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BIBOUNDED OPERATORS ON W*-ALGEBRAS

ULRICH GROH and BURKHARD KUMMERER

1. Introduction.

Gohberg—Krupnik [7] call a triple (E, i, #) a Banach space with two norms,
if E is a Banach space, # is a Hilbert space and i is a continuous injection from
E into # with dense image. If we denote by E* the dual space of E then the
adjoint mapping i*: # — E* and the map j:=i*oi: E — E* are continuous
injections, too. For our considerations the motivating examples of Banach
spaces with two norms are the triple (L*(X, X, p),i, L*(X, Z, p)) with (X, Z,p) a
finite measure space and i the canonical embedding L™ (X, X, u) — L2(X, Z, p),
and the triple (7 (H),i, # (H)), where 7 (H) and # (H) denotes the trace class
operators and Hilbert-Schmidt operators, respectively, on a Hilbert space H, i
being the canonical injection 7 (H) — # (H).

Canonically associated to a Banach space with two norms (E,i, #) is the
class of bounded linear operators on E whose adjoints leave j(E) in E*
invariant. It is well known that important properties of operators on
L%(X, X, u) carry over to the class of bounded linear operators on L*(X, Z, u)
whose adjoints leave j(L*(X, X, u)) in L*(X, X, u)* invariant (Schaefer [17, V.,
§ 8]). Furthermore, H. H. Schaefer [18] investigates spectral properties of
operators in this class. In a recent paper E. Stermer [19] studies bounded
linear operators T on the von Neumann algebra #(H) which are weak*
continuous, hence possess a preadjoint T, e £(J (H)) such that
T(j(Z (H)))<j(7 (H)). For a special class of such mappings he obtains nice
spectral properties and proves a kind of Bochner theorem. After these
preliminaries we give a short outline of our paper.

In section two we endow a o-finite W*-algebra U with the structure of a
Banach space with two norms. The Hilbert space is exhibited by the standard
Hilbert space # associated with 2 by the work of H. Araki [1] and A. Connes
[3], whilst the injection depends on the choice of a faithful normal state ¢ on
A. Using Tomita—Takesaki theory we establish, that the corresponding
injections are well behaved with respect to order and topology. These results
are in complete analogy to the commutative situation.

In the third section we study the class of bounded linear operators on A

Received December 12, 1980.



270 ULRICH GROH AND BURKHARD KUMMERER

canonically associated to this structure. An operator in this class is called -
bibounded, and one can define T*:=j 'oT*oj which is, by the closed graph
theorem, a continuous linear operator on U and again @-bibounded. We list
some elementary properties of ¢-bibounded operators and show, what may be
considered as a version of the M. Riesz convexity theorem, that such an
operator has a continuous extension T, to »#. We furthermore establish the
following examples for @-bibounded operators. If a,b € U, A, the set of all
x € A with g(xy)=¢(yx) for every y e A, we denote by L, and R, the
mappings x — ax and x — xb, respectively. Then L, and R, are ¢-bibounded
with L} =L, and R; =Ry« Given a locally compact group G and a weak*
continuous representation U of G into Aut (), for u € M*(G) we denote by
U(y) the operator U(u)=[gU(g)du(g). If U leaves ¢ invariant, U(y) is ¢-
bibounded for all u € M®(G) with U(u)* = U(u*).

The last section is divided into two subsections: Applications to the spectral
theory and applications to ergodic theory. For a ¢-bibounded operator T we
first discuss the relationship between the spectra of T, T* and T,. Next we give
a sufficient condition for the pairwise identity of these spectra. As an
application we get the following: If T and T* are compact, then T, is compact
and the three spectra are identical. Another application yields that if the
spectra of T and T™ are contained in the unit circle, and if T is a positive
operator on % which commutes with T7, then T is a Jordan *-automorphism.
For a semi-group S consisting of ¢-bibounded operators with | T||<1 and
|T*|| €1 for Te S, we then prove that § is weak* mean ergodic. We conclude
this section with a non-commutative version of a theorem of Akcoglu—
Sucheston. '

