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MOTION OF LINKS IN THE 3-SPHERE

D. L. GOLDSMITH
Abstract.

A motion in M of a subspace N consists of an (ambient) isotopy of N
through M which ultimately returns N to itself. Here we study the problem of
determining all essentially different motions and the natural group structure on
this set which is induced when two motions are multiplied by performing them
on N in succession.

The aim of this paper is to calculate the group of motions of links in the 3-
sphere. For “links with generalized axis”, this is reduced to a calculation of
isotopy classes of homeomorphisms of a surface punctured in a finite number
of points. One example of a link with generalized axis is any torus link. Here, 1
give generators, and a complete set of defining relations for the group of
motions of torus links in S*.

Introduction.

A motion in M of a subspace N basically consists of an isotopy of N through
M which ultimately returns N to itself. The problem which needs to be studied,
is that of determining all essentially different ways in which this can be done,
and then investigating the natural group structure on this set which is induced
when two motions are multiplied by performing them on N in sucession.
Clearly symmetries of N in M induce motions of N in M, and conversely,
motions exhibit symmetries of the particular embedding of N in M.

This notion was probably first introduced with the fundamental group of a
space, which, for a manifold, is the group of motions of a point in the space.
If the subspace N which is being moved has several components, then the
motion group takes into account not only the relationship of the subspace to
the ambient space, but also the relationship of the components to each other,
and their interaction during the motion. For example, although the motion
group of a single point in a 2-disk is trivial, the motion group of two points in a
2-disk is Z, generated by the motion moving one point around the other, and
in general, the motion group of n points in a 2-disk is the group of braids with
n strings ([1] and [12]).
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In fact, the concept of a motion originates from that of a braid. It was the
idea of Hurwitz, and later of Fox ([16]), to envisage a braid as a continuous 1-
parameter family of changing configurations of n distinct points in the xy-
plane, where at each time ¢, the configuration is given by the intersection of the
braid with the plane at height z=t,. Later, David Dahm, a student of Fox,
developed a general theory of motions “with compact support” of one space in
another, and calculated the group of motions of a trivial link in Euclidean
3-space (see [12].

In this paper, we calculate generators and relations for the group of motions
of all torus links in S3. I prove:

THeOREM 8.7. Generating motions for the group of motions of the type (np,nq)
torus link, L, in S3, are:

1. 0,(p,q), 1Sisn—1: interchange the i-th and (i+ 1)-st components.

2. 0/(p,q), 1 Si<n: rotate the i-th component by 2n/p about its first axis of
symmetry, a.

3. f: flip L by a n-rotation of S3, which carries the link L to itself with
reversed orientation.

Theorem 8.7 also gives a complete set of defining relations for the motion
group of L, but since this is a rather lengthy list, I will not include it in this
introduction. It may help the reader to mention that most of the relations
involving the generators ¢, 1 £i<n, and 6, 1 £i<n~ 1, are identical with the
defining relations for the subgroup of 0-pure braids, in the classical group of
braids with n+1 strings, and that the element f, which is either of order two or
four, depending on p and g, provides a normal extension of this subgroup by
either 1, or Z/2Z, accordingly.

The torus links are a special case of the more general problem, which is also
solved here, of finding a presentation for the group of motions of the link L Uy
in §3, where y is a fibred knot, and L = §3 —7 is any link which winds around
the fibration, in the same manner that a closed braid winds around its axis. The
knot is called a “generalized axis” for L.

Suppose the fibration $* —y — S! has fiber F, and monodromy y: F — F.
Suppose also that L N F=P (a finite set of points) and y: (F, P) — (F, P). Our
main result is that the group of motions .# which takes L to L, and y to y, is
defined by an exact sequence:

1-#,(F,P)/y],[2n] > # — Z)2Z ,

where 5 ,(F, P) is the subgroup of the homeotopy group of the surface F
punctured by P, which centralizes the element y. The motion [2x] is defined in
the text of the paper.
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This paper is divided into eight sections:

Section 1. Motion groups.
2. Torus links.
. The motion [2x].
. A generalized axis for a link.
. The group # " (S3,L,y).
The group of motions .#(S3,L,7).
. Homeotopy groups of surfaces as branched covering spaces.
8. Motions of torus links in S3.

< SNV N

Section 1 defines the group of motions of N in M. (For a more complete
explantion of motion groups, see [20]).

Section 2 constructs a model for torus links, and establishes all the notation
which is used in succeeding sections.

Section 3 computes the order of the motion [2n] of L in §3, and in R3.

The concept of a generalized axis for a link is defined in Section 4, and it is
proved that every component of a torus link is a generalized axis for the rest of
the link.

In Section 5, I compute the homeotopy group # * (S, L,y) of orientation
preserving homeomorphisms of the 3-sphere, which fix L and y setwise. This
group is shown to be isomorphic to #,(F, P), which was mentioned earlier.

The group of motions .#(S3, L,y) is computed in Section 6. Motions of L in
§3—y are shown to extend braiding motions of the points P in the fiber surface
F.

In Section 7, I compute the centralizer of the class [i] of the monodromy
map ¥ for particular generalized axes of torus links.

The manifolds in this paper are assumed (without loss of generality) to carry
P.L. and differentiable structures, and submanifolds are assumed to be both
P.L. and differentiable submanifolds; thus, I will alternately make use of
regular neighborhoods, and of tubular neighborhoods. However, homeomor-
phisms and isotopies are assumed to be in the topological category.

I would now like to say some words of thanks to Ralph H. Fox, who
supervised my Ph.D. thesis, which became this paper. I feel fortunate to have
known him during the years I spent at Princeton, both as a mathematician,
and a fine, creative human being. My appreciation of his contribution to
mathematics and the beauty of his mathematical papers is shared by all
students of three-manifold topology and knot theory, and by anyone who has
had the pleasure of reading his work. I especially want to thank him for his
friendship and guidance during my mathematically formative years.
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1. Motion groups.

The discussion of motion groups which follows, is preliminary to the
calculation of groups of motions of links in S3. For a detailed treatment, with
extensive motivation, the reader is referred to “The Theory of Motion Groups”
([20]). Section 1 is meant to be a brief summary of the above paper, with
proofs included if they are short.

Let M™ be an m-dimensional orientable manifold without boundary, and let
Ny,...,N,=M be compact subspaces.

Noration 1.1. H(M) is the group of homeomorphisms of M, with the
compact open topology.

H_(M) is the topological group of homeomorphisms h € H(M) which have
compact support in M.

H(M,N,,,...,N,) is the subgroup of h € H(M) such that h(N)= N, for all
i=1,...,n

H.(M,N,,...,N,) is the subgroup of he H(M,N,,...,N,) which have
compact support in M.

