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HARDY SPACES, 4., AND SINGULAR INTEGRALS
ON CHORD-ARC DOMAINS

DAVID S. JERISON* and CARLOS E. KENIG*

Introduction.

Let A be an unbounded Jordan curve in the complex plane, and denote by D
the region to one side of A. If A is locally rectifiable, we will denote arc length
on A by 6. An arc along A with endpoints z, and z, will be denoted (z,,z,). A is
said to be a chord-arc curve and D a chord-arc domain if there is a constant C
such that for all points z,, z, of A, o(z,,2,)<C|z, —z,|. The non-tangential
approach region to a boundary point z € A is given by

I(2) =T(z,D) ={zeD: |Z—z £ (1+o)dist(z,A)} .

(The particular value of « > 0 will not be relevant.) The non-tangential maximal
function of a function F on D is

N,(F)(z) = sup{|F(Z)]: 2 €l,(2)}, zeA.
The Hardy spaces for 0<p<oo are
H?(D,do) = {F: F holomorphic in D and N, (F) € L?(A,do)} .

Our first goal is to study HP(D,do) and to deduce estimates for singular
integrals on the curve A. In doing so we extend results of Kenig [12] and
Coifman and Meyer [4] from Lipschitz domains to chord-arc domains. The
underlying philosophy is that chord-arc curves are very similar to Lipschitz
curves. In fact, a chord-arc curve is the bi-Lipschitzian image of a straight line
(see Proposition 1.13). Moreover, the conformal mapping from the half-plane
to a chord-arc domain is essentially as well-behaved as the conformal mapping
to a Lipschitz domain. Our second goal is to show that in some sense the
chord-arc condition is also necessary to the theorems in question. This is
expressed by the close connection between the chord-arc condition and the
condition A defined below.
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in an exchange of visits to Purdue and Minnesota. The authors would like to thank both
universities for their hospitality. The first author was supported by an NSF postdoctoral
fellowship. The second author was supported in part by an NSF grant.
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We have reversed the usual progression by specializing from n dimensions to
two dimensions results of our earlier work [11]. We have done so because a
clearer, more detailed understanding of the two dimensional case can give us
further guidance in R" (se section 5).

For many purposes a weaker condition than chord-arc, namely Ahlfors’
three point condition, suffices. A satisfies the three point condition if there is a
constant C such that for any three points z,,z,,z; on A with z; € (z4,z,),
|zy — 23] £ C|z, — z,|. Ahlfors showed that the three point condition is equivalent
to the existence of a global K-quasiconformal mapping f of the plane with
f(&)=D (X={w:Imw>0}, K is the dilatation constant of f)) For this reason
(and the equivalence of the half plane with the disk) the domain D is called
a K-quasicircle.

Curves satisfying the three point condition need not be rectifiable. The
appropriate measure on A is an unbounded version of harmonic measure
defined as follows. For any Jordan domain D as above there is a conformal
mapping ¢: £ — D such that ¢(oc0)=00. To specify ¢ uniquely, suppose that
& (i) =z, for some particular z, € D. @ extends to a homeomorphism of £ onto
D. In fact, when D is a quasicircle, ® extends to a global quasiconformal
mapping C — C, (see [15, p. 98]). Harmonic measure w on A (at z) s defined
as the measure for which w(®(E))=|E|. (E denotes a Borel subset of R; |E|
denotes Lebesgue measure of E.) The Hardy spaces for quasicircles with
respect to harmonic measure were examined in [11].

The connection between arc length and harmonic measure that makes it
possible to study the Hardy spaces with respect to arc length is known as 4.
We say that ¢ and w are A, -equivalent if for any ¢> 0 there exists 6 >0 such
that for any arc I = A and Borel set Ec I, o(E)/o(I)< 6 implies w(E)/w(l)<e.
Coifman and Fefferman [3] proved that 4 is an equivalence relation and that
it is equivalent to the apparently weaker statement where all ¢>0 is replaced
by a single ¢ < 1. Thus we can refer to a single pair (¢, ) with e<1 and §>0 as
A, constants for the A -equivalence. The crucial theorem is due to Laurentiev

[14]:

THEOREM. If D is a chord-arc domain, then arc-length and harmonic measure
on 0D are A-equivalent. The A, constants depend only on the chord-arc
constant of D.

We will prove this theorem in the next section. Two versions of a converse
are proved in Section 4.

As in [11], it is worthwhile to remember the simple feature shared by the
properties under consideration. The constants associated to Lipschitz domains,
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quasicircles, and the three point, chord-arc, and 4 conditions are all invariant
under the change of scale z — rz.

We would like to thank Professor F.W. Gehring for suggesting the proof of
Proposition 1.1 based on quasiconformal mapping given here.

1. Geometric properties of the conformal mapping ¢.
Our first observation is that ¢ preserves non-tangential approach regions:

ProposITION 1.1. If D is a K-quasicircle, then for any o> 0 there exist ,y>0
depending only on o, K such for any x e R=0Z,
Iy(®(x),D) = &(I,(x,2)) = I',(P(x),D).

This is an easy consequence of the fact that & extends to a global
quasiconformal mapping and

THeoreMm 1.2. (Distortion Theorem [20]). Let f be a K-quasiconformal
mapping of the plane to itself. There is a constant C depending only on K such
that for any z € C, r>0, there exists r' >0 such that

B(f(2),r) = f(B(z,1) = B(f(2),Cr),
where B(z,r)={z": |z—Z/|<r}.
The distortion theorem says that f preserves comparative distance in the
following sense: If z,,z,,z; satisfy |z, —2z,|<|z,—2z4), then |f(z,)—f(zy)l
<C|f(z,)— f(z3)|. The same is true for f~*.

A useful companion to 1.2 is the following estimate: There exists a number
M such that if C< M, and dist (B(z,,s), B(z,,7) < Cs, and s<Cr, then

(1.2) diam {f(B(z;,5)} < MC*diam {f(B(z,,7))} ,

(see [20]). As a consequence of (1.2) and (1.2'), we deduce that there exists a
constant M depending only on K such that

. 1
(1.27) if |z, —z,| = Mlzz_za ’

then
Ifz)—f(2) = %|f(zz)“f(23)| .