2. A W*-algebra as a Banach space with two norms.

We consider a o-finite W*-algebra U with predual A, and dual A*.
Following the work of H. Araki [1] and A. Connes [3] we associate with 2 a
standard Hilbert space (¢, 2, J) where the Hilbert space # is ordered by the
self dual positive cone £ and J is the modular involution. For a faithful normal
state ¢ on U there exists a unique vector £, in 2 and a faithful representation
n, of W on # such that the triple (n,, #,&,) may be identified (by unitary
equivalence) with the corresponding triple arising from the GNS-construction
for A with respect to ¢. The modular operator pertaining to ¢ will be denoted
by 4, Since throughout the following we consider U in the representation =,
for ¢ fixed we omit the n, and denote the commutant of x,() simply by A".
We now define an injection as follows:

Ji = (xHAi,xé,p): A H.
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If A=L>(X,Z,p), then # =L2(X, X, ), ¢,=1x and 4, is the identity on #,
so j, reduces to the canonical injection as mentioned in the introduction.

2.1. ProposiTION. 1. (U, j;, ) is a Banach space with two norms and j, is a
norm contraction.

2. j, possesses a preadjoint j,: # — U, which is a norm contractive injection.
(Here we identify # with its dual space so that j, is conjugate linear.)

PROOF. 1. j; is an injection being the composition of the two injective maps
x — x¢, and x&, > A%“,xéq,. Denoting by A™* the positive part of A, we have

J1(AY)=2 (Connes [3, 2.7]) and # =P —P+i(#—P) (Connes [3, 4.1]),
hence j, (W)= #. By the following computation j, is a contraction:

11 CI? = (xEp1 A3xE,) = (xE, | Ix*E,)

S (€| xE ) (Ix*E, [ Ix*E )t
= lxl- e
= |x* (xe).

2. We only have to show the weak*-weak continuity of j,, the other
assertions follow from general properties of adjoints. If (a;);.; U converges to
a, € WA in the weak* topology, a converges to a¥ in this topology. Since the
weak operator topology on £ () is weaker than the weak* topology, and
since J is bounded on J#, (a* + Ja*)¢, converges to (ag +Jag)é,, weakly on .

4, is a positive injective operator with dense image, hence (4, *+A§‘,)‘1 is
bounded and may be considered as a continuous operator on . Therefore

jila) = diat, = (475 +44) 71 (id + 4B (ac,)
1 -
= (4754 45 Ya+ JaME,
converges weakly to

(A4 + 44" Yap+Ja)é, = ji(ap) -

The next proposition and its corollary investigate the order theoretic
behaviour of j, and j,. For this we denote by A" (A*) the set of all self adjoint
(positive) elements of A, analogously we define A% and A, and we set

H = {eH: Ji=¢) =P-P.

A", ¢/, AL are real ordered Banach spaces with normal and generating
positive cones A*, 2, A} respectively. For the general theory of ordered
Banach spaces we refer to Schaefer [16]. If E is any ordered Banach space and
x,y are elements of E with x <y we define the order interval
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[x,y] :={zeE: x2z5y}.
If ¥ is a faithful normal state on A, we set F*(Y):=U,.n[0,n Y],

F'Y) = FTW)-FTY) = U, [—ny,ny]

ne

and
FW) = FW+i-F'W).
Finally we put j:=j,0j,.

2.2. PROPOSITION. j(x) is given by j(x)(y)= (JxJy&,|&,) (x,y € W) and j is an
order isomorphism from U* onto F'(p) with j([0,1])=[0, ¢].

Proor. For x,y € A we have

JO) = (1)) = (€, 43x¢,)
= (e, 1Ix*JE,) = (IxJyé,1&,) -

j; is positive by definition and by the results of 2.1, j is a positive injection.
From the first part of this proposition we see j(1)= ¢, hence j([0,1]) =[O0, ¢].
By the commutant Radon-Nikodym theorem (see e.g. Stratila-Zsido
[20, 5.19]) there exists for any y € A, with 0SyY <¢ a (unique) x' € A’ with
0=x"=1 such that y(y)=(x'y¢,|¢,) for all y e A Since z — JzJ is an
antiautomorphism from A onto A, there exists a unique x € A with 0=x <1
such that

V() = UxJyé,1E,) = j(x)(y) forall yeA.
Hence j([0,1])=[0,¢] and j is an order isomorphism from 2" onto F"*(¢p).