# (M) is the group no(H.(M); 1)

#7 (M) is the group ny(H(M); 1,).

H(M,N,,...,N,) is the group ny(H.(M,N,,...,N,); Lp).

HT(M,N,,...,N,) is the group no,(H(M,N,,...,N,); 1)

#* (M) is the subgroup of # (M) represented by orientation preserving
homeomorphisms.

#*(M,N,,...,N,) = #M,N,,...,N)N £+ (M).

DeriNiTION 1.2. A motion of (N,,...,N,)in M is a path fin H (M) such that
f(0)=1, and f(1) e H.(M,N,,...,N,). (We will denote f(¢) by f,.)

DEerINITION 1.3. A stationary motion of (N4,...,N,) in M is a motion f such
that for all t € [0,1], 1ZiZn, f,(N)=N.

DEerINITION 1.4. Let f, g be motions of N in M. fis equivalent to g (denoted
f=g) if g 'of is homotopic (denoted =), modulo endpoints, to a stationary
motion. (g~! and the operation o are defined in 1.5.)

DEerFiNITION 1.5. A relative fundamental group of a topological group G relative
to a subgroup S of G and based at the unit 1; of G, denoted by n,(G, S; 1), is

defined as follows:

A path fin G is a continuous map of the unit interval [0, 1] into G; the image
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of t € [0,1] under this map will be denoted f,. We say a path in G is based at
e € G if e is the initial endpoint of the path. A homotopy between two paths f
and g in G whoch share the same initial and terminal endpoints, respectively, is a
homotopy modulo end-points. Two paths f and g in G are multiplied by
translating g until its initial endpoint coincides with the terminal endpoint of f;
then the product, denoted gof, takes on the values f,, on the interval 0<t<1/2,
and g5, -1,2°[80] "'of; on the interval 1/2<t<1. The inverse f ~! of a path fis
defined by (f~"),=f1-o(f1)™".

Now consider the set of all 1;-based paths in G whose terminal endpoints lie
in the subgroups S. These are called 1;-based relative loops in (G,S). An
example is the trival loop, which is the constant path mapping all of [0, 1] to
15. Say that a 15-based relative loop in (G, S) is equivalent to the trivial loop if
it is homotopic to a relative loop in the subspace S, and in general that two 14-
based relative loops in (G, S), f and g, are equivalent if g~ 'of is homotopic to a
relative loop in S. Then the classes of relative 1;-based loops in (G, S) which are
equivalent by this equivalence relation form a group under the multiplication
induced by multiplication of paths, and this group is called the relative
fundamental group of (G,S,1).

REMARK. If f, g and 15-based, relative loops in (G, S), let g f denote the path
(8f) = gofi- Then g-fgof.

THEOREM 1.6. The set of equivalence classes of motions of (N,,...,N,) in M,
with multiplication induced by composition o, forms a group. (We will denote this
group by #M(M,N,,...,N,).

Proor. Clearly .#(M,N,,...,N,) is the relative fundamental group
nl(Hc(M), Hc(Ma Nb~ LY Nn), 1M)

ProposITION 1.7. Let f, g be motions of N in M. Then f=g if and only if f~f",
where [’ is a motion of (N,,...,N,) in M such that for all t € [0,1], 1<i<n,
JiN)=g,(N)).

Proor. See Proposition 2.5 of [20].

ExampLE 1.8. The group of motions .# (M, p) of a point p in a manifold M is
the fundamental group =,(M; p) based at p.

ExampLE 1.9. The group of motions .#(M™ P,) of n distinct points P,
={py...,p,)=M™in M™, is the n-braid group B,(M™). (See [7].) If m>2, this
is just @f-; 7, (M; py). (See [12].)
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Proors ofF 1.8, 1.9. See 2.7-2.10 in [20].

DEerFinITION 1.10. The homomorphism
0: #(M,N,,...,N,)— #*(M,N,,...,N,)
is defined d([f])=[/}], where fis a motion of (N,,...,N,) in M.

THeoreM 1.11. The following sequence is exact:
nl(Hc(M’Nl" . .,N"); lM) - nl(Hc(M); lM) - */I{(M’Nl" . 'an)
25 #*(M,N,,...,N,) > #*(M).

Proor. This is just the long exact sequence for relative homotopy groups.

CoroLLARY 1.12. If M =R", then the sequence:
1— #(M,N,,... ,N)-% #*(M,N,,...,N,)—1

is exact.

Proor. H,(R?) is contractible, by the Alexander-Tietze theorem (see [6],
[257).

CoroLLARY 1.13. If M =S", the sequence:

Z,— #(M,N,,...,N)-% #*(M,N,,...,N,) > 1

is exact.

ProoOF. 1, (H(S"); 1g)=2Z, (see [17]). It is generated by a 2n rotation of S",
which I will denote by [2n] € =, (H(S"); 1gn).

no(H(S"); 1g) = #*(S") = 1.

THEOREM 1.14. If h € H (M), then
MM,N,,...,N,) ~ #M(M,h(N,),...,h(N,)) .

PROOF. h defines a homeomorphism
(H.(M),H(M,N,...,N,),1y) - (H.(M),H(M,h(N,),..., h(N,), 1y),

by W' — hh'h~! whenever k' € H.(M). Since #(M,N,,...,N,)
=n,(H.(M),H.(M,N,,...,N,); 13), Theorem 1.14 follows.
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COROLLARY 1.15. If there is an ambient isotopy from the n-tuple (N,,...,N,)
to an n-tuple (N,...,N,) of subspaces N;=M, then

MM,N,,...,N)~MM,N,,. .. N).

n

2. Torus links.

This section will not only assemble specific models for torus links, but it will
establish much of the notation which will be used in the chapters which follow.

NoTATION 2.1. Let RZ~C!={re" : 0<r<o0, 0 € R} be identified with the
conplex plane, and let D*={re :0<r<1} and S'={e’:0e R} be the
complex unit disk and the complex unit circle, respectively.

Let the 3-sphere be the union CxS'US!xC of solid tori, with the
identifications (re', ')~ (€®, (1/r)e') if r>0. Further, define:

T=S!xS'<S3 is the standard torus.
a is the circle (0,e?), 0< @ <2m, in S3.
B is the circle (€%,0), 0£0<2n, in S3.
n,: C — C is the map re’ — re'”.

. Q3 3.0
mp 4 S” — 8% is induced by m,xm,.

(Note that =, , is a branched covering of S* by S3, whose branch curves are 8
with branching index ¢, and « with branching index p.)

r,: C — C is rotation by 2nt.

re.: S* — §3 is the rotation induced by r,xr,.
i: R*x 8" — §3 is inclusion.