By iterating these inequalities we find that there exists a constant M depending
only on K such that
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(13) |zy—z)l S M7¥z3—~z5] implies |f(z))—f(2))l £ C27"f(z0) —f(z3)l -

The same is true for f~'. A corollary of 1.3 is that f and f~! are Holder
continuous. There is >0 depending only on K such that if z € B, where B is
the unit disc, and w e C,

1/ (2) —f W)l

1.4 C™* min (12— wl*, lz—wi'"
(1.4) min (|z —wl%, |z —w|'") diam f(B)

IIA

IIA

C max (|z — wl?, |z — w)/%)

estimates 1.3 and 1.4 will be used frequently. Proposition 1.1 can also be
proved directly using harmonic measure.

ProposiTION 1.5. If D is a K-quasicircle, then the image under @ of a vertical
line {x+iy: y>0} is a chord-arc curve with constant depending only on K.

Proor: First, recall the well-known estimate
(1.6) |@'(z)| dist (z,R) = dist (P(z), 4)

(see [17, page 22]). (Here A= B means C~'4 < B < GA, where C depends only
on K. Elsewhere in the paper, A =B will mean the same thing, but with K
replaced by the constant(s) appropriate to the context.) To prove 1.6, note that
1.3 implies that if r =dist {z, R), then ® maps B(z,1r) into a ball of radius Cr’,
where ' =dist (®(z), A). By Schwarz’ lemma, |®/(z)| < Cr'/r. The same argument
applied to ®~! gives the lower bound.

To prove the proposition, it is enough to consider integrals of the form

y
j | @' (x +it)| dt ,
0

and show that they are comparable to dist (®(x +iy), 4)=r. Since ® extends to
a global quasiconformal mapping, the image under @ of the vertical line
satisfies the three point condition with a constant depending only on the
dilatation constant K. It is then easy to see that for sufficiently large M, if we
choose z, so that z,=®(x+iy,) and dist (z,, 4)=M *r, the {y,} decrease,
Yi/Yx+1SC and for y, 4 StSy,,

dist (P(x+it),4) = M~*r .
It follows from 1.6 that

00

y Vi 00
j @' (x+it)dt = Y J |@'(x+it)ldt < C Y M™% = Cr.
0 Yr+1 k=0

k=0
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Let w, =®(x+in,), w,=P(x+in,). Then, we will denote

Lwy) = &({(x+iy): y = n,}),
and  L(w;,wy) = ®{(x+i)): n, £y £ n,}.

By 1.5, if we use the arc-length parametrization, we see that if z € D, y>0,
(L7 J dist ({, 4) "1 ""do({) = dist (z, 4)77 .
L(2)
If zy e A, z € L(zy) and y<2, then
(1.8) j dist ({, A)! "7do({) = dist (z, 4?77 .
L(zo,2)

We will now prove Laurentiev’s theorem (see Introduction). The core of the
proof is a lemma corresponding to the case where I is replaced by 0B, where B
is the unit disk.

LEMMA 1.9. Let ¥ be a conformal mapping of the unit disk B onto a domain Q
such that Y(0)=0, B=Q and o(0Q)<C. For any ¢>0 there exists >0
depending only on C and ¢ such that if Ec0B, o(¥(E))<d implies |E|<e.

The proof can be found in [14] or [11].

To reduce the full theorem to this lemma, consider the square

Qr={x+iy: xeL0<y<|I|}.

Let x; be the midpoint of I and w;= & (x,+i|I|/2). Let r =dist (w}, A). From 1.2,
B(wy, C™'r)= @(Q;) = B(wy, Cr). By the chord-arc property for A, Propositions
1.5 and 1.6, 6(®(I)) =r and ¢(0®(Qy)) < Cr. By a change of scale in the domain
of @ by a factor |I|~! and in the range of ¢ by a factor r~!, we may as well
assume |I|=1 and r=1. We are now faced with proving a lemma like 1.9 with
the unit disk replaced by the unit square. This change is harmless. Harmonic
measure for the square is well known; and arc length and it are mutually
absolutely continuous.

We have considered “vertical” lines L(z). Let us examine “horizontal” lines
A,={P(x+it) x € R}.

In the proof of Laurentiev’s theorem we showed that, for any t>0, if I is an
interval with |I|~ct, and center x; and we let I'={x+it: x € I}, then |®'(z)|
xr/t for all z € I, where r=dist (®(x; + it), A4). Using this fact, (1.2) and (1.2'), it
is easy to show that if J=[a,b], with (b—a)=ct, then

Math. Scand. 50 — 15
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j &' (x +if)|dx = |@(b+it)—P(a+it) .
J

Also in the proof of Laurentiev’s theorem, we showed that for any x,

[,

X

| (x+it)] = T JXH |®'(s)| ds .

Therefore, if J=[a,b], (b—a)=ct,

b b 1 x+t
'[ | (x +it)| dx =~ f <;j |D'(s)| ds)dx =

b+t b
=f |P'(s)] ds J[W(s)lds,

a a

le

the last equivalence holding because of the 4, property of |¢'(s)|. Moreover, by
(1.3), if ¢ is large enough, (and (b—a)=ct),

|®(b+it)—P(a+it) = L|D(b)—P(a)| .
By the chord arc property of A, it then follows that

b
|B(b+it)— P(a+it) = cj |®' (x +it)) dx .

a

It then follows that A, is a chord-arc curve, with constant comparable to that of
D.

CoroLLARY 1.10. Let D be a chord-arc domain. Denote D,={®(x +iy):y>t}.
o,=arc length on 0D, = A,. w,= harmonic measure for D,. Then ¢, and w, are A
equivalent with constants depending only on the chord-arc constant of D.

The extent to which A, are truly horizontal is measured by the following easy
consequence of 1.3 and 1.4.

ProrosiTION 1.11. Let D be a K-quasicircle. There is ¢>0 and C depending
only on K such that for we A, and { € A,

dist (w.4) _ . (dist « A:))‘

lw—{| lw—{|

Using the chord-arc property for A, we can also estimate integrals along 4,:

(1.12) jA |:’O:-(CC)|“ x> dist (w,4)7**,  if a>1.
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We conclude this section with an alternative description of chord-arc
domains.

PROPOSITION 1.13. A is an unbounded chord-arc curve if and only if it is the
image of R under a global bi Lipschitzian mapping, that is there is a
homeomorphism S:C — C satisfying

SRy =A4 and cqz—w| £ |S(2)—SW)| £ c,lz—w|.