2.3. COROLLARY. 1. j; is an order isomorphism of " onto U, yn'[—¢,,¢,]
with j,([0,1])=[0,&,].

2. j, is an order isomorphism of U, .nn-[ — &, €,] onto F"(@) with j,([0,&,])
=[0, (P]

Proor. In view of 2.1 j; and j, are positive injections. We have j1(1)=A§,£q,
=¢, and, by 22, ,(&,)=j,(j1(1)=j(1)=0. Therefore j ([0,1])<[0,¢,] and
J2([0,¢,)<€[0,0]. If ne[0,E,], we set y:=j,(n). By 2.2 there exists
x € [0,1] = U with j(x)=1. j, is injective and therefore j, (x) =7 hence j, ([0,1])
=[0,¢,] and j; is an order isomorphism. By 2.2 we get

[0, 9] = j([0,1]) = j»0j1([0,1]) < j2([0,¢,])
so that j,([0,¢,])=[0,¢] and j, is an order isomorphism.
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The results 2.2 and 2.3 show that j, j,, and j, are well behaved with respect to
the order structures of U, #, and A,. This singles out j, among other possible
injections of A into H#.

In addition these injections have, in complete analogy to the commutative
situation (see Schaefer [17, Lemma V.8.3]), nice topological properties which
will be basic for the last section. In the following we denote by U, the unit ball
of A.

2.4. PROPOSITION. The restriction of j, to j(W,) is a homeomorphism for the
weak (norm) topologies on H# and U,.

Proor. By 2.1.2 j, (U,) is weakly compact and the restriction of the weakly
continuous injection j, to j,(A,) is a homeomorphism.

To prove the assertion for the norm topologies we consider any sequence
(Uwnenin jo(jy (W) =j(A,) with lim, ¥, =y, € j(A,). Putting x,: ="' (Y, — )
and &,:=j; (¥, —V,) we have j, (x,)=¢, and x, € 2, (compare 2.2 and 2.3).
Therefore

2- Y=ol 2 [Wa—¥o)(x)l = lj(x,)(x,)
1 e i Gen)l = 1(E41 &)

€02 for all n>1 .

3. Bibounded operators.

In this section we endow the W*-algebra % with the structure of a Banach
space with two norms corresponding to the faithful normal state ¢ as described
in the preceding section. We introduce and investigate the class of operators on
A whose adjoints leave & () invariant. If T'is a bounded linear operator on U,
we denote by T* its adjoint and in the case of weak* continuity, by T, the
preadjoint of T on UA,.

3.1. DeFINITON. Let £ () be the Banach space of all bounded linear
operators on A. We call Te L (N) @-bibounded if T*(F (p))= F (¢). Since
F (¢)=j(A) we denote in this case by T the (well defined) linear operator
Tt:=j"'oT*oj on A

3.2. ReMARKs. 1. It follows immediately that a @-bibounded operator is
weak* continuous, hence possesses a preadjoint T,.

2. An application of the closed graph theorem shows that T* is continuous
on A.

-Math. Scand. 50 — 18
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3. An operator Te Z () is p-bibounded iff there exists S € £ (A) with
Jj(Sx)(y)=j(x)(Ty) for every x,y € . In that case S=T"*.

Before presenting examples of ¢@-bibounded operators we list some
elementary properties of T*.

3.3. PROPOSITION. Let U be a W*-algebra with a faithful normal state ¢ and let
Te L (N) be @p-bibounded. Then the following holds:

1. Let ASU. Then T*(A)cA iff T,((A)<j(4) and T(A)SA iff
(TH)*(j(A) <j(A).

2. T is y-bibounded for all states  with F (y)=F () and (T*)* =T.

3. T* is n-positive iff T is n-positive (n=1).

4. For @-bibounded operators T,, T, € £ (N) we have (TyoT,)* =TFoTf
and (aT, +BT,) " =aT} +BT; for all o, € C.

S. Endowed with the norm

T | Ty := max {|IT|, 1T}

the algebra ,S,”f,’,i(‘ll) of all @-bibounded operators on A is a Banach algebra with
involution T— T*, and for Te 2,‘;‘(91) invertible in £ (A) we have
T ' e £S5 iff (TH)™" exists. In this case (T*)™'=(T~!)".

