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VOLTERRA INTEGRAL OPERATORS AND
LOGARITHMIC CONVEXITY

GUSTAF GRIPENBERG

1. Introduction and statement of results.

The purpose of this paper is to find out under what assumptions on Volterra
integral operators of the form u — [§ a(t —s)u(s) ds it follows that the function
t — log (a(t)) is convex. The related integral operators u — j{,a(t——s)h(s)u(s)
and u — [Ha(t—s)g(u(s))ds are also studied and certain properties of these
operators are explored. The assumption that log (a()) is convex has several
very desirable consequences from the point of view of Volterra integral
equations, see e.g. [2], [3] and [5] and the references mentioned there. Hence it
is reasonable to ask what relationships there are between the logarithmic
convexity of the kernel and other properties of the integral operators under
consideration.

The crucial assumption concerning these integral operators is that their
inverses should be accretive in L*(R*;R) or L*(R*;R). Let X be a Banach
space with norm | - || and let 4 = X x X be a relation on X, (for example a
function X o D(A) — X). Then A is said to be accretive if [x; )] € 4, (i.e.
y; € A(xy), i=1,2, implies that

Ixi =X, £ Xy =%, +40y—yy)|  forall 2>0.

One says that A is m-accretive if for every >0 and every v € X, there exists
[x,y] € A such that x+ Ay=v. Note that A —wl is m-accretive if and only if
(wA+1)(I+4i4)"!, i>0, is a nonexpansive function: X — X. For further
results on accretivity, see e.g. [1].

The following definitions will be needed. If a € C(R*; R*), (R* =[0,00)),
u>0, he C(R*; R) and g € C(R; R), then the integral operators K,, L,, and
M, are defined as follows:

1.1 (Ku)(0) = jr a(t—s)*u(s)ds, ue LL.(R*;R),teR™,

0

Received January 26, 1981; in revised form July 1, 1981.

Math. Scand. 50 — 14



210 GUSTAF GRIPENBERG

t

(1.2) (L)1) = j a(t—s)h(syu(s)ds, wuelL'|,c(R*;R), teR"
0

t

(1.3) (Mu)(t) = f a(t—s)g(u(s))ds, ue CR*;R),teR*.
(4]
The main result of this paper is the following:

THEOREM 1. Assume that

(1.4) ae C(R*;R), a is nonnegative and a + 0.
Then
(1.5) a is positive, nonincreasing and log (a) is convex

if and only if

(1.6) K, '—la*|[r+yI is m-accretive in L'(R*;R)

or L®(R*; Ry forevery pe(0,1].

Here “I” denotes the identity operator, K, ' is the inverse of K, and oo ™!

=0. It is easily seen from the proof that if (1.5) holds, then K ' — [|a*| [i{r+] is
m-accretive in LP(R*;R) for all p, 1<p< oo, and all u € (0,17. It will also be
seen that for the operators considered in Theorem 1, m-accretivity in one of the
spaces L!(R*;R) or L*(R™*;R) implies m-accretivity in the other one.

The main emphasis in Theorem 1 is on the fact that (1.6) implies (1.5)
since the opposite implication follows almost directly from [5, Theorem 2,
Corollary 1].

It is reasonable to ask whether (1.6) could be replaced by another, (perhaps
simpler), condition involving for example the operators L, or M,. The next
theorem shows that at least certain assumptions involving these operators are
not sufficient to imply (1.5). Furthermore, we need some of the results below in
the proof of Theorem 1.

THEOREM 2. Assume that (1.4) holds. Then the following statements are
equivalent:

(L.7)  Ki'—|lalpir+ is m-accretive in L*(R*; R) or L*(R*; R),

(1.8)  Ly'— |kl gllallir+d is m-accretive in L*(R*;R) for every
nonnegative function h e C(R*; R), h#+0 and in L*(R*; R) for every
nonnegative and nonincreasing function h € C(R*; R), h#0,
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(1.9) M7 =y Yallpir+ is m-accretive in C(R*; R) (with L*-norm) for
every nondecreasing and nonconstant function g € C(R;R) such that
g(xo)=0 for some x, € R if

y = sup {lg(x)—gO)l/Ix—yl | x,yeR, x#y},

(1.10) a(0)>0 and there exists a nonnegative and nonincreasing function b on
(0, 00) such that b e LL.(R"; R) and

t

a(t)/a(0)+J b(t—s)a(s)ds = 1, t=0.
0

It follows from results in e.g. [4, Lemma 13] that if be LL.(R") is
nonnegative and nonincreasing and a(0)> 0, then the equation in (1.10) has a
unique solution that satisfies (1.4). Thus if one takes for example b(t)=1,
t € [0,1], b(t)=0, t>1, a(0)=1, then one sees that a is not even nonincreasing,
so that (1.5) cannot be satisfied although (1.7)— (1.10) hold, in other words,
(1.7) does not imply (1.6).

Unfortunately the condition (1.10) is not very informative, that is, in general
it is not too hard to check if (1.5) is satisfied but given a function g, it can be
very difficult to see if (1.10) holds.

Several of the assumptions above can be formulated in terms of resolvents of
Volterra equations. Thus we will for example see that (1.7)—(1.10) are
equivalent to the statement that if r,, >0, is the solution of the equation

(1.11) Ar,(t) + Jﬁ a(t—s)r,(s)ds = a(t), =20,
0

then

Irllwe S (Alalliry+ D71

This fact implies in turn that r,(t)=0 for all t=0 and all 2=0. For more
information on nonnegative resolvents, see e.g. [2] or [5].

2. Proof of Theorem 2.

Assume that (1.7) holds. We are going to show that (1.10) follows. From
(1.7) one sees that if u e L'(R*;R) or L*(R*;R) and A>0, then

.1 (U+AKTH ) (@) = f r,(t—su(s)ds, teR*,
0

where r, is the solution of the equation (1.11).
Thus one sees that (1.7) is equivalent to the statement that
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(2.2) Iy & (Alalory+1D)71  2>0.
It follows that

J e, (t)ldt <1 if ¢>0,

0

and then e “a(t) e L'(R*) by (1.11) and

00 0o -1 -1
J e 7r(dt = (4([ e“”a(t)dt> +1) » 0>0,4>0.
0 (4]

From this equation combined with (2.2) we see that

o0
Irllewy = f ry(t)dt,

. 0
so that

(2.3) ri()20, teR*, A>0.
Since |r;l 1 r+)<1 it is a consequence of (1.11) that
ReJ‘ e Cria(dt 20, ¢>0 teR
0

so that a is a positive definite function (in the Bochner sense), see [7]. This
implies that a(0)>0. In fact it is true that

(2.4) a(t) >0, teR*,
because if (2.4) is false, then there exists a number t,>0 such that a(t,)=0

<a(t), t € [0,t,). But then one gets a contradiction from (1.11) and (2.3).

Now (1.10) follows from the proof of [3, Lemma 2.1], (see [3, p. 202] and
note that the assumption (1.5) is only used there to derive (2.2) and (2.3)),
where it is shown that

2.5 +7? f <1—Jvs rl(T)dT>dS — a(O)“+f’ b(s)ds as 1 — 0,

0 0 0

and b has the desired properties. If one integrates both sides of the equation
(1.11) twice one gets

/'u’lj‘r a(t——s)J‘s (1——Jt r,l(a)da) dtds
0 0 0
= f <1— JS (1—- 'r rl(a)da> dr) ds
0 0 0

and therefore (2.5) gives the equation in (1.10).
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Next we assume that (1.10) holds and first we prove that L;!
— Ikl 4w llallfir+ is m-accretive in L*(R*;R) if h is continuous,
nonnegative and h£0. Thus we must show that if A>0 and v € L*(R*; R),
then there exists a solution u of the equation

(2.6) /lu(t)+jt a(t—s)h(sju(s)ds = J" a(t—s)h(syp(s)ds, teR*,

0 0

such that

(2.7) lullpx®ey £ AlRI R lal Cirs) + 17 Hioll xRy -
Suppose that this can be done under the additional assumptions that
(2.8) h,ve C'(R*;R), h() > 0,teR*.