P,={complex nth roots of unity}.

n

1 .
L(HP; nq) = kU l{()z rq!/p(Pp)a e2mt>, 0 é t é 1}9 Where g'c'd' (p9 q) = 1'

=1

We will need to use maps with compact support in section 4 on generalized
axes. Therefore, define:

¢,: C — C is the rotation with compact support given by:

(2 if |z]=1
P = Vraog  if 12121, and s=min {|z|— 1,1}

ReMARrk 2.2. The diagram

L(np.nq) - §?
1M Ik
L — 83

(n, n)

is commutative.
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DEeFINITION 2.3. A torus knot of type (p, q), where g.c.d. (p,q)=1, is a simple
closed curve on the standard torus T< S, which winds p times in the direction
of the longitude 1 x S, and q times in the direction of the meridian S$* x 1.

DEerFiniTION 2.4. A torus link of type (np,ng), where g.cd.(p,g)=1, is a
collection of n disjoint, parallel torus knots of type (p,q) on the torus T<S3
(see Figure 2.5).

Figure 2.5. L gy

ReMARk. Note that L, ., is a torus link of type (np,nq).
Noration 2.6. The components of L, ,, will be labeled:
C, = i{(%e“",e’"") : 0§t§1}, 1<kgn.

The components of L, ,,, Will be labeled:

1
K, = i{(—lgrq,,p(Pp),ez""): Oétgl}, 1ksn.

3. The motion {2r}.

Let L<=S? be a link in the 3-sphere. The motion {2n} which rotates S* one
full rotation, generates the kernel of the map 8: .#(S% L) — #*(S3,L),
defined in 1.10. In this section, I calculate this important subgroup.

NotatioN 3.1. {2n} is the 1-based loop in H(S® which generates
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n, (H(S?); 1g). Its equivalence class is denoted [2n] € .# (S L).

Let * € S*—L be a point on the fixed point set of the rotation {2x}; let D
=S3—L and D' = D be regular neighborhoods of * which are left invariant by
{2n}. There is a motion of L in R* which coincides with {2n} on S*—D, and
which is constant on D' — . We will denote this motion by {2n} as well, and its
equivalence class by [2n] € #(R3, L). Note that d([2n])={2n}, has its support
in D-D'".

THEOREM 3.2. [2n] € A (R3,L) is trivial if and only if L is the trivial link.

Proor. Suppose 1=[2n] € #(R3 L). Then there is a stationary motion
f. € H,(R3, L) such that f; =0([2n])={2n}, € H.(R? L).

Let N be a closed tubular neighborhood of L in §3; let N'cintN be a
sufficiently small, closed tubular neighborhood of L, that for all ¢, f,(N')<N.
By [21], we may assume f; | N'=id.

By [13], there is a motion g of L in R3 such that for all ¢, g,| (R* — N)=id and
g |N =f,|N'. Let h,=g, 'of,. Then h is a motion of L in R? satisfying for all ¢,
h,| N'=id; also, f=g"h.

If L is not the trivial link, there is some component K; of L such that n, (N,
—K,;) % 7,(S®— L) is injective, where N,= N, N, N’, are the components of
N, N', respectively, containing K;, and where the inclusion-induced map i, is
obtained by connecting N, to the basepoint of R3.

Now any homeomorphism ¢ € H,(R3, L) such that g(N;)=N, and

x iyl (Ni—K))]) = i,[n (N;—K))],
which induces the identity automorphism
6,1 (R*—L)—> n (R*=L),
must induce the identity automorphism
(@IN:—K)y: 1y (N;— K) = m, (N, —K)

as well. Since {2n}, =g,oh, and h, both induce the identity automorphism of
n,(R*— L), so does g,. Furthermore, g, satisfies all of the same conditions as g,
above. Therefore, (g|(N;—K))),:n,(N;—K;) — n;(N;—K;) is the identity
automorphism.

Now by Claim 525, g,|(N;,—N)=~id, rel. boundary. Consequently,
{2n}, ~id in H,(R?) by an isotopy which is constant on N;. This is impossible,
by [17].

So L must be the trivial link.

We will now investigate the motion [2n] € 4 (S3,L).



176 D. L. GOLDSMITH

NortaTioN 3.3. Let p,.: H(S*) — S° be the map p, (h)=h(*). The map p, is a
fiber bundle, with fiber p,!(*)=H(R).

In general, SO (n) denotes the space of rotations of S"~!. The restriction
P.1SO(n):SO(n) — S"~! is a fiber bundle with fiber [p,|SO (0]~ (*)
=SO (n—1).

LEMMA 3.4. Let the 1g:-based loop f, € H(S?, L) be a stationary motion of L in
S3 (see Definition 1.3). Suppose p,of=~* in S>—L.
Then f~f' in H(S3, L) such that for all t, f}(*)= *.

ProoF. Let F, , € S*—L be a homotopy from Fo=p,of to F,= *. Then in
the commutative diagram:

HS,L)
Fl. l//,,’ lp‘

" F
12 5t S3

there is a lift F,, of F,, which satisfies

(1) Fo=f

(2) Fs,0=Fs,l = 133'

Then f'=F), is the desired loop in H(S> L).

LemMa 3.5. Let f: [0,1] x[0,1] — S3 satisfy

(1) fs)=x if (st)eal?
@ fls=» if$sssl
Then in the commutative diagram
H(S?
F ,/' lp*
I/—-L—>S3
there is a lift F: [0,1]x[0,1] — H(S®) satisfying F(s,t)=1g if (s,t) € I

PRrooF. In the commutative diagram
SO (4)
F /// 1Pa
12 N S3
flifts to a map F: I* —» SO (4) satisfying
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(1) F,,=1g if t=0,1, or s=0
@ F,.=F,, if3sss

Now f represents an element [f] € n,(S?; *). According to the homotopy
exact sequence for a fibration:

. = m,(SO (3) = m,(SO (4) = m,(8%; %) L 71, (SO (3); 1g9) — ..

[F,]=L([f]). Since n,(S?)~1, then L is the trivial homomorphism, and
F,~1g (rel. endpoints) in SO (3)c H(R}) < H(S?, *).

Let G, ,: [$,0] x[0,1] — H(S?) be a homotopy from G,=F, (=F, for all s
1) to G, =1g. Define a homotopy F,, € H(S? *) by

{F&, if 0<s<t

Foo=16 if i<s<1.

s, t
s, t

Then F, , is the desired lift of f.

LemMa 36. Let f be a lg-based loop in H(S?L). Then [p,of]
€ Center (n,(S*—L; *)).

PROOF. Let o, be the path f, ,(x), t € [0,1], in S>. For each x-based loop y
in S*—L, a[f,(y)]e; ! is a homotopy in S*—L from y to a;ya;! (rel. *).
Since oy =p,of, this completes the proof.