PRroor. 1. By definition we have T (4) < A iff T, (j(4)) <j(A). It is easy to see
that (T*)* on j(A) is given by the operator joToj ™. Thus for all A = U we have
T(A) € A <= (joTej )(j(A) < j(A)

= (TH)*(j(4) < j(A).

2. This follows immediately from part 1.

3. Recall that an operator S € .Z () is called n-positive (n=1) iff S®id,, is a
positive linear operator on A® M,, M, the algebra of all n x n-matrices over C
(see e.g. Takesaki [21, IV.3.3]). Given a faithful state t on M,, ¢ ® is a faithful
state on U®M, and

(TRid,),(¢®1) = (4 P)®T = A(e®71)
for some 0<4 e R. If T®id, is positive we obtain
(T®id,) [0, ¢p®1] = A[0,0®1]
and
(TQid,),# (¢®1) < F(p®7).
Thus by part 1, T®id, is p®1-bibounded with (T®id,)* =T"* ®id,.
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4. This follows easily from the definition and the fact that j is conjugate
linear.

5. By parts 2 and 4, the map T~ T" is an involution. Since ||T|; is an
algebra norm one only has to show the completeness of fzi(QI). If (T,),5,is a
Cauchy sequence in ,(fzi(‘ll), then so are (T,),»; and (T,),», in L(A).
Therefore there exist T, S € £ (A) with lim, T,,= T and lim, T,/ =S. Now for all
x and y in A:

J8x) () = lim j(T, x)(y) = lim j(x)(Ty) = j(x)(Ty).
This shows T* =S5 and lim, T,=T in £5(2).

3.4. ExampLES. 1. For the commutative case we refer to the book of Schaefer
[17, p. 343, Examples].

2. Let A,:={x € A: p(xy)=0(yx) for all y € A} be the centralizer of ¢ in
A. We note that A, is a W*-subalgebra of U and can also be characterized as
the set of elements in A that commute on # with 4, (see, e.g. Stratila-Zsido
[20, p. 238]). For a,b € A, we define the operators L, and R, on U as follows:

L,x):=ax, Ry(x):=xb (xeA).

The following computation shows the ¢-biboundedness of L, and R, with L;
=L, and R, =Ry« Indeed, for x,y € A we have:

JO(Lex) = (dbaxé,| Abye,)
= (4xE,|a*(4%y¢,)
= (4xE,| A4a*yE,)
= j(Lap)(x)
and 1 .
JO)RyX) = (A4xbE, | ALyE,)

Il

(A4TAEb*x*E | ALyE,)
(JA; A b*x*E, | ALYE,)
(JAEyE, | b*dbx*¢,)

(bJ AT ALy*E, | ALT ALXE,)
(A (b*)*E, | T AbxE,)
(JAEyb*E, | JALXE )
(4ix¢, | Ahyb*e,)

= J(Rpy)(x) .

I
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Now the assertion follows from 3.2.3. Moreover, the linear operator T, ,(x)
=axb (x € A) is p-bibounded with T, ,=T,« p« since T, ,=L,oR,.