PRrOOF. It is easy to check that if S is bi-Lipschitzian, S(R) has the chord-arc
property. Conversely, suppose that D is a chord-arc domain, 0D=A. Let S:R
— A be the parametrization of A by arc-length in the same order as the
conformal mapping ¢:X — D. Denote

xj = kY, uf = &7 (S(x); zf = uf +i(uf—uj_,).
1<t<2 l l-s 0<s<1
n() = Zt—l 125t=1 Y@= ys+1 —-1=s=50
otherwise ] 0 otherwise

Define S(x +it) for y>0 by

S(x+iy) = ¢<Z n(2”"y)W(2"x~k)Z£>,
Jrk

where the sum is taken over all integers j and k. The sum has at most four
nonzero terms, and S is the composition of @ with a piecewise linear mapping
from X to X that sends the five-sided figure R} with vertices

(P12 X427 X, i, Xh +i2), X +i27)

to the figure V{ with vertices {z{*', z{1}, 2}, 5, z{i+1, 25} (See Fig. 1)

T & —— % Vi

1.3 implies that successive differences Im zi, , , =ub,,, —ub,,, and Im zi, ,,
=u}, ., —ub, have comparable size. Therefore, the shape of Vi is not too far
from the shape of R] (although there may be a very large change of scale). The
change of scale can easily be computed to be approximately 1/|®'(z)| for z € Vi.
This follows because the arc length of A between ®(uf) and P (uf . ,) is 2/, and
therefore,
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iy
j |®'(s)|ds = 27 .
uj
By the chord-arc property of A and (1.6), the integral above is of the order of
(4, —ul). |9'(2)| for any z € Vi. Therefore,
Uy 1 — . 1

Y T el

It is then easy to see that S is bi-Lipschitzian. Finally, define S from X to “D in
a similar way, using the conformal mapping from °Z to °D.

2. HP?, area integrals, and the Smirnov property.

Let D be a chord-arc domain. Another way to state Lavrentiev’s theorem is
that |@'(x)|dx is A, equivalent to dx. This implies that the L?(R,|®’(x)| dx)
norm of N,(F) and N, (F) are comparable-for any pair of positive real numbers
o and B. Proposition 1.1 then implies

ProposITION 2.1. Let F be holomorphic in a chord-arc domain D, then
F € H?(D,do) if and only if

Fo® € H?(Z,|®'(x)|dx) and  |NFlradae) = IN(Fo®) Lo o (x)dx) -

Our first task is to characterize H” in terms of area integrals. We introduce
several:
For z € A, denote

r

g2} = L()lF'(C)IZdist(C,A)dG(C)
gF)EP = L()IF”(C)lzdist (¢, A)*da ()
S.(F)(2)* = IF'(0)*dV(0)

JI,(2)
MO0 - f r [FOF dist €A1V (),

where dV ({) denotes the area element in the {-plane.

THEOREM 2.2. Let D be a chord-arc domain and let F be holomorphic in D.
Theorem following are equivalent, 0 <p < 0,
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(a) N,F e L?(A,do).

(b) For each ze A, imF({) =0 as {— x, {eL(z), and -either
g(F) € L?(A,do) or S,(F) € LP(A,do).

(c) Foreachze A, limF({) = OandlimF'({) = 0as{ — >, € L(z), and
either §(F) € L?(A,do) or §,(F) € L?(A,do).

Moreover, the LP norms in each case are comparable.

PROOF. (Fo®) =(F'o®)®. From 1.6, {=®(x+iy) implies | (x+iy)ly
~dist (, A). Therefore,

1

'[L( ) [F' () dist (£, A) do ({) = J |(F'o®)(x +iy)1*|®' (x +iy)|*y dy

0

- J [(Fo®) (x+iy)*ydy ,

0

the classical Littlewood-Paley g-function of Fo®. Thus g(F) € L?(A,do) if and
only if the classical g-function of Fo¢ belongs to LP(R,|®’(x) dx). Since
|®'(x)|dx is A, equivalent to dx it follows from a theorem of Gundy and
Wheeden [9] that g(F) € L?(A,do) if and only if Fo® € HP(X,|®’'(x)| dx), which
is equivalent to (a) by 2.1. A simpler proof works for S,(F). Thus (a) is
equivalent to (b).

LemMA 2.3. If F({) and F'({) tend to zero as { — o0, { € L(z), then g(F)(z)
< Cg(F)(2).

Proor.
F'(z) = j F'(Q)d = J F"(¢)dist (¢, A)'F dist (¢, 4)~F9d .
L(2) L(z)
Using 1.7,
IF'(z)? < c( J |F" ({)|* dist ({, A)' *7 da (()) dist (z,4)77 .
z)

(z

Hence, using 1.8, for z, € 4,

f |F'(2) dist (z, A) do (2)
L(zo)

<cC j dist (z, 4)* =7 ,[ [F" (0|2 dist (¢, A)' *? do () do (2)
L(zo) L(z)
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cf ]F"(c)lldist(c,A)qu dist(z,A)‘"Vda(z))do(C)
L(zo) L(zo,0)

IIA

Cf [F" QI dist (£, 4)* do (0) -
Lizo)

LEmMMA 2.4. With the hypothesis of 2.2 (c), there exists a such that g(F)
(2) £ CS,(F)(2).

Proor. Let { € L(z). Denote B({)=B((, cdist ({, 4)) for some small ¢>0. By
1.1, for sufficiently small ¢ and large a, B({)<I,(z). |[F”|? is subharmonic, so

1
F'OP £ — F'(w)?dV(w) .
[F"(OI° = BO) L(Ol (W)I*dV (w)

Hence,

g(F)(2)

L( ) [F" () dist (¢, 4)° do (0)

A

C J;( ) dist (, A) JB(O |F" (w)]* dV (w)do ({)

C J |F" (w)]? (J dist (¢, A) do (g)) dv(w) .
I,(2) LN :we B(C)}

The lemma will be complete if we can prove

A

j dist ({, A)do ({) < Cdist (w, A)*.
LN w e B

This follows from three observations. First, by 1.1 the diameter of
L(z)N{¢:w e B({)} is bounded by Cdist (w, 4). Consequently, the chord-arc
property 1.5 implies o(L(z)N {{:w e B({)})< Cdist (w, 4). Finally, by 1.1, if
(e L(z)N{{:w e B()}, then dist (', A)=dist (w, A).

The fact that the LP(A,dos) norms of S, (F) for different values of o are
comparable is left to the reader. This concludes the proof that (c) implies (b).
The converse follows from the well known estimate

C

F' (O dist ({, A)? £ —— F'(w)*dV (w) .
IF” (O dist ({, 4)° = BO) Lm! W)I* dV (w)

The details are left to the reader.