Since a is continuous if follows from Gronwall’s lemma that the solution u of
(2.6) depends continuously, (uniformly on compact intervals), on the functions
h and v (if h converges uniformly on R* and v in L!(0, T;R) for all T>0).
Therefore it is sufficient to consider the case when (2.8) holds and it is easily
seen that then the equation (2.6) has a unique continuously differentiable
solution.

We conclude from the equation in (1.10) and (2.6) that

t

29  hO@E@)—u@) = )tu'(t)/a(O)+)td/dt<J b(t—-s)u(s)ds), teR*.

0

Let T>0 be arbitrary and assume that t, € [0, T] is such that

u(t,) = max u(t) > 0.
te[0,T]
Then, (u(0)=0),
(2.10) u(ty) 20

and since b is nonincreasing,

(b(t) = — J db (s)+b(oo)>
(t, oc)

(2.11) %(JI b(t—s)u(s) ds)
0

= b(1/multe) + j

t=t,

1/n

u(to—s)db(s)+ j u'(to—s)(b(s)—b(1/n))ds

(1/n, o) 0
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1/n

P b(to)u(to)"'J‘ u' (to —3)(b(s)—b(1/n))ds
0

— b(to)u(t,) as n— 0.

It follows from (1.10) that
lim b(1) = |lallLi{r-)
t—=oo

and hence we deduce from (2.9)— (2.11) that

(212) max u(r) < ()t|[h||[m‘m+)|lal|,jl(k+,+1)_1max{(), max v(t)}.
te[0,T] te[0,T]

A similar argument gives this inequality with max replaced by min and as
T>0 was arbitrary we get (2.7).

To establish the second part of (1.8), where we assume that h is in addition
nondecreasing, we have to show that if v e L!(R*;R), then there exists a
solution u of (2.6) such that

(2.13) lul ey S (R Rl Cir s+ 1) 7 vl R -

For the same reasons as above we may furthermore assume that (2.8) holds
and hence (2.9) and the first equality in (2.11), (for arbitrary t,>0, n>1/t,),
hold. Therefore, if T >0 is arbitrary, it follows since b is nomincreasing and h
nondecreasing that

T t
(2.14) j (u(t)+/1h(t)";—tj‘ b(t—s)u(s)ds) sign (u(t)) dt
n 0

1/

[\

T
(1+}1h(T)“b(l/n))J‘ u(t)| dt
)

T
Ah(T)~ 1 (b(1/n)—b(T)) J lu(t)) dt
0

f
1/n

(L+Ah(T)~'b(T)) j lu(|dt as n— co.
0

i/n
J u'(t—s)(b(s)—b(1/n))ds|dt —

0

On the other hand, one obtains from an integration by parts that

T
(2.15) j (v(t)— Ah(t)~ "' (1)) sign u(t)dt
0
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T T
§j lv(t)ldt-ih(T)"llu(T)t~/1J H (Oh(t) " lu(®) dt
0

0
T
= f lv(t)| dt
0

where the facts that h is positive and nondecreasing were again used. Since
T>0 was arbitrary we get (2.13) from (2.9), (2.14), and (2.15). Thus we
have shown that (1.10) implies (1.8).

Next we prove that (1.8) implies (1.9). First we have to establish that if
+>0 and velL*R*;R)NC(R*;R), then there exists a function
ue L*(R*;R)NC(R*;R) such that u+iM;'u=v or by (1.3) equivalently
that

(2.16) u(t) = f' a(t—s)g((v(s)—u(s))/4)ds, teR*.
0

It follows from standard arguments, see e.g. [6, pp. 87, 95] that there exists a
local, continuous solution of (2.16) and if this solution is bounded, then it can
be continued to R*. For as long as the solution exists we can define h by

g((v(s)—u(s)/2) = 27 h(s)(v(s)—u(s)+ ()
where
f(s) = A(—xq+ sign (v(s) — u(s) — Ax,))

so that h is then a continuous, nonnegative function, (since g is nondecreasing,
g2(x,)=0). But then an application of (1.8) and the definition of accretivity to
(2.16), shows that u remains bounded, (by |v]l ~®r*)+4AlXe|+4), and hence
there exists a global bounded solution.