3. Consider a locally compact group G and a representation U of G into the
automorphism group Aut () of A which is continuous for the weak * operator
topology on Aut (). For u € M®(G) the space of bounded Radon measures on
G, we put U(p)x:=jG U(g)xdu(g) (x € A), thus defining a bounded linear
operator on A (Arveson [2, 1.4]). If we assume @oU(g)=¢ for all g € G, then
U(u) is ¢@-bibounded for every p € M®(G). Since the involution u — p* on
MP(G) is defined as u*(f)= (J¢ flg ") du(g))~ (f € C*(G)) (the bar denotes the
complex conjugation on C), we have for all x,y € U, noting that the operator
U (g) has a unitary extension U(g), to # which commutes with J (Araki [1, p.
347]):

JU@*y)(x) = (JU@E*pIxE,1E,)

~

UUEIxE 8 du(g)>_

r

. (JU@E™ e(IX)E,1E,)" dﬂ(g)>

. ((Ug)x)*¢, 1 JyJ¢,) du (g)>

r

(
(
Y
(

. (&, | IyI U (g)x¢,) dp (g)>

(E 1 TYIJUWxE,)™ = (IyJU(u)xE,1E,)
= jo(Uwx); |

hence U(p)* =U(u*). In particular we have for abelian G and * the con-
volution on M*(G):

Uw oUW = U*)oU) = Uu**p) = Uusp*)
UoU(u*) = UoU(p* .

A remarkable fact of ¢-bibounded operators is the following extension
property which is a C*-version of the M. Riesz convexity theorem (see, e.g.,
Dunford-Schwartz [6, VI. 10.12]). For the proof compare Gohberg-Krupnik

[71

3.5. THEOREM. Let U be a W*-algebra with a faithful normal state ¢, and
let T e £ (N) be @-bibounded. Then the linear operators T, and T, defined on
J1(2) by



BIBOUNDED OPERATORS ON W*.ALGEBRAS 277

T, = jloTojl_1

@
Ty = jioT*oji!

have continuous extensions on #, again denoted by T, and T;’, with the
following properties:

1. T¥=T} .
2T, S ITTTI3 AT, < ITTH|A
3TN = 1T

ProoF. By injectivity of j; the operators T, and T, are well defined on j, ().
An easy computation shows that
(Tq;jl(x)ljl(y)) = (ji(x)] T;jl()’)) (x,y e ).
To prove the continuity of T, and T, we first consider the special case T=T*.
Then T,=T} on j,(A) and we may assume |T|| < 1.
For given 0% x € A with | j,(x)| £1 we define
e o= (Tojy ()| Thjy(x)  (n20).

Then for all 4 € R and n=1 we have

(T"w_lj1(x)+iT',:,+lj1(x)|Tz_ljl(x)‘i';iT"Hh(x)) = Fpo 24,4+ 4%,,, 2 0,

@
which implies

rﬁ g Fpn—1'Thsa (ngl)

Since r,+0, we have for r, +0:

It follows that r} <r,, hence

r; £ liminf(r,)!" forallneN.

n—oc

Since j, is a contraction, we have r, <||x||?> and therefore

limsup (r,)!" < 1.
This implies r, <1 and so T, has a contractive extension to 3.
For the general case we consider the operator T* o T. Since (T*oT)*=T"
oT by the results above this operator has a continuous extension on J# with
I(T*oT), | <|T*T|. For all x € A we have
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1T (D2 = (Tpijy (x)] Ty (x))
((Tg o Tp)j1 (x)1 j1 (x))

1T T 1 (N2 -

It

IIA

Hence T, € L (),
IT,Il < |T*T||*
and
IT I < max {| T, IT*[I} = [Tllyi -
By the same method we see T € £ () with || T} || <|ToT* |2
3.6. PROPOSITION. Let ¢ and  be faithful normal states on W with F (¢)

=F(Y) and let Te L (N) be p-bibounded. Then T is Y-bibounded and there
exists a bijection Ve L (H#) with

VoT, = T,oV.
Proor. By 3.3.2, T is y-bibounded and by 3.5, T, and T, are bounded linear

operators on . Furthermore A 'Yy <@ <iy for some O0<ie R. Then it
follows from Araki [1, Theorem 12, (9.4)]

AT, S8, S A,
Using xJxJ ()< 2 for all x € A we estimate:
AN (xIxJE, &)
ATH(xIXJE, | A7)
(xJxJE,1E,)
(xJxJE,1&,)
| 44xE, )12
H(xIXJE,| &)
AxIxJE,1Ey)

143xE, )2 .