It is easy to deduce from the geometry of chord-arc domains that
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1Sa(F)I122(4,d0) = L |F'(w)|* dist (w, A)dV (w)

1S (F)1E2(4,40) = j [F" (w)|? dist (w, 4)° dV (w) .
D

In light of these equivalences, we obtain a consequence of Theorem 2.2 along
with variants for higher derivatives that are proved in the same way.

CoROLLARY  2.5. Suppose that F is holomorphic in D and
FQ),F (©),...,F™ V() tend to zero as { — oo along “vertical” lines L(z). Then

IFllh2(p,do) = JD [F™ (w)[? dist (w, A)*™ 'V (w) .

THEOREM 2.6. Let D be a chord-arc domain, then there exist constants m, >0
such that

@) &' (2)/(i+z2)" e H'(Z,dx)
(b) &' (z) % (i+2)" € H'(Z,dx) .

PRrROOF. As a consequence of 1.4 and 1.6, there is M such that for any ¢ >0,
C+z)™ < |19'(2) £ C;(l+|zl)M for Imx>t.

It follows from the maximum principle that for m>M, @' (z)/(i+z)" is
represented by its Poisson integral on the domains Imz>t¢, and similarly for
@'(z)”9/(i+z)™. Therefore, in order to prove (a) or (b) we need only evaluate
the L! norm of the respective functions on level sets Imz=t for 0<t<3. To
prove this, we will apply some real variable lemmas concerning weights w(x)
=|@'(x+it)|. First, if w(x)dx is A, equivalent to dx, then there is r>1
depending only on the 4 . constants of equivalence such that w(x) belongs to
Muckenhoupt’s class 4, (dx) defined by

1 1 r—1
sup { — w(x)dx)(—f w(x)"/"ldx> < 0.
I (|I! L 1 )i
(I denotes any finite interval of R.)

LEmMA 2.7. If we A,(dx) and C™'< [fw(x)dx<C, then there exists C’
depending only on the constants involved such that

w(x) - w(x) 1 ,
Jy g e s Jy s e

with g=(r—1)"1. (See [10]).
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Using Corollary 1.10, we see that all that it remains to prove is the estimate
Cl<[iwx)dx<C for w(x)=|®'(x+it), 0<t<%. In fact, the chord-arc
property for level sets A,, 1.3 and 1.6 simply that

1

J"l w(x)dx = a(D{x+it: 0 < x < 1}) = dist (@(i), 4) .

0

As a consequence of Theorem 2.6, we obtain a version for unbounded
domains of a theorem of Laurentiev [14].

COROLLARY 2.8. Let D be a chord-arc domain, then log|®'(z)| is represented
by its Poisson integral

1 y
/ 3 ’ .
log|® (X-+IY)| = —J‘ [ log |®'(t)| dt

In fact, log|®’(x +iy)] € BMO (dx) uniformly as y—0. (See [10]).

REMARKS (2.9). A domain with the property that log|®’(z)| is represented by
its Poisson integral is called a Smirnov domain. These are usually studied in the
context of bounded domains. The conformal mapping @ is then the mapping
from the disk to the domain. Let D be a bounded Jordan domain with
rectifiable boundary. Denote by E?(D) the class of holomorphic functions F in
D such that there exists a sequence of Jordan curves C, that eventually
surround every compact subset of D for which

sup _[c [F(0)Pdo({) < o0 . .

D is a Smirnov domain if and only if the space of polynomials in z is dense in
E?(D) in L?(6D) norm. See [7].

(2.10). A bounded domain made up of a finite union of arcs of Smirnov
domains in a Smirnov domain. ([19]).

One can regard the function @'(z) as an analytic extension of the measure
|®'(x)| dx. In general, for a measure v that is A -equivalent to dx, Kenig [12]
has constructed an analytic function G(z) such that |G(x)|dx=dv (x). G(2) is
used to study the theory of H? with measures on 0D other than arc length. We
would like to correct an error in the definition of the class AE(v) of functions
G(2) extending v given in [12] (Definition 2.10). In addition to the properties
stated there, the definition should include a Smirnov type condition: log |G (z)|
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is represented by the Poisson integral of its boundary values. This is necessary
to avoid pathologies such as those described in Section 4 (see [8]).

THEOREM 2.11. Let D be a chord-arc domain. Then F € H?(D, do) if and only
either

(@) (Fo®)(9)'? € HP(Z,dx), or
(b) SUPJ [F()IPda({) < o0
t 4,
and the corresponding norms are equivalent (0 <p < 00).

Proor. The equivalence of (a) and (b) is just the classical theorem that
H?(Z,dx) (as defined with the non-tangential maximal function) equals the
space of holomorphic functions f on X such that sup, _[le(x+iy)|" dx < 0.

Suppose that F € H?(D,do). Consider an increasing sequence of real
numbers {x,}3~ _ .. Denote

I, = {®(x+it): x, < X < Xgpq) -

We can choose x, and « so that

Xk

o(l) = dist (I, 4) = J @ () dx

X
and I, = I',(®(x)) for all x, x, S x<x,,,. Therefore,

00

) L |F (O)I” da ()

k= -

Il

j |F (O da(0)
Al

<c Y j N (Fo® ()9 (x)] dx
k=—oc X

< C|N(Fo®)|frw 10 (x)dx)

< ClIFlkrp,as) by 2.1.

Hence (b) is proved.

Conversely, we want to show that (a) implies Fo® € H?(Z,|®'(x)| dx). This
is [12, 2.17]. The proof will be repeated for completeness. Because
(Fo®)(®')''? € H?(Z,dx), Fo® has non-tangential limit Fo®(x) and
[RIFo®(x)|P|®’ (x)| dx < 00. Choose r so that |@'(x)| € A,(dx). (See Lemma 2.7).
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Case 1. p21+q~'=r.

By [10], Fo®(x) € L?(|9'(x)|dx) and p=r implies that the Poisson integral
of Fod,

1
R(x+lt) = '7; J\‘(';l;—z:t—zFO(p (u)du

is absolutely convergent. Also, it is well known that N, (R)(x)< CM (Fo®)(x),
where M denotes the Hardy Littlewood maximal function. Since p=r,
Muckenhoupt’s theorem [16] implies that N (R) € LP(R,|®'(x)|(dx). Thus
R € H?(Z,|®'(x)| dx) and it suffices to prove that R=Fo@.

Note that p=1+4¢~! implies p'/p<gq, where 1/p+1/p’=1. Let s be defined
by sp’=m, where m is defined in Theorem 2.6.