The second result that must be established is that

(2.17) luy—uzllvwey S Gy~ Halpiry + 1) oy —valler )

if >0, u,v; € L(R*; R)YNC(R*; R) and (I+4L; ") 'v;=u;, i=1,2. But then

(2.18) u (t)—u,(t) = J a(t—s)(g((vy(s) —uy(5))/4)

0
(02— )5, e R
If £>0 is arbitrary, then
(2.19) g((v1(s)—uy (5))/2) — g ((v2(5) — u2(5))/2)
= 27 h(s)(vy(5) — vy (s) + e sign (v;(5) = V2 (5) — uy (5) + u,(5)))
— 27 h(s)(uy (s)—uy(s)), seRY,
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where h is a continuous nonnegative function such that |h(s)| <y, s € R, (since
g is. nondecreasing). If we combine (1.8), (2.18), and (2.19) then we get the
desired conclusion as ¢ was arbitrary.

Finally assume that (1.9) holds. If g(x)=x, then it follows that K[!
— |lall[{r+)I is m-accretive in C(R™; R) (with sup-norm) and therefore (2.1)
shows that (2.2) must hold. But it was observed above that (2.2) implies (1.7);
in fact, one gets the m-accretivity in both L'(R*;R) and L*(R™;R). This
completes the proof of Theorem 2.

v

3. Proof of Theorem 1.

From the results in the previous section, see (2.1) and (2.2), we conclude that
(1.6) follows from (1.5) provided that

sl myy S (Ala"|l prrey+ D71,

where r; , is the solution of the equation

ir 0+ | a(t—s)r, (s)ds = a(®*, te R*, pe (0,1], +>0.
“Hu o

0
But this assertion is a direct consequence of (1.5) and [5, Theorem 2, Corollary
1].
Assume that (1.6) holds. Taking u=1 we have (1.7) and hence we obtain

(2.4). We will show that for every u € (0,1] and for all choices of points 0=t
<t,<t,<t; we have

2 m

(.1 2 (=" ) [1 (att;., —1)/a(@) 2 0
m=0 O0=jo<...<Jps1=3 k=0

If we take u=0 in the expression on the left hand side in (3.1), then we get 0.

Hence, if we divide both sides of the inequality in (3.1) by g, then we get when

u — 0, (differentiate the left hand side in (3.1) with respect to p),

2 m
0= ) (=1 ) Y log (a(t;,, —t;)/a(0))
m=0

O0=jo<...<jms1=3 k=0

]

log (a(t3))— log (a(t; —t,))— log (a(ty)+ log (a(t;—ty)) .
Since 0<t, <t, <t are arbitrary, this inequality shows that log (a(t)) is convex.
Since (1.7) holds we have by Theorem 2 also (1.10) so that a(f)<a(0), t e R*

and hence a(t) must be nonincreasing since it is convex.
Thus it remains to establish (3.1). We will show that (1.8) implies (3.1) with
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u=1 and since (1.6) implies, (by Theorem 2), that (1.8) holds with a(t) replaced
by a(t)*, we obtain (3.1).

Let h be a continuously differentiable and positive function on R™. It is easy
to check that

t

(3.2) (I+Ly )™ ")) = j

ro(t,s)u(s)ds, teR*,
0 -

where r, is the solution of the equation

(3.3) ry(t,s) = a(t—s)h(s)— J-l a(t—wh@r,(u,s)du, O0=s=t.

s

(It follows from [6, Theorem 3.1, p. 202] that the equation (3.3) has a
continuous solution). Let v be a continuously differentiable nonpositive
function. If u is the solution of equation (2.6), then u is nonpositive by (2.12)
and hence we get from (1.2) and (2.6) that

u(t) = Jr ra(t, s)u(s)ds £ 0, teR*,
0

This shows that r,(t,s)=0, 0<s=<t. Therefore we obtain from (3.3), when p,(t)
=r4(t,0)/h(0),

(3.4) 0 < p,(t) = a(t)— f a(t—s)h(s)p,(s)ds, teR* .
0

We want to show that p, depends continuously on h and by (3.4) we have

t

1P, () = i, (D] = f la(t—s)[ [y (s) = ha(5)| [P, (s)| ds
0

+j a(t=s)lhy(s)l 1pn, () = pu ()l ds, teR.