I

I

" 1
AT AyxE,

A WA I A Al

Therefore the operators
Vi dixé, — AbxE, and Wi AixE, > AixE,

have continuous extensions ¥, W on the Hilbert space # with VoW=id 5, W
oV=id 4, and VOT¢= T,oV.
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3.8. CorROLLARY. Let ¢ and y be faithful normal states on U with F (¢) = F ()
and let Te £ (A) be @-bibounded. Then the spectra of T, and T, in ¥ (#)
coincide.

4. Applications.
A. Spectral theory.

In this section we study the relationship between the spectra of T, T*, and T,
for T ¢-bibounded. We give a sufficient condition for the pairwise identity of
the three spectra, extending a recent result of Schaefer [18] to the non-
commutative setting.

4.1. ProrosiTioN. If Te £ () is - blbounded and if T and T* are invertible,
then so are T, and T .

In particular,
o(T,) € a(T) Ua(T*) = ap(T),

where 'azi(T) denotes the spectrum of T in the Banach algebra 3’2‘(‘21) and the bar
is the complex conjugation in C.

ProoF. The first assertion follows from 3.3.5 and 3.5. If A€ a(T,), then
(A=T) or (A=T)*=(A—T") are not invertible by the first consideration.
Hence A € 6(T) or 1 € a(T™). The last equality follows via 3.3.5. from the fact
that (A—T) is not invertible in #%(A) iff (A1—T) or (A—T)" is not invertible
in ().

4.2. EXaMPLE. Let Te £ () be g-bibounded, |T| =1, T(1)=1 and let the
spectra of T and T™ be contained in the unit circle. If T and T* commute, then
T is a Jordan *-isomorphism.

Indeed, by 4.1 the spectrum of T, is contained in the unit circle and T, is

normal on # since T and T* commute. But this implies T, unitary in & ().
Thus

Jil(T7x) = T3ji(x) = T, 'ji(x) = ji(T"'x)

for every x € A, hence T* =T"'. Since |T| =1 and T(1)=1, T is a positive
operator on U, and therefore by 3.3.3, T~ ! is positive. Thus T is bipositive with
T(1)=1 which implies the assertion by Stratila-Zsido [20, Theorem 3, p. 135].

Recall that a (non-empty) topological Hausdorff space is called O-
dimensional, if its topology has a base of open-and-closed sets. For example
every finite or countable subset in C as well as the Cantor discontinuum are 0-
dimensional.
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4.3. THEOREM. Let N be a W*-algebra with a faithful normal state ¢ and let
Te % (N) be p-bibounded. If the spectra a(T) and a(T™*) are both 0-dimensional,
then we have o(T)=0(T*)=0(T,).

ProoF. Let p(t)=37_, o' be a polynomial over C and suppose p(T)=
Then we obtain for all x and y in UA:

urnm—(g ))

oj ((TTYx)()

I
i

n

2 oj()(T'y)

= j(x)(p(T)y) = 0,

thus p(T*)=0. In that case it follows ¢(T)=0(T") from Dunford-Schwartz
[6, VIL.3]. Therefore without loss of generality we may assume in the following
that T, hence T, satisfies no polynomial identity p(T)=0 for some p € C[t],
C[¢t] the ring of polynomials over C in one variable.

Since T is @-bibounded p(T) e ,?zi(Q[) for every p € C[t] and we denote by
B, (respectively B,) the completion of the algebra C[T]:={p(T): p € C[t]}
with respect to the norm ||p(T)|l,:=|p(T)| (respectively ||p(T)ll,:=Ip(T™)).
Then the spectrum of T in B, (respectively B,) is equal to a(T) (respectively
a(T%)), since in view of the hypothesis these spectra have connected
complement.