Then for any £¢>0,

J‘ |Fo®(x +it)|
——————dx
R lite(x+it)f

A

1/p
( j |Fo®(x +it)|P|®’ (x +it)| dx)
R

, dx
4 Nt 2 1/p’
(L |9 (x +it)| p{i+6(x+it)l“">

A

C..
Thus, Fo®(z)/(i+¢ez)* € H'(Z,dx). Consequently,

Fod(x +iy) 1J y  Fod(u)

(i+e(x+iy)y Tz R (x—u)?+y? (i+eu) e

Let ¢ tend to zero to obtain Fo® =R by dominated convergence.

CASE 2. p<r.

The usual factorization of H?(Z,dx) says that Fo®(z) (®'(2))'?=b(2)g(2),
where |b(z)| S 1, g(2) %0 for z € £ and g € H?(Z,dx). Let h(z)=g(z)(®'(2))~ ">
h(z) is never zero, so we can consider h(z)! for any integer n. Choose n
sufficiently large that np>r. Then

h(z)!"(&' (2))1" € H™(Z,dx) .

Applying Case 1 with np playing the role of p in Case 1, we obtain
h(z)'" € H"(Z,|® (x)|dx). Thus h(z) € H?(Z,|®'(x)|dx), and since |Fod|<|h],
Fod € H?(Z,|®'(x)| dx).

Our final characterization of H? is in terms of level sets for the function
measuring distance to A. Denote
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Y, = {S(x+it): xeR},

where § is the bi-Lipschitzian mapping constructed in Proposition 1.13.

THEOREM 2.12. Let D be a chord-arc domain. F € H?(D, do) if and only if

Supj [F(OPda ({) < o0
t>0 Y,
and the corresponding norms are equivalent.

Proor. The proof that F € H?(D, do) implies the integrals on level sets Y, are
bounded is similar to the proof of 2.11 (b) and will be omitted. Conversely,
suppose that the supremum above is finite. Denote

Gs; = {S(x+iy): y>d}.

We show first that F(z) is bounded in G;. Indeed, since |F(z)|? is subharmonic,

1
F@QP £ ——— F@Q©rdv
IF2)IP = B0/ L(z,a/z)l OFdVQ)

1 c,0 »
= Bz L,ﬁ jx [FOIPda()dt = CsF -

Next, note that G; is a chord-arc domain with constants independent of d.
Let &,: £ — G,;, denote a conformal mapping with @, (oc)=o00, ®,(i)=w,
for some fixed w, € G,. @, — & uniformly on compact subsets of D and
@, (2)/(i+e2)™ € H'(Z,dx). Let

Ju(2) = (Fo®,)(&,/(i+e2)™)"" .
Since F is bounded on G, ,, J, € H?(Z, dx). By the usual H” theory, its H” norm

is given by its L? norm on R

I all ez, ax) = JR |Fo®,(x)/"|®P, (x)|dx = L IFQIPdo(() = C.

The convergence as n — 0o and ¢ — 0 is uniform on compact subsets, so that
(Fo®) ()P € HP(Z,dx). Hence, by 2.11, F € H?(D, do).

3. Singular integrals on curves.

We will study Calderén-Zygmund type kernels on chord-arc curves. But first
we must construct non-trivial examples of such kernels other than the Cauchy
kernel K(w,{)=(z—{)" 1.
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To define a branch of log (w—{) in D, choose {, € D= A, wy € D and let a,
be defined by 0< Im a, <2, exp a,=wy—{,. Let f(w,, w) be a path in D from
w, to w and for { € C\ L(w), let B({,,{) be a path in C\ L(w) from {, to {.
For w € D and { € C\ L(w), denote

(3.1) k(w. D) J dz_ | J dz_ |
. w, () = a, .
povw C—=C0)  Jpcapz—w

k(w, () is well-defined and it is easy to see that exp k(w,{)=(w—{).
Hence, Re k(w,{)=1log|w—{|. Denote

K.w,{) = exp[(—1+is)k(w,{)]; seR.

Since (0/0w)k = — (0/d()k, we have

0 0
(3'2) a_‘;Ks(W’ g) = _a_ng(W’ C) .

Unfortunately, the estimate |K (w,{)]SCJw—{|"! can fail in a chord-arc
domain. The problem is that a chord-arc can have an infinite spiral, so that
Imk (w,{) is unbounded.

DeriNiTiON. The curve A has finite rotation if

o).,
sup < |{Im :
(21,22)2‘20

REMARK. A curve has finite rotation if it does not spiral unboundedly often
around any of its points. For instance, this is true if A is given as a graph. In
particular, if p=R — R and ¢’ € BMO, then A={x+i¢(x): x € R} is a chord-
arc curve with finite rotation. The asymmetry of the definition is not essential.
As Lemma 3.5 shows, finite rotation with one linear ordering of A implies finite
rotation with the reverse ordering.

24, 2,2, are consecutive points of A} < 00.

ProposITION 3.3. If A is a chord-arc curve with finite rotation, then |Im k(w, ()|
defined in 3.1 is bounded for w € D, { € C\ L(w).

COROLLARY 3.4. If A is as in 3.3, then |K (w,)|SCJw—{|"! and

Py o
WKs(W,C) S C w={m i

The main step in the proof of 3.3 is
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LEMMA 3.5. Let y:R — C be an unbounded locally rectifiable Jordan curve.
and suppose that

By (6)dt
S“p{‘lm f . 70—7(0)

Denote Ly={y(t):0=t<00}. Then for any finite path L < C\ L,,

.Imj dz
L z2—y(0)

Proor: We will connect the endpoints of L by a path homotopic to L in
C\ {y(0)} made up of at most five parts. Three will be arcs of circles with
center y(0), which contribute at most 2n each to the integral. The other two
parts will be arcs of Lo\ {y(0)}, which each contribute at most C by
hypothesis.

Let 4: [a,b] — C be a curve such that A(t) ¢ L, for a<t<b, A(a) and A(b)
belong to Ly \ {y(0)}. Let D denote the Jordan domain to the left of y. We will
say that 4 has type (+, +) if there is ¢ >0 such that A(t) € Dfora<t<a+¢and
b—e<t<b. A has type (+, —) if there is £>0 such that i(¢t) e D, a<t<a+e
and A(t) € °D for b—e<t<b. We define types (—, +) and (—, —) similarly.
The endpoints i(a), A(b) will also be referred to by their signs + or —.