0

Applying Gronwall’s inequality we deduce, since
0 =<a()=a0), 0=p,0)=al)

and h,(t) = 0, that

1P, (1) P, (O] < a(0)? j Iy (5) — ha (5) dsexp(a(m j 0 hz(s)ds), teR".

This shows that we can take the function h in (3.4) to be for example

(3.5) h(t) = (’1101)“1)([:,,:,4—6‘](':)"‘('1202)—1)([12‘12-&02](!)’ teR*
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where 0<t,<t, are arbitrary 4,0;>0, i=1,2, and y,, denotes the

characteristic function of the interval [a, b].
We will let 4,6, — 0, i=1,2 and for this reason we need the following

auxiliary result.

LemMma 1. Let the assumptions of Theorem 1 hold. If fis a bounded measurable
function on R*, fis continuous at the point T>0, 1,6>0 and if q, , satisfies

(3:6)q,,,(t) = f()— J a(t=9)(40) 'y, T+0)()a.()ds 2 0, teRT,
0
then
o o, (T
0= limhimg,o() = {f(t)—a(t—T) f(T)a©), >T

with uniform convergence on compact subsets of [0, T)U (T, o0].
Proor. When t< T we have q, ,(1)=f(t) and if t € (T, T + o], then
t
41,.(t) = f()= ()~} La(t—S)ql,,,(S) ds .

Applying (1.11) we obtain the solution in the form

t

45..() = f()— jr ro(t—s)f(s)yds, te(T,T+q].

Therefore we get when t>T+0¢

(3.7) J a(t—5)(40) " (1.7 401995, 0 (5) ds

0
T+o s
= a(t—T)(4i0)™! f (f(s)—-J rh,(s~r)f(r)dr> ds
T

T
T+o
+ (40)7! JT (a(t—s)—a(t—T))g;, ,(s)ds .

With the aid of (2.4) and (3.6) we deduce that

T+o
(3.8) (ia)”j ’ (a(t—s)—a(t—T))q; ,(s)ds
T
T+o
S sup (Ia(t—S)—a(t—T)l/a(t—S))J a(t—s)(40)"'q;, ,(s)ds
se[T, T+o] T
s sup (la(t—=s)—a(t—T)/a(t=s)f ().

se[T, T+o]
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On the other hand we have by (2.2) and (3.6) since

f(s)—r Fo(s— 1 (1) dt = d/ds j s (1— f rh,(v)dv>f(r>dr,
T T 0

T+o s
JT (ho)~! <f(S) - L ria(s—1)f(7) dt) ds —f(T)/a(O)‘

T+0‘ T+o—s
(1— j (® dr) () F (T ds

T

T+eo T+o—s
(40) "1 J (1 ——j rie (1) d‘l,') ds— l/a(O)'
T 0

< sup UO=f(Tio)” f (uf er)dr)ds
0

se[T,T+o 0

(ho)~! J <1-f rh,(r)dr>ds—1/a(0)
0 0

Using this inequality, (1.4), (2.4), (2.5), (3.7), and (3.8) we conclude that the
assertion of Lemma 1 holds.

To derive (3.1) proceed as follows: Let h be the function given in (3.5) and let
first 4; — O, then ¢, — 0 and apply Lemma 1 with f(f)=a(¢) and T=t, to
equation (3.4). It is easy to check that p,(t) converges, for t>t,, to a
nonnegative solution g, , (f) of the equation

x(t) = a(t)—a(t—tya(t,)/a(0)

< (do)7!

+/(T)

+/(T)

t
—j a(t =) (4202) " Aty + 0,1 ()X () ds, >0y
0

If we now let 1, — 0 then p, — 0 and again apply Lemma 1, (this time with
f@®)=a(t)—a(t—t,)a(t,)/a(0), t>t,,and T=t,), then we obtain (3.1) with u
=1 when we evaluate lim,, o lim;, ¢ g;, 4,(t3). This completes the proof of
Theorem 1.
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