Since the complement of ¢(T)Ua(T™) in C is connected, it follows from
Schaefer [18, Proposition 2] that og(T)=0(T)Ua(T"), os(T) denoting the
spectrum of T in the Banach algebra B and B the closure of C[T] in ggi(QI).
Hence ag(T) is 0O-dimensional. Now if K is an open-and-closed neighborhood
of 4 € og(T), the spectral projection

1
p(K) := 2mf (y=T)"'dy

is #0, where I' is any simple, closed, rectificable and oriented curve lying
entirely in C—og(T) and separating K from og(T)—K. Since 'cC—o(T),
respectively ' C—o(T™), p(K) is a non-zero spectral projection in 8B, and
B,, since these algebras are in a canonical manner continuously embedded in
B. But this implies ¢(T)N K=+ & and o(T*)N K+ &, hence 4 € a(T)Na(TT)
by the closedness of these sets.
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Next for p(T) € C[T] we define

lp(D)y = 1p(DI,  Np(Dlly := lp(THIl ,
(DIl == max {|p(T)ll, llp(T)ll}

and denote by B, B,, B, respectively, the completion of C[ T] with respect to
these norms. Then since a(T,) is 0-dimensional, in view of the hypothesis and
4.1 we get with the same arguments as above o(T,) =0g(T)=0(T), hence ¢(T)
=0(T,)=0(T") as desired.

4.4. ExampLES. 1. Let Te Z(A) be p-bibounded with T and T* compact.
Since the spectra of compact operators are countable we get o(T)=0(T,)
=a(T™).

2. Let Te £ (U) be p-bibounded and compact. Then we assert a(T)=a(T,),
and T, is compact. To see this, by the second half of the proof of 4.3 we only
have to show that T, is compact. But it is easy to see that for S=ToT™, the
linear operator S, is compact on j, (), hence its extension T,o T} is compact
on 4. But this implies the assertion.

3. Let Te Z(A) be ¢@-bibounded with o(T)=0( ={1} and let T
commute with T*. Then T=T* =idy: By 4.3 we have a( w) {1}. But T, is
normal on 3, which implies T,,=id 4. From this the assertion follows.

B. Bicontractions and ergodic theorems.

If (X,X,u) is a finite measure space and T: LY(X,Z,u) — LY(X,Z,u) is a
linear operator leaving L™ (X, 2, u) invariant with |T|; <1 and | T| =1, then
T induces a contraction on L?(X, Z, u) by the M. Riesz convexity theorem (see
e.g. Schaefer [17, Proposition V.8.2]). With the help of ergodic theorems for
operators on Hilbert space one can prove ergodic theorems for these operators
(Schaefer [17, V.8]). In this section we consider operators in .# () which fulfil
a non-commutative version of the above condition.

4.5. DEFINITION. Let U be a W*-algebra with unit ball 2, and let ¢ be a
faithful normal state on . We call an operator T e £ () a @-bicontraction, if
IT| <1 and T fulfils any of the following two equivalent conditions:

L T*(j(AY)<j(Ay),
2. Tis @-bibounded with |T*|| £1.

It is obvious that, in contrast to remark 3.4, the notion of a “g-bicontraction”
depends on the state ¢.

4.6. DEFINITION. Let E be a Banach space. A semi-group S < % (E) is called
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mean ergodic if there exists a projection P € co S with PoT=ToP=P for all
Te S, co S being the convex closure of § in the strong operator topology.

4.7. REMARK. P is uniquely determined and is a projection onto the fixed
space of S. We call it the mean ergodic projection corresponding to S. By
definition we have Px € co{Tx: Te S} for all x € E.

4.8. DEFINITION. A semi-group S<.% () is called weak* mean ergodic if
S consists of weak* continuous operators and if the preadjoint semigroup
Se:={T,: Te S} is mean ergodic in £ (A,). In this case we denote the
corresponding mean ergodic projection in £ (A,) by P.

For the general theory of mean ergodic semi-groups we refer to Schaefer [17,
I11.7] and Nagel [11]. More information on weak* mean ergodic semi-groups
on W*-algebras may be found in Kiimmerer—Nagel [10].

Theorem 3.5 serves as our analogue of the M. Riesz convexity theorem,
from which we obtain:

If Te £ (N) is a @-bicontraction then |T,| <1 .

The Alaoglu—Birkhoff theorem states that every contraction semi-group on a
Hilbert space is mean ergodic (see, e.g. Schaefer [17, Theorem IIL.7.11]). It
appears to be the only mean ergodic theorem placing no restriction on the
algebraic structure (such as commutativity or amenability) of the semigroup S
considered. It is, therefore, remarkable that an arbitrary ¢-bicontractive semi-
group on a W*-algebra is weak* mean ergodic.