Choose w; and w, in C\ L,. The intersection of the circle {y(0)+ re’®:0 € R}
with C\ L, is a union of subarcs of types (+, +), (+, —) etc. Denote by 4; the
subarc of {7(0)+r;e”: 0 € R) to which w; belongs (r;=|w;—7(0)|). Suppose that
both A, and 4, have a + endpoint. We can join w, to w, as follows. Join w, to
a + endpoint of 4, by following 4,. Then join the endpoint of 4, to a +
endpoint of 4, by following L. Finally, join the endpoint to w, by following 4,.
The integral |Im [dz/z—y(0)| along the path just described is at most C+4n
because the two circular arcs contribute at most 2z. The path is homotopic to
L in C\ {y(0)} because it never crosses L, from D into ‘D or from ‘D into D.

The only remaining case not taken care of by symmetry is the one where 4,
has type (+, +) and A, has type (—, —). Since we showed above how to
connect either of these two arcs to an arc of type (+, —), it suffices to show
that an arc of type (+, —) exists. Indeed, let ¥:C — C be a homeomorphism
such that ¥(2)=D, Y({t:t=0})=y({t:t=20}, P(0)=y(0). (This is possible
because D is to the left of ¥.) Denote A(6)=¥ ~!(y(0)+ €. Choose 6, such that
A(0,) is real and positive. We can specify a branch of argi(f) by putting
arg A(0,) =0. Since the circle y(0) + €%, , <0 < 0, + 2 has winding number +1,
arg A(0, + 2n) =2x. Define

0, =sup{:0 < 6,+2n and argi(f) = 0}

6, =inf {6:0, <6 and argi(6) = 2n}.

:0<t1<t7_}§c.

£ 2C+6m.
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The arc ¥ (4(0)) 6, <0<6, has type (+, —). This concludes the proof of 3.5.
Lemma 3.5 shows that the first term in formula 3.1 for Imk (w, (), namely

Im J‘ dz
Blwo, w) (Z - CO)

is bounded. To prove that

J‘ dz
Im
BEod) (2= W)

is bounded, we would like to show that the hypothesis of Lemma 3.5 is satisfied
on a “vertical” line L(w). Let w=®(x+ito); w, =D (x+it,); w,=P(x+it,);
to <t; <t,. We must show that
d
[,
L(wy,w,) z—w

t @' (x+it)idt
3.6 Im
(3.6) l J,l D (x+it)— D(x +ity)

When t,=0, (w € A4), 3.6 follows from Lemma 3.5 applied to the curve A with
y(0)=w. When t,>0, it suffices to check two cases.

A

C.

(@)  to<ti S, =(1+9)t,
(i) (L+en,=t,st,.

The general case is a sum of an integral ‘of type (i) and one of type (ii). Let
r=dist (w, A). From 1.3 and 1.6 we deduce that for |z— (x +it,)| <3t, |’ (2)| =
r/t, and |@”(z)| < Cr/t}. Therefore,

D(x+it)—D(x+ito) = (it—ito) P (x +ito) +O(t—to)r/th .
& (x+it) = & (x+ite)+0(t—to)r/ts .
For ¢ sufficiently small, t, <t < (1 +¢)t, implies that
i (x+it) - Im i (x+itg)
D(x+it)— D(x+ity) i(t—t)d'(x+ity)
=0+0(t5!) = O(t5Y) .

+0(t5 )

Hence part (i) is dominated by

(1+e),
J Im
fo

For part (ii), notice that when t; = (1 + &)t,, 1.3 implies that for z € L(w,, w,),
|z—w|=]|z—®(x)| = dist (z, 4) and |w— P (x)| =r=dist (w, A).

i’ (x +it)
D(x+it)— D(x+ity)

(1+8)to
dt £ Cj tb!'scC.

to

Therefore
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dz dz
Im —Im
Liw,wy) Z—W Liwy,w,) 2= P(x)

\Im J' (w—&(x))dz < j |lw—®(x)|do (2)
Liwg,wy) (2—W)(z—P(x)) Liwy,wy) 12— Wl |z — @ (x)]|

]

IIA

CJ rdist (z,A)"%?do (z) £ C' by 1.7
Lwy, wy)

We have already shown that

Im J dz
L(wy,wy) 27— P(x)

is bounded - that was the case t,=0. Thus

j dz
Im

Liw,wy) 27 W
is bounded and 3.6 holds.

For f e L%(A,do) and w € D, denote Tsf(w)=jA K, (w,0)f({)d¢. The integral
converges by Schwarz' inequality, provided A is a chord-arc curve. Coifman
and Meyer [5] have proved that if A is a chord-arc domain with sufficiently
small chord-arc constant and f e L2(A, do), then there exist f, € H?>(D,do) and
f- € H*(°D,do) such that f =f.]|,— f_|4. (Here and in what follows F|, refers
to the non-tangential limit on A of a holomorphic function in D or °D.) In fact,
f+ and f_ are given by

_ 1 _ 1 A}
few) = ‘Z'ETof(W) 27tlj C dc; weD

1 f©) c
f—(W)-z—m.jAw {dC weD—

The theorem of Coifman and Meyer is equivalent to the following L? estimate
on the Cauchy integral T,:

(3.7 I Tof1allL2ade) = 1S+ lm20,d0) S ClfNL2(4,40)

THEOREM 3.8. Let A be a chord-arc curve with finite rotation and suppose that
3.7 holds. Then for

fe L*(A,ds), T,fe H*(D,do) and

T flal 2 adey S Clf N L24,do) -
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Proor. We will prove the estimate on T,f for continuous functions f on A
with compact support,-with a constant C depending only on the finite rotation
and chord-arc constants of A, and the constant in 3.7. The passage to general f
in L?(A,do) is then easy.

Lemma 3.9, If G € H?(D,do), then for w e D,

lim j K,w,0G()d{ = J K w,0G()dL .
50" J 4, A

Proor. The lemma can be rephrased as

Jim J K, (W, ®(x +i0)G (P (x +i6) P (x +i0) dx
hnd R

= j K (w, 2(x))G (P (x))®' (x) dx ,
R

where the second integrand is the non-tangential limit of the first. Bacause the
integrand is holomorphic it is enough to prove that the L!(dx) norm is
bounded uniformly as 6§ — 0%, Indeed,

f |K,(w, @(x+i6))G (P (x +i8))®' (x +id)| dx = f 1K, (w, )G ()| do ()
R Ay

1/2 1/2
= (L IK,(w,C)IZdG(C)> (L IG(C)lsz(C)) = CulGlup,do) »

by Theorem 2.11, the chord-arc property for A, and 3.4.
Next, we prove
(3.10) T.f.(w) =T, f(w) for weD.
To verify 3.10 we must show that T,f_ (w)=0 for we D. Let A_;=

{P(x—id): x € R}, where ¥ is a conformal mapping from the lower half
space {x+iy: y<O0} to °D. By a slight variant of Lemma 3.9,

Tf-(w) = lim L K,w,Qf- () dl.

