(mod a,). Then, by [6,
§ 4],

= ak<§>_x+(ak—ak—l)y* xyeX,UY,.
Thus

x

* x

th = ) af_ x"+aty,
i=1



ON h-BASES FOR n II 19

where x? =0 if x=0, and if x>0, then
x =9 xfh, =qg-0. x{ =0 otherwise,
where
x=¢gr—5,0=Ss<x; s=0q+0.0=590<¢q; j=x—-0—-1.

(Here we only have 0<j<x. However, if j=0, then x{’=0.)
Now

Mx

() —_—
axP+a,_y = x+a,_y.

1]

i=1

Hence, by [7, Lemma 1], if for each r, 0<r<a,, all the integers
4.1) r<r4a <r+22aq < ... < x,+a_y,—a

belong to hA, for some h=hy—1, then h=h,.

If v=0, then the set (4.1) is empty, and h, = h,— 1. Therefore suppose that v
=1, and consider an arbitrary integer M in the set (4.1). By (2.6) and (2.7), we
then have

x"..
M =X +a_yitaqz 0=:z< Qz[ s 1:'-
i

As in § 3 and in [7, § 4], we write

M = Xx'+a,_y+acz,

z = ._0l| X
Yi‘1+Pi[a;]* z z Qu[Q‘]

A (M) < <5;> Y+
We further have

<§i:}_>+yi——l+Qi—1 if xP;ss;
x' %
<;>+y,+2l = x;+R
<i_~i>+yr1 if %Pi>s; .
x

The following lemma is quite similar to Lemma 1, and therefore we do not
include a proof.

where

x\
il
=
t
n
—
Ofn
O
i\
o
‘<\
Il
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LEmMA 2. If 1 Zi=Zv, then

<x:;l>+yi—1+Qi_l S a1 —q1(x=2)=3  if xP;<s;

x;+ R, .
— +yi—1l S a_;—q(x—2)+x—4 if xP;>s; .

It follows that
AM) = a1 —2—(q, - 1)(x-2).

Since the right hand side is = h, (for v=1), we thus have

THEOREM 2. For the sequence
A 0<1l <2< ... <x<ag_-y <a,
where x=k—22=1, we have hy=hy—1 if v=0, and

4.2) hy £ a1 =2-(q,—D(x=2) ifvzl.

REMARK 3. It follows from [6, Theorem 17], that

g(Af) = -1+ (a—a_)(P,s — D+

Sy — —2
+max{(ak——x)[§5-s';”—2:|, (ak—%)[s"% ]—(ak—ak-l)Pv}.

Hence, by (1.2), we know the value of n(h, A,) for all h=h,.

ExampLE 1. Take a,_,=a,—1=k. Then v=1, and Theorem 2 gives us h,
<a,_,—k+2. On the other hand, since hy, =2, we have by [7, formula (2.9)]
that h, =a,_, —k+2. Thus (4.2) is “sharp”.

ExaMPLE 2. For the sequence A4,: 0, 1, 2, 7, 15 we have v=1, h; =hy—1=3.
Theorem 2, however, gives us only h; £5.

Also for the sequence A4, considered in this section, we have that A4, is
pleasant if and only if v=0 (Djawadi [2, Satz 1]). Thus it follows that if v=0,
then h;=hy—1.

The reversed implication, however, is not true in this case, as shown by
Example 2.

Suppose that v=1 and h; =hy,—1. Then
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g(A¥) a(hg—=1)—n(ho—1,4,_,)—1

af(2q, =2+ aho+2-2q,) — (x(hg+1—q) +1—5)) .

i

Since v=1, we have

x(ho+1—q)+1—5; £ x(hy+2-2q,).

If also

(4.3) 0= x(ho+1—gy)+1-s,,

then, by [6, Lemma 1], we have a contradiction.

Now, (4.3) can be written as

(4.4) s,—1 < y[‘i':g;%] :

x

and we have that if v=1 and (4.4) holds, then h; = h,,.

1

2

hed

7
8

As shown by Example 2, the “extra” condition (4.4) cannot be removed.

REFERENCES

. A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math. 211 (1962),
215-220.

. M. Djawadi, Kennzeichnung von Mengen mit einer additiven Minimaleigenschaft, J. Reine

Angew. Math. 311/312 (1979), 307-314.

G. Hofmeister, Uber eine Menge von Abschnittsbasen, J. Reine Angew. Math. 213 (1963), 43-47.

. G. Meures, Zusammenhang zwischen Reichweite und Frobeniuszahl, Staatsexamensarbeit, Joh.
Gutenberg-Universitdt, Mainz 1978.

. 0. J. Rodseth, On a linear Diophantine problem of Frobenius, J. Reine Angew. Math. 301 (1978),
171-178.

. 0. J. R6dseth, On a linear Diophantine problem of Frobenius. 11, J. Reine Angew. Math. 307/308
(1979), 431-440.

. 0. ). Rodseth, On h-bases for n, Math. Scand. 48 (1981), 165-183.

. H. Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), 1-30.

ROGALAND DISTRIKTSHOGSKOLE
BOX 2540, ULLANDHAUG

N-4001 STAVANGER

NORWAY