THEOREM 3.7. Let L be one of the following links:

(1) L(np.nq)

(2) Lgppng Vo

() LapngpUB

(4) Lgpp,ngUaUB,

where L, . is the torus link of type (np,nq) and o«,B=5S>—L,, ., are the
axes described in Notation 2.1, and where p+q is odd, or n=0.
Then 1=[2n] € #(S3, L). Otherwise, [2n] € .#(S*, L) has order two.

PROOF. Suppose [2n] is trivial in .# (S3, L). Let F: [0,1] x [0,1] — H(S%) be
a homotopy from F,={2n} to a stationary motion F, of L in S

By Lemma 3.6, [p,oF,] € Center (n,(S*—L)). There are two cases to
consider:

Caskt 1: m,(S*— L) has trivial center.

In this case, p,oF,;~ » in S®~L. By Lemma 3.4, F,~f" in H(S3 L), such
that for all ¢, fi(#)=+. Let F,, e H(S? L) be the homotopy from F,=F,
tO F1= ’.

Math. Scand. 50 — 12



178 D. L. GOLDSMITH

Define a homotopy G: [0,1] x [0,1] — H(S?) from G, ={2n} to G, =f" by:

H 1

F(45,t) if 0§S§I

— 3 1

Gs,t - F(4[s—{],t) if %éséi
A 1

F(l,,) if §§S§1

Then p, oG satisfies hypotheses (1), (2) of Lemma 3.5. By Lemma 3.5, there is a
homotopy G, , € H(S® such that G ,=1g if (5,) € dI% and p,oG=p,oG.
Let H=GoG ™.

Now H is a homotopy from Hy={2rn} to H,=f" (where for all ¢,
fi € H(S3 L)) such that for all s,t € [0,1], H, ,(+)= +. By the Main Theorem
of [13], we can find H:[0,1]x[0,1] — H,(S>— %,L) such that for all
s,te[0,1], A, |L=H, L.

Finally, I:I,,, € H,(S®— *) is a homotopy from H, to a stationary motion
H,,eH(S*—,L) of L in S3— ». Since H, |L={2n},IL for all ¢, then by
Proposition 1.7, H, and {2} are equivalent motions of L in 5>~ . Therefore
1=[HA,]=[2n] € #(S®— ,L). But then L must be the trivial link in S*, by
Theorem 3.2

CasE 2. n,(S®— L) has non-trivial center.

According to [24], L must be one of the links (1)-(4), with no restriction on
p+q.

Let S=CxS'US! xC/~, as in Notation 2.1. Define the rotation r, ,: §*
— 8% by

ra,t(zbzz) = (z1e2nsi,2262mi)

if (z4,2,) € Cx §? or (z,,2,) € $' x C. By Notation 2.1, r, (L, ) =L, for all
t; by Remark 2.2, m, ,(Lsp, ng)= L, Since

n‘qor =T n

p,a°at, pt pat, pat®Tp,q >

it follows that ry, ,,(Lsp, ng) = Lnp,ng for all ¢.

Now, the 1g-based loop r,, ,, € H(S? L,y ney % B)t € [0,1], is a stationary
motion of (L,, ,,)UaUp in S Let R, , be the motion R, ,(t)=r,, ,. Then
R, ,~[2n]P*% If p+q is odd, then (since n, (H(S); 153)~Z, is generated by
[27], 1=[2n] € M(S? Linp,ngUaUp).

If p+q is even, then R, , is homotopic (rel. endpoints) to the constant loop
1go. Let » € S®—L. It is a well-known fact that if n+0, the *-based loop
Ta,p(*), t € [0,1], represents a generator of Center (m,(S*>— L, g *))- Thus
for some k, p,oFoR! ,~ % in §*—L,, .., In this case, let F; =F,oR¥ . Since
R, ,~1g, then F,~F) in H(S®. Now proceed as in Case 1, for F'. We
conclude that either L is the trivial link, or [2n] € #(S3, L) has order two.
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This leaves the case when n=0; thus, L is one of the links «, 8, U 8. Clearly,
in this case the motion {27} of L in S* is a stationary motion of L; therefore
1=[2n] € #(S3, L). This completes the proof.

4. A generalized axis for a link.

DEFINITION 4.1. A fibered knot y is a generalized axis for a link L=S®—y if L
intersects each fiber of some fibration, say n: S*—y — S!, transversely, in a
finite number of points.

Let F=n"1(1) be the fiber of the fibration n: §3—y — S!, F=Closure (F)
(so that 0F =y) and suppose FUL=P, (a set of n distinct points). By the
theory of fibrations, there is a surjective map

fiFxI— §3—y
satisfying:
(1) f: Fx(0,1) —» S*—F is a homeomorphism.
(2) fo: F — F is the identity and f;: F — F is a homeomorphism with
compact support.

(3) f extends to the closure Fx[0,1], and f: yx[0,1] — y is projection
(where y=0F).

The map f;: F — F is usually called the monodromy of the fibration. Note that
/1 actually fixes the set P,.

DEerINITION 4.2, The map f;: (F,P,) — (F,P,) is a monodromy for the
generalized axis .

REMARK 4.3. If y is unknotted, then F =R? and y is commonly called an axis
for L.

REMARK 4.3. If y is a generalized axis for L, then y is also a generalized axis
for any sublink of L, and the monodromy map is the same for the sublink as
for the link.

In the following examples, all of the notation is explained in 2.1.

ExampLE 4.4. The circle f is an axis for the link L, ., U A monodromy

map is
oo (ReL O 2p |uo)= (R | U tp, |uo).
a/p* ’ =k 4 ’ =1 k P



180 D. L. GOLDSMITH

ExaMPLE 4.5. Let L be a torus link with n>1 components. Then any one
of the components is a generalized axis for the rest of the link.

For the proof of Example 4.5, we need the following:
CraiM 4.6. There is an isotopy of C,UB in S*—[U"_,C.]l—a which
interchanges C, and B. (We will denote the end of this isotopy by:
g: (5% Cy,Cy,...,Cpoo, B) — (83,B,Cs,...,C,a,Cy))

Proor. Obvious.

REMARK 4.7. The map gom,, ,: S* — S is a branched covering of the 3-sphere
branched along the curve a with branching index p, and along the curve C,
with branching index g.

DErFINITION 4.8. Let : F — R*—{0,1} be the covering space corresponding
to the representation w,(R*—{0,1}) —» Z/pZ@®Z/qZ, which is the
composition:

n, A0 H (R2-{0,1}; Z) ~ Z®Z — Z/pZDZ/qZ

(where the generators 01, 10 of H, are represented by small circles about
the points 0, 1, respectively, and the last map is the quotient map).

NotaTioN 4.9. Let n: F — R2—{0,1} be as in Definition 4.8.