The integrand is holomorphic in all of °D. Thus a contour integration and the
following simple estimates at infinity yield T,f_ (w)=0 for w € D:

IK,w, 0l £ C 17" and  |f_() £ C,,l¢l7"
for { such that |{|>C, and such that { is “below” A_,.
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Denote F(w)=(T,f,)(w), w € D. To prove the theorem it suffices to show
that

IFllg2p,de) £ CIf+ 1l 52D, doy -

It is easy to check (since f'is continuous with compact support) that F({), F'({),
F"({), etc. tend to zero as { tends to-infinity along curves L(w). Thus, by
Corollary 2.5 the desired estimate can be written.

(3.11) J [F™ (w)? dist (w, A"~ 1dV(w) < C f Lf', ()2 dist (w, A)dV(w) .
D D

Let w=®(u+2it). A contour integration shows that jA K.w,f.(0d¢ is
constant for 2t>4J>0. Hence, by Lemma 3.9,

»

F(w) = ) Kw,0)f+(QdC .

r

Fom(w) = %Ks(w,om;)dc
w

[ ot oo
= |, “ g g Km0f 0
r m—1

0
= |, awmt Km0 e

LY

by 3.2 and an integration by parts. Recall from 3.4 that

am 1
T =1 Kw, )| £ Clw={|™™.
Therefore,
m da ({) *(j If»r(C)l2 )
Ftm £C
) = (L lw—CI"‘> e

I\

q +
C dist (w,A)%—%(j Lf-*—@Edc(o) .

4, lw=¢"

(See 1.12). Next,

‘[ |[F™ (w)|2 dist (w, A)*™~1dV (w)
D

<C j J /' OF do () dist (w, A" dV(w) .
pJa Iw={"

Math, Scand. 50 — 16
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Since dV (w)=3%|®' (u+2it)?> dudt, the second integral can be written as a
constant times

(P (x+in)?
|<D(u + th) D(x +it)|"

|’ (x +ir)| dx dist (P (u + 2it), A)" |@' (u+ 2it)| dudt

= J J |f' (@ + i) R (x +it) | @' (x +it)| dx dt

where

dist (& (u+ 2it), A)"

@ 2it)% du .
Bt 2i)—dGtigr ¢ 20" du

R(x+it) =

If we can show that R(x +if) < C dist (@ (x + it), 4)|®’ (x + it)|, then 3.11 follows.
To do so, use 1.6 to rewrite the estimate on R(x+it) as

J' disy (®(u+ 2it), A)"*1

@ (u+2it) du < dist (B(x +it), 4)* .
R|d>(u+2it)—<p(x+it)|m‘ (u+2it) du < dist (P(x +ir), A)

This is the same as

J' dist (w, A)"*1
Ay

——do (w) < Cdist({,4)* for{e4,.
lw—{|

Notice that dist ({, A) > dist ({, 4,,). Using variants of 1.11 and 1.12,

dist (w, A)"*! (dist (C,Az,)>""“" i
Lz, P d"(w)écLz, w-g ) MWTHe

. m+ 1)e do(w)
= dist (£, A"+ L [w g et

> dist (¢, A)™* Ve dist (¢, A) "+ De+2
~ dist ({, 4)* provided (m+1)e>2.

This concludes the proof.

4. Characterization of chord-arc domains in terms of harmonic measure.

THEOREM 4.1. Suppose that D is a quasicircle and that (in the notation of 1.10)
g, and w, are A -equivalent with constants independent of t ast — 0. Then D is
a chord-arc domain.
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THEOREM 4.2. Suppose that D is a quasicircle satisfying the Smirnov property
29 and o is A equivalent to w. Then D is a chord-arc domain.

Recall that we have already proved the converse of these theorems (see 1.10
and 2.8). Theorem 4.2 is sharp in the sense that no single hypothesis can be
omitted without making the theorem false. For example, the Smirnov property
cannot be omitted because there exist non-Smirnov domains that are
rectifiable, quasicircles such that |@'(x)|=1 a.e. (see [8]). Thus the domain
cannot satisfy the chord-arc property because all chord-arc domains have the
Smirnov property. The quasicircle condition cannot be omitted either, as is
easily seen by looking at a domain exterior to a spike. Finally, the A4
condition is necessary as can be seen by construction of a function ¢ such
that ¢’ € L'(dx), |o(x+ 1)+ @ (x—t)—2¢p(x)| <|t|, but ¢’ ¢ BMO. The domain
D={x+iy: y>¢(x)} is a rectifiable quasicircle. It is a Smirnov domain because
it is given by a graph. However, one can check that it does not satisfy the
chord-arc property.

To prove 4.2, consider an interval I =R and restrict @ to the square Q with
base I and side length |I|. Since D is a quasicircle, we know that if r =diam &(Q)
and z = center of Q, then there exists ¢, such that B(®(z),c-r) = ®(Q). It suffices
to show that [;|@'(x)|dx < Cr. Multiplying @ by r~! we may as well assume r
=1. We can also change variables by the factor |I| ™! and assume that [I|=1. ¢
maps a square of size 1 to a region of diameter 1 such that B(®(z),¢,) = @(Q).
By Schwarz’ lemma, applied to @ and &1, |log| @' (x)|| < C. By the quasicircle
property, ®(0Q +1) is a chord-arc curve. Hence, by 2.10, ¢#(Q) satisfies the
Smirnov property. Since the unit square has the Smirnov property, log|®’(z)| is
represented by its Poisson integral:

LQ P.()log|?'()lda(()| = |log|P'(2)l| = C,

where P,({) is the Poisson integral for the square. By Holder continuity 1.4 and
1.6, we see that

c,(Imz)t*~1 < 1@'(2)) £ ¢, (Imz*~! for some a<1,z€ Q.

(The normalizations diam @(Q)=1 and |I|=1 imply that the constants ¢, and
¢, depend only on the dilatation constant K). Therefore,

=C,

f P,({)log|® (0l da(0)
EIN

and we conclude that

<cC.

Ul P.(D)log |’ ()l da ()
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Finally, we have reduced matters to a real variable lemma.