4.9, THEOREM, Let A be a W*-algebra with faithful normal state ¢. Every
semi-group S < % (N) consisting of @-bicontractions is weak* mean ergodic.

Proor. By the mean ergodic theorem of Alaoglu-Birkhoff, the contraction
semi-group
S, :={Ty: TeS}

on J is mean ergodic. We denote by P, the corresponding mean ergodic
projection.
Jj1(,) is invariant under S, and therefore

Pg(l)ecoS;¢ < ji(Uy)
for every & € j, (U,). If we set
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J2(8) =1y € j(A,)
we get by definition j,(T,¢)=T,(¥) (Te S), and from 2.4 we conclude

J2(Pgé)ecoS,y .

Moreover, we get

1i2(Pg O = IPGEI = &l = el = el

where ¢>0is a constant independent of £. Hence if we define a mapping P, on
Z () by

Po:= (Y = (j,oP 0j; W) : F(9) — Z(9),

P, has a norm continuous extension P : A, — A,. Clearly, for y € F (¢) we
have

(P*T*)(l//) = (T*P*)(l//) = P*(!P) = Pi(lﬁ) .

Hence by continuity this relation holds for ¢y e U,. If Y € F(¢p), then
P,y € coS, ¥ and S is mean ergodic by Nagel [11, 1.2]. Therefore, § is weak *
mean ergodic with mean ergodic projection P:= (P ,)*.

4.10. REMARK. In theorem 4.9 we need some norm condition. If instead we
assume that § is an amenable semi-group (see Day [4]) of ¢-bibounded
operators such that § and $* are equicontinuous we can prove once more that
§ is weak* mean ergodic (compare the results in Nagel [11]).

The following result roots in the investigation of mixing properties of
measure preserving transformations and may be viewed as a non-commutative
version of a theorem of Akcoglu-Sucheston (see e.g. Schaefer [17, V.8]). The
proof is based on the analogous theorem for operators on a Hilbert space for
which we refer to Schaefer [17, V.8.5]. Here we consider a ¢-bicontraction
Te £ (A). By 4.9 the semi-group {T", : n € N} is mean ergodic with projection
P,. General ergodic theory gives the explicit expression

l n—1 )
P, =lim- Y T,
n M=o

(see, e.g., Nagel [12]).

4.11. THEOREM. Let U be a W*-algebra with faithful normal state ¢ and let
Te £ (N) be a @-bicontraction. Then the following are equivalent.

L. lim, T, = P, in the weak operator topology on £ (2,).

2. limyN- 1N, Ty=P, in the strong operator topology for each infinite
subsequence (n,);en of N.
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PRrOOF. 1. = 2.: Since T is a ¢-bicontraction we have T, (j(U,))=j(NA,). For
¥ € j(U,) there exists a & €, (A)=# with Yy=j,(¢) and T,()=j,(T,&).
From proposition 2.4 it follows that ((T)"¢),.n converges to Py & =P £ in the
weak topology of #. Since || T, || <1, the Alaoglu-Birkhoff theorem implies
that the semi-geoup ((T;)"),en is mean ergodic in # () with mean ergodic
projection P, Hence by the Hilbert space version of this theorem, for all
infinite sequences (n,);.n of N, the averages

Z (T
converge to P, ¢ in the norm. Since j,(U,) j, is also a homeomorphism
for the norm topology, the averages

_ z T
i=1
converge to Py in £ (A,). An application of (Schaefer [16, I11.4.5]) yields the
assertion.
2. = 1.: The assertion is trivial for the restriction of T, to its fixed space
P (%), and it suffices to consider Y € P, '(0). For all infinite sequences (n,);cn
in N and for all x € & one obtains

x‘l

llm— Z (Tw,xy = 0.
N

Since the sequence ({T"¥,x});.n is bounded, we have lim,{(Ty,x>=0
and therefore lim, T% =P, in the weak operator topology of £ ().
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