1
Pk=n“<ﬁ>, k=1,...,n.
A =n"10).

(]

ProoF oF 4.5. By the last remark in Section 2, we may assume L=L,, .,
with components K,,...,K,. It is sufficient to show that K, is a generalized
axis for K,U...UK,cS$*—K,.

By Remark 2.2 and Notation 2.6, the diagram:

Kl" . -’Kmaaﬁ_’ S3

l”p‘q lﬂp.q
C,...,Cpo,p— 83

is commutative. Composing vertically with the map g defined in Claim 4.6, we
obtain the diagram:
K,, K,,....K, o, — S*
lg"”p,g lgOanl
B,Cs,...,Cpa,C, — S
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This restricts to the commutative diagram:

Ky.. K, — S*—K,
lg""p‘q lg°np,q
C,...,C,—> -8

Since f is an axis for the link C,U ... UC,, and since the branch set a U C of
the branched covering gon, , is transverse to the fibration, it follows easily that
K, is a generalized axis for K, U ... UK,. (Proof: Pull back the fibration.)

ReMARK 4.10. The proof of 4.5 actually shows that K, is a generalized axis
for K,U...UK,UaUB.

REMARK 4.11. The monodromy for K, in Remark 4.10 is the pullback X of
the monodromy of the axis g for the link C,U...UC,Ua:

F, [U p,]u AL F [U p,] U4

I I
RZ,I:U l:|U0—“’—'—> RZ,[U :IUO
k=1 k k=1
5. The Group #* (S3,L,y).
Let y be a generalized axis for the link L =S —y. By Corollary 1.13 there is
an exact sequence

bl B

Z2 - J”(S%L"Y)"’ #+(S39L9Y)_’ 1.

As our object is to eventually compute the motion group .#(S>,L,y), it is
clearly necessary to calculate the group #*(S>,L,7).

Since Section 5 is rather technical, I will summarize it briefly. It is divided
into three sections, as indicated below:

The group #(S®—y,L).

The main theorem of this section is Theorem 5.20, which says that
H#(S*—y, L) is isomorphic to a group of surface homeomorphisms. More
precisely:

THEOREM 5.20. J: #,(F, P) — #(S>—y,L) is an isomorphism.
(Here S3—y fibers over the circle with fiber F, P=FNL, y € H,(F,P) is a

monodromy map for the generalized axis y of L<S*>—7y, and H,(F,P)
<3 (F, P) is the centralizer of the element [y] € #(F, P).)
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The proof of Theorem 5.20 is contained in a sequence of propositions.
Rather than listing them here, may I suggest that the reader review the
statements of Propositions 5.7, 5.9, 5.10, Construction 5.12, Proposition 5.14,
and Proposition 5.16, to get the thread of the argument.

The map e: # (8> —y,L) — H#*(S3,L,y).
In this section, a homomorphism is constructed from #(S3—7y,L) to the

group which we wish to know. (e is just the map induced by extension). The
main theorem is:

THEOREM 5.26. The sequence
1= (1,021 — #,(F.P) & #(S—y,L) > #* (S L,7)

is exact.

The group s *(S3,L,y).
The group 5 * (83, L,y) is shown to be normal extension of a quotient group

of the group #,(F, P) of surface homeomorphisms, by the trivial group or Z,.
The main theorem is:

THEOREM 5.28. The sequence
1 = ([Y1,[1]) = Hu(F,P) =5 #7(S%L,y) - Z,

is exact.
Now I will proceed with Section 5.

NortaTioN. Let f: F x [0,1] —» S —7 be the map in Definition 4.1, and let ¢
=f, be a monodromy for y. (See Definition 4.2). Let L=K, U ... UK, have
components K;, and let P;=F N K. Index the points in P;={p;s,...,P; nu)} SO
that f(p, x 1)=p; ,+, if 1 Sk <n(i). Let N be a closed, regular neighborhood of
P in F;thus, N consists of a number of disjoint 2-disks N;;, 1 <i<n, 1 <j=n(i),
such that p;; € N;;. Then f (N, x [0, 1]) is a regular neighborhood of K; in §* —7.
Finally, let [;;= F be a polygonal arc from p;; to y.

In order to compute # *(S3,L,y), I will first compute #(S*—y,L):

The group #(S*—y,L).
NortaTioN. Let he H,(S*—y,L). By [11] we may assume that h is a
differentiable homeomorphism, and that N, f(N x[0,1]), are differentiable
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neighborhoods of P and L, respectively. Then, by the uniqueness of
differentiable tubular neighborhoods ([21]) and the Main Theorem of [13],
there is an isotopy h, € H.(S*—7v,L) from h,=id to h, such that h;oh (f(N
x[0,1]))=f(N x[0,1]); in particular, we may assume that for all k
=1,...,n(i), t € [0,1], there exist k',t' with

S(Ngx ) s f(N x 1),

where j depends on i. By reindexing, we may assume that h,oh(p;)=p;, and,
therefore, that for all k=1,...,n(i), hyoh(py)=p;. (A consequence of this is
that n(i)=n(j).) Finally, it is easy to arrange that

f(Nikxt)L‘—’h—»f(Njkxt), for all ¢ .

By replacing h by h;oh, we will assume, henceforth, that h satisfies:

(1) h(py) = py for some j depending on i,k=1,...,n(i).

(2) Vi, Vk, h(f[Nyxt]) = f[N xt], for jasin (1).

DEerINITION 5.1. The infinite cyclic covering space p: F x R! — S$3—7y is the
composition
FxR! > Fx[0,1] L §3—y,

where the first map is (x,t) — (x, t(mod 1)).

DEFINITION 5.2. r,: FxR' — F x R! is the.strong deformation retract from
F xR! to F x 0 defined by r,(x,s)=(x, (1 —1)s).

DEFINITION 5.3. Let 4 be a relative loop in (S*—y, F). The linking number
£(4,7) of A with y is defined as follows:

Choose any path A’ F joining A(1) to A(0). Define £(4,y)=¢g(A4’,7), where
the right side of the equation is the linking number in S* of the loop 44’ with y
(£(4,7y) is well-defined because for every loop y' = F, £s:(y',y)=0).

EXAMPLE 5.4. Let Ac F be an arc from y to y. If h € H.(S>—7y), then £(h(A),7)
=0.

PROOF. h preserves linking numbers in S>.

CLAIM 5.5. Let 4 be a relative loop in (S* —y, F). Then A lifts to a relative loop
in (F x RY, F x 0), under the infinite cyclic covering projection p: F x R — §3—7y
(in Definition 5.1), if and only if £(4,y)=0.

Proor. Left to the reader.
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CLAM 5.6. Let h € H.(S®—y,L). Then h~h in H_(S*—7, L), such that for all
i j, ¢(W (£, 7)=0.