LEMMA 4.3. Let h(x)=(1—x)"?x'2, 0<x< 1. If w(x)dx is A, -equivalent to
dx on the unit interval and

1
j logw(x)h(x)dx| < C,
0

then

1
J w(x)dx < C',
0

where C' depends only on the A, constants and C.

This lemma is exactly what we need to apply to w(x)=|®’(x)| because P,(()
restricted to I is comparable to the weight h(x).

Proor: Since w(x)dx and h(x)dx are A -equivalent to dx, they are A4 -
equivalent to each other. Thus,

log—(——) € BMO (h(x)dx) (see [10]) .

h(x)
! w(x)
jo(lo hix )>h(x)dx

.[1 (log w(x))h(x) dx| + f (logh( )>h(x)dx

0
Hence, by the John-Nirenberg inequality for weighted BMO, there exists p>0

such that
1 (w(x)
L <h(x)> h(x)dx < C, .

Recall that for some r<oo, (w(x)/h(x)) € A,(h(x)dx). It follows that for all ¢

sl
w(x)\?
(—h'(—x‘)‘> € Ar(h(X)dX)

with the same constants. Thus [3], for all ¢<1,

1 W(X) q(1 +9) 1 W(X) q 1+6
'[0 <m> h(x)dx £ C (L (h—(x_)> h(x) dx) .

Also,

s

< const.
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Now if we apply this estimate many times there exist M depending only on &
and p such that

! w(x) Y w(x)\? M
L Wh(x)dx < CZ(L (W) h(x)dx) < c,cM.

Last of all, to prove 4.1, apply the same reasoning to each D;. A, is smooth,
so the image of a square under the conformal mapping to D, will satisfy the
Smirnov property. The result is an estimate on the chord-arc constant of A,
independent of ¢. Taking the limit & — 0 we see that A is a chord-arc curve.

L

5. Further remarks and open questions.

1. All of the theorems above have analogues in bounded domains. The
proofs are the same or simpler.

2. Theorem 4.2 and Proposition 1.13 combine to say that a quasicircle
satisfying the Smirnov property is the biLipschitzian image of X (or the disk in
the bounded case) if and only if harmonic measure is 4 -equivalent to arc
length.

3. The quasicircle condition can be characterized completely in terms of
harmonic measure. D is a quasicircle if and only if harmonic measure for D and
D satisfy a doubling condition (see Jerison and Kenig [11]).

4. Theorem 2.11 can be used to obtain a solution and estimates in the
Neumann problem in bounded chord-arc domains. This was carried out in
Lipschitz domains by Kenig [13]. The same proof yields.

THEOREM. Let D be a bounded chord-arc domain. If p>1 is sufficiently small
that arc length on 0D belongs to the weight class A, with respect to harmonic
measure (1/p+1/p'=1), then for any fe LP(do) with [,pg({)da ({)=0, there
exists a harmonic function u in D such that N, (Vu) € L?(do) and n,-Vu(z) tends
to g({) as z — { non-tangentially (a.e. {do; n, denotes the normal 0D).

There is a similar theorem for the Dirichlet problem with boundary data in
L% (do).

5. A different proof of Theorem 3.8 can be given based on the level sets Y,. It
is exactly analogous to the one given by Coifman and Meyer [4] in Lipschitz
domains and only requires the first and second area integrals.

6. It is worthwhile to compare our converse to Laurentiev’s theorem (Section
4) to a theorem of Pommerenke. Pommerenke [18] proved that a
holomorphic function f'in the disk has boundary values in BMO if and only if
there exists b € C, f(z)=blog @'(z) for some conformal mapping @ from the
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disk to a (bounded) chord-arc domain. Recall that if w(6)d6 and df are A4 -
equivalent, then log w(f) e BMO (df), but the converse is not quite true. If
logw € BMO, then the best we can say is that there exists ¢>0 such that
w(6)*d0 is A -equivalent to df. Thus one direction of Pommerenke’s theorem
followssfrom Laurentiev’s theorem. The gap in the relation between A, and
BMO accounts for the constant b in Pommerenke’s converse.

7. Proposition 1.1 shows that the space HP(D,dw) is invariant under
conformal mapping if D is a quasicircle.

8. Using results on H?(Z,w(x)dx), one can deduce from the theorems above
about HP(D,ds), atomic decompositions, duality results, and theorems on
interpolation of analytic families of operators as in Kenig [13].

OPEN QUESTIONS. 1. Does the chord-arc condition imply that |@’(x)| belongs
not only to A,(dx) for some r <o, but to 4,(dx)? This is true for a logarithmic
spiral and for Lipschitz domains.

2. Let D be a Jordan domain and define as usual @: ¥ — D, ¥: X — “D,
conformal mappings (®(00)=o00, ¥(o0)=00). Consider f: R — R defined by
f=® 'oW. It is well known (see [15]) that D is a quasicircle if and only if f
satisfies a kind of doubling condition. (This is related to 3 above.) Does the
stronger condition f"(x)dx is A,-equivalent to dx imply that D is a chord-arc
domain? This assumption is equivalent to the statement that harmonic
measure for D and ‘D are A -equivalent.

3. Let us proceed to higher dimensions. Let D = R", n>2, be a bounded
domain. Let ¢ denote surface measure on ¢D and w denote harmonic measure.
In light of Proposition 1.13 we can ask if o and w are 4 -equivalent in the case
where D is the biLipschitzian image of a ball. This was proved by Dahlberg [6]
for Lipschitz domains and by Jerison and Kenig [11] for domains given locally
by graphs of functions whose gradient is in BMO.

4. There remains the problem of identifying biLipschitzian images of the ball.
Suppose that D = R", n>2, and that D is the image of a ball under
quasiconformal mapping. Suppose also that a(B,1dD)< Cr"~!, where B, is
any ball in R" of radius r. (This is an analogue in R" of the chord-arc property.)
Is it true that D is the image of a ball under bi-Lipschitzian mapping? One
might also wish to replace the “quasi-sphere” hypothesis with a more
geometric one (see [11]).

5. Caffarelli et al [1] have proved that there are uniformly elliptic divergence
class operators X0,a;;0; with bounded, measurable coefficients a;; such that the
associated “harmonic” measure for the ball is singular with respect to surface
measure. These operators are constructed by transforming the ordinary
Laplacian by a quasiconformal change of variable. Despite this, especially if 3.
is true, thre is a large collection of divergence operators for which “harmonic”
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measure on the ball is 4 -equivalent to surface measure. The final problem we
would like to pose is to characterize that class.
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