Proor. We are assuming that h satisfies (1), (2), above. It is easy to obtain
h=~k in H,(S® -y, L) such that for all i, /(' (¢; ,),y) =0, by sliding L along itself.
Now, for all i,k, I(h'(£4),7)=0:

In general, let 4, ,, be the segment of K, from p, ,, to p, ;. Since k' preserves
linking numbers in S3,

(%) /(h’[lik’liklijll 9 = /(likj'iklijllaw .
But
h/[lik;tihlitll] = [h/(lik)]ljk[h/(lijll)];
so the left side of (%) is:
(W (1), 7))+ (A N+ D,y = (0 U, y)+n()—1.
The right side of (*) is:
i)+ (Ao V)LL) = n()—1 .

(We are applying Example 5.4 in both of these calculations.) Since n(i)=n(j) by
a previous argument, we conclude that Z(h'(l,), y)=0.

ProposITION 5.7. Let h € H.(S*—7v,L). Then h~h in H.(S*—y, L) such that
K (F)=F.

Proor. We may assume that h satisfies properties (1), (2), and by Claim 5.6,
(3) Vik, £(h(ly),y) = 0.

Choose disjoint, simple arcs 4,,...,4,=F—U, I, , from y to y, such that
F—[U; 1, J-[Ur 4] is an open 2-cell. By Example 5.4 ¢(h(4),7)=0,
i=1,...,n. By Claim 5.5, h(l,), 1<i<n, 1=Sk=n(), and h(4), 1<i<m, lift
to relative loops in (F x R!, F x0) under the infinite cyclic covering projec-
tion p: F xR! — $3—y in Definition 5.1. Thus, in the commutative diagram:

F xR!?
Vi
k. lp

a lift A of h| F exists.

Letr,: F xR — F xR be the strong deformation retract from F x R to F x 0,
in Definition 5.2. Then por,oh: F — §*>—7y is a homotopy from h(F) to F. In
fact, por,oh|[F—int (N)] is a homotopy rel. boundary, by property (2). By
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Corollary 5.5 of [26], there is an isotopy h, € H.(S® -7, L) of hy=id to h, such
that h,oh(F)=F.
Let W =h,oh.

Cramm 58. Let S'x[0,1] be the annulus, where S'={ze C:|z|=1}. If
h € H(S' x [0,1]) satisfies (h|S* x {0, 1})=id, then h is isotopic, rel. boundary, to
p* for some k € Z, where p: S* x [0,1] — S! x [0, 1] is the map p(z, ) = (ze*™, 1).

Proor. Well-knowm.

PROPOSITION 5.9. Let h € H.(S*—7, L) satisfy h|F=1g. Then h~id in H (S*
=P L)

Proor. Define ¢: F x [0,1] — F x[0,1] by:

_ fTtehof(x) if x € Fx(0,1)
o) = x if xe Fx{0,1}.

It is sufficient to show that ¢ ~id in H(F x I, P x I, rel. boundary.

Choose points g;; € ON;;. Since h preserves linking numbers in S, ¢(g;;
x [0,1])~q;; x [0,1], modulo endpoints, in the annulus (N;;) x [0,1]. Then
Claim 5.8 implies that ¢ = ¢’ in H(F x I, P x I), rel. boundary, where ¢'|((ON;))
x[0,1])=id, and ¢'(N;;xt)=N,;xt for all t € [0,1].

Now use the Alexander-Tietze theorem ([6], [25]) to isotop ¢'| (N;;x t) to
the identity, rel. p;; and ON,;, simultaneously for all i, j,t. As a result, ¢’ ~¢" in
H(F x 1, P x1I), rel. boundary, such that ¢”| (N x[0,1])=id.

Finally, ¢” | ([F —int (N)] x [0, 1]) is isotopic to the identity, rel. boundary,
by Theorem 7.1 of [26].

PRrOPOSITION 5.10. Suppose h € H.(S*—y, L) and h~id in H.(S* -7, L). If h(F)
=F, then h|F~1 in H (F,P).

Proor. The automorphism h,: n,(S*—L—y) — =,(S* — L —y) induced by h
is the identity, because h~id in H.(S*>—7y,L). Since the inclusion-induced
homomorphism i,: n,(F— P) — n,(S*— L —7y) is injective, the automorphism
(h|F—=P), : n,(F—P) - n,(F—P) induced by h|F—P must also be the
identity automorphism. Now by a theorem about surface homeomorphisms,
h|F~1p in H (F,P).

CLAM 5.11. Suppose ' € H.(F, P) is a homeomorphism such that Y’ ~y in
H.(F,P). Then ' is another monodromy for the generalized axis y of L<S*—7.
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ProoF. Let g, € H.(F, P) be an isotopy from go=1to g, =y " toy’. Let G: F
x [0,1] — Fx[0,1] be defined by G(x,t)=(g,(x),?).
Then the composition:

Fx[0,1] %> Fx[0,1] > S3—y

satisfies conditions (1)—(3) of Definition 4.1. Also, if we set f'=foG, then [
=y/'. Therefore y' is a monodromy for y.

CONSTRUCTION 5.12. Let g € H,(F, P), and suppose goyog ™'~y in H.(F,P).
Then there is a homeomorphism h, € H(S®—7,L) such that h,|F=g.

Proor. By Claim 5.11, we may take goyyog ™' to be another monodromy for
the generalized axis o of L =S —7y. Thus, there is a map f': F x[0,1] — S*—y
(defined in 5.10) satisfying conditions (1)-(3) of Definition 4.1, such that f =g
o(/[og -1

Now, there is a unique homeomorphism h, which makes the diagram

Fx[0,1] £4°F x[0,1]
s I
$I—y —t— Sy

commute. Then h, € H,(S>—7v,L), and h,| F=g.

REmMARK S5.13. In Claim 5.11, the map f’: Fx[0,1] —» $>—y with
monodromy f; =y, depends continuously on the isotopy between y and y/'.
Therefore, in Construction 5.12, the map g — h, depends continuously on the

isotopy between y and goyog™!.

ProposITION 5.14. Suppose h € H.(S*—7v, L) satisfies h|F~1g in H.(F,P).
Then h~h in H,(S*—y, L) such that W |F =1p.

Proor. Let g, € H.(F, P) be an isotopy from g,= 1y to g, =h~'. Note that
for all te[0,1], govog '~y in H.F,P). (The isotopy is g,oyog,’,
s € [0,1]) Then by Remark 5.12, h, € H.(S*—v,L) is an isotopy from the
identity to h,. Thus, hoh, € H.(S*—y,L) is an isotopy from h to h'=hoh,,.
Now W |F=hoh ! =1,

CraiM 5.15. Let the homeomorphism ¢: F x[0,1] — F x[0,1] be level
preserving on O(F x[0,1]). Then ¢ is isotopic, rel. d(F x[0,1]), to a level
preserving homeomorphism ¢': F x [0,1] — F x[0,1].
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Proor. This is essentially Lemma 3.5 of [26].

PROPOSITION 5.16. Let h € H_(S® —v, L) be such that h(F)=F.1f g=h|F, then
goyog 1~y in H,(F,P).

Proor. Let ¢: Fx[0,1] —» F x[0,1] be defined by

S tohof (x) if xe Fx(0,1)
p(x) =4 [g(x)Ix0 if xe Fx0
[¥ togoy(x)]x1 if xeFxl1.

Then ¢ € H.(F x[0,1], P x [0, 1]).

We have assumed (by property (2) which h satisfies) that ¢ is already level
preserving on N x [0,1]. Let F = F — P be a compact submanifold such that 0F
=N U A, where A is a tubular neighborhood of y in S and ¢ | (F—F)x[0,1]
=id; let ¢ be the restriction ¢=¢|F x [0,1].

Now, ¢ is level-preserving on d(F x [0,1]), so by Claim 5.15, there is an
isotopy of ¢, constant on d(F x [0, 1]), to a level-preserving homeomorphism.
Thus, there is an isotopy @=~¢' in H.(F x[0,1], P x[0,1]), constant on d(F
x[0,1]), to a level preserving homeomorphism ¢': F x[0,1] — F x[0,1].

Let ¢;: F — F be the restriction of ¢’ to level ¢ (thus, ¢'(x, )= (¢;(x), t) for
(x,t) € Fx[0,1]). Then ¢, € H.(F,P) is an isotopy between @,=g and ¢}
=y logoy; hence Yo@,og~! is an isotopy in H,(F,P) from y to goyog™?.
NortATION 5.17. The centralizer of [h] € # (X, Y) will be denoted #,(X, Y).

DErFINITION 5.18. J: #(F,P) — #(S*—7,L) is defined by J([g])=[h,],
where h, is defined in Construction 5.12.

The map J is well-defined, by the following remark:

REMARK 5.19. Suppose g~g' in # (F, P) and h, € H (S —, L) satisfies h | F
=g Then [h,oh; ' |F]~1g in #(F, P); so by Proposition 5.9, hy.oh, ' ~id in
H.(S*—y,L). Thus, [h,]=[h,] € #(S*—y,L).

It is also easy to check that J is a homomorphism.

THEOREM 5.20. J: o, (F,P) > H#(S*—y,L) is an isomorphism (where
Y € H.(F,P) is a monodromy for the generalized axis y of L<S*—7y).

Proor. By Proposition 5.10, J is injective. By Propositions 5.9, 5.7, 5.16, and
Construction 5.12, J is surjective.
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The map e: #(S*—y,L) — #7(S3,L,y).
DeFINITION 5.21. The homomorphism e: s#(S3—y,L) — #*(S3,L,y) is
induced by extension.

DEeriniTION 5.22. Let © € H.(F,P) be a Lickorish twist (see [8]) about a
simple, closed curve on F, isotopic in F to y.

ReMARK 5.23. [1] is in the center of the group #(F, P).

DEFINITION 5.24. Let G be a group, and let g,,...,g, € G. Then {(g,,...,8,)
G is the smallest subgroup containing g;, i=1,...,n

Recall that ' ={z € C: |z|=1}. Let T=S" x ' be the torus. Define ¢: [0, 1]
— [0,1] by:

[ 0 if 0<e<t
50 = |20 if bsr<d
l 1 if isesd

Define r,,: T— T to be r,,(zy,2,)=(z,€*™,z,€*™). Let R, € H(Tx (0,1)),
i=1,2 be the homeomorphisms

Ry(x,t) = (rsp,0(x),t),  Ry(x,t) = (ro, s0(x), t).

+ CLAIM 5.25. Let T=S" x S! be the torus. Then # (T x (0,1))~Z@Z is freely
" generated by [R], i=1,2.

Proor. Well-known.

THEOREM 5.26. The sequence

1 — (WD IT]) — #,(F,P) £ #(S>—y,L) <> #* (53 L,y) is exact .
Proor. We must show that kernel (eoJ)=([y],[]).

Let h € H,(S* -7, L) be such that [h] € kernel (e). Then there is an isotopy
h,e HS® L,y) from hy=1g to h,=h. Let A be an open, tubular
neighborhood of y in §* — L, such that h has its support in $>— A4; let A’< A4 be
a sufficiently small closed tubular neighborhood of y, such that for all ¢, h,(A4")
c A. Let f, € H(S3,7, L) be an isotopy which has its support in 4, from fy=1¢
to f}, such that for all ¢, f,| A'=h,| A’. (The extension f, of the isotopy h,| A’
exists by the Main Theorem of [13].
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Now, g,=f,'oh, € H(S*-7,L) is an isotopy from g,=id to g, € H,(S>
—9,L). Also, h=h,;=f,0g,; so h=~f,|(S>—y) in H,(S>—1y,L).

Finally, (f,]83~7v) € H.(S*—y, L) has its support in the thickened torus A
—A'. By Claim 5.25, #(4—A')~Z®Z. The free generators map to [h,] and
[h,] under the homomorphism #(4—A4')— #(S>—y,L) induced by
extension. (t is defined in Definition 5.22, and h, is defined in Construction
5.12).

Thus, kernel (eoJ)=<[y],[z]).

The group #*(S3,L,7).

DEFINITION 5.27. #* (83, L,y) — #(y)=Z, is the homomorphism induced
by restriction.

THEOREM 5.28. The sequence
l— <[‘/’]9[t]> - r}f\l/(F’P)e—OJ-’ '”+(S3’L9‘y)_’ ZZ

is exact.

Proor. It only remains to show that if he H* (S L,y) satisfies 1
=[h|y] € #(y), then [h] € image (J). (The exactness of the rest of the
sequence is proved in Theorem 5.26.)

If h|y~1, then h~k in H*(SL,y) such that h'|A=1, (where A4 is
the tubular neighborhood of y defined in the proof of Theorem 5.26. This
is an application of Theorem 10, Chapter IV, Section 6, of [21].) Then
(W1 (S*~v)) € H.(S*~7,L), and [W]=J([H|(S*~7)]).

6. The group of motions .#(S3,L,y).

The main theorem of this section is Theorem 6.8, in which the group of
motions of the link L = S*—y with generalized axis y, is computed to be a Z,,
or trivial, normal extension of a quotient group of the surface homomorphism
group J,(F, P). This provides presentations for many motion groups of links,
since generators and defining relations are now known for all of the surface
homeomorphism groups (also called homeotopy groups).

NotaTioN 6.1. Let AcS>—L be a closed, tubular neighborhood of y.
The subspace (S*—A4,L)c=(S%—y,L) is a strong deformation retract of the
space (S*—y,L); therefore, the inclusion i induces an isomorphism
iy H(S*—A,L)—> #(S*—y,L).

Let x € A—y be a point, and let E: #(S>—A4,L) — H#(S*—x,L,y) be
induced by extension.
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Let #(S>—»,L,y) — #(S% L,7) be induced by extension.

Recall (Corollary 1.12) that 8: 4 (S3— »,L,y) — #(S*— ,L,7), defined by
d([f1)=L[f.], where fis a motion of (L,y) in S*— , is an isomorphism.

Finally, let {21} be the motion of S which rotates S* one full rotation. Thus,
[2n] € n, (H(S®); 1g)~Z/2Z =Z, is the generator.

DEFINITION 6.2. The homomorphism K: #(S*—y,L) — #(S3 L,y) is the
composition:

H (S =y, L) 2 #(SP—A,L) E> #(S?—x,L,y) L5
g "”(Ss_ *,L,)’)"’ ./”(S3,L,')’) .

The image of K.
Let .#(S%L,y) - #(y) be the composition . (S3 L,y) 2> #*(S3 L,y)
— J(y), where the last map is induced by restriction. Clearly, 3 (y)~Z,.

PRrOPOSITION 6.3. The sequence
H(SP—y, L)L M Ly) > Ky = Z,

is exact.

ProOF. Let f'be a motion of (L,y) in S® such that f, |y~ 1,. Then there is an
isotopy g, € H(S3, L,y) from g, =14 to g,, such that g, | 4 =, | 4, for the closed
tubular neighborhood A= S*—L of y (by [21]). Now, g is a stationary motion
of (L,7) in 83, s0 f'=fog™! is a motion of (L,y) in S* which is equivalent to f.
But fyogi!|(S°—7) € H(S3~y,L), since fiogi'|A=1g; so [f3](5*—y)]
X5 [f"] € #(S3 L,y), where f” is a motion of (L,7) in $* such that f} =f".

By Theorem 1.11, the sequence

ny (H(S%); 1gs) = H(S3, L, y) &> #* (S L,y)

is exact. Since o[ f']1=0[f"], either f'=f" or f'={2n}of".
Finally, [2n]=K([h,]) (see Proposition 6.7). So either K([f}|(S>—7)])

=[f"1 or K([h,1-[f11(S*=])=[s"]. Since [f']J=[f], this completes the
proof.

The kernel of K.

Let 1,y € H (F, P) and {[y],[t]) = o# (F, P) be defined as in Definition 5.22
and the introduction to Section 5, and in Definition 5.24.

NoTATION 6.4. Let A be an open tubular neighborhood of y in §3— L, such
that h_has its support in A4, and let A’ = 4 be a sufficiently small, closed tubular



MOTION OF LINKS IN THE 3-SPHERE 191

neighborhood of y, that h | A'=h, | A"=1,. Let ¥ € FN A’ be an interior point,
and let Bc A'—y be a ball centered at =.

Let 7, € H.(A,L) be an isotopy from 1, to h,| A. (We may assume 7, | (4
—9y) € H.(A—7y).) Let y, € H (A, L) be positive rotation of A’ about y. (We may
assume ¥, | (4 —y) € H.(4—7))

Let #(t) be the number of signed rotations which B executes in S during t,;
let #() be the number of signed rotations which B executes in $* during y,.

CLAIM 6.5. Under the map # (A—7y) — #(S*—1v, L) induced by extension,

(1) [z 1 (A=y)] — [h] and
2 Wil (A=n]— [hy-1].

Proor. (1) follows by definition. For (2) consider the extension h € H (S?
—y,L) of yy, € H.(A—7y). It is necessary to exhibit an isotopy H, € H,(S>—1y, L)
from hy-: to h.

Let FF=FN A’ and let F,=F — A. Define H,: F x[0,1] - F x[0,1] such
that H,| (F,x[0,1]) is the map

.(xs) = (W~ '(x),s+t) if s+t=1, x e Fyu
ST Nk, s+ t—1) if s+t>1, xeF,,

and such that H,| (F' x [0,1])=id.
Define H,: S*—y — §3—y by

_ (foH,of "'(x) if xeS*—F
Hi(x) = {fof{,(x,O) if xeF.

It is possible to define H, so that H, € H,(S>—y) varies continuously with t.
Now Hy=[h,-1] and H, =[h].

CLAIM 6.6. #(1)=#(Y)=1 (mod2).

Proor. #(¥)=1 by definition of y,.
#(r) =1 (mod 2) by the Roller Coaster Lemma ([14]).

(The tracks of the roller coaster are two parallel, simple closed curves in A4,
which are isotopic in F, to y. The roller coaster car may be thought of as the 3-
ball B. Send the car once around the tracks; the number of rotations which it
makes in S is #(1))

ProrosiTiON. 6.7. In the exact sequence
1 — kernel (K) = #(S>—y,L) X #(S3,L,y),
kernel (K)<=J(K[Y], [1D)).
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[v] XL [2n] e #(S3,L,y), [y] &L [2n] € #(S3L,y).

PRrOOF. Let e: o (S3—y, L) — H#(S3,L,7) be induced by extension. Then e is
the same as the composition

H(SP =y, L) M(SL,y) 2> #*(S%L,).

(See Definition 6.2.) But by Theorem 5.26, kernel (e)=J({[¥],[t]>). This
proves the first part of the theorem.
Examination of the map 0~ *: # (S — *,L,y) — #(S*— ,L,7y) reveals that

[h] 5 [27%0 € (S, L,y),  [hy] 55 [20°W e #(SP L) .

Now by Claim 5.6, #(1)=#(¥)=1 (mod2). Since 1=[2n]% € #(S3,L,) (see
Notation 6.1), this completes the proof.

THEOREM 6.8. There is an exact sequence
- ‘WW(F’P)/(*) - /((SB,L,V) - '#(y) = ZZ )

where () consists of the relations:
(1) [x1=[v]
@ [1*=1
(3) [t1=1ifand only if L Uy is a link of the type listed in (1)-(4) of Theorem
3.7.

Proor. By Proposition 6.3, the sequence:
1 — kernel (KoJ) — #,(F,P) XL 4 (S3L,y) - Z,
is exact. By Proposition 6.7, kernel (KoJ)=<{[¥],[7]), where
[1]1 %=L [27]  and  [y] -5 [27].

Since [2n] is the generator of n, (H(S%); 1), 1 =[2n]% € #(S% L,y). Thus far,
relations (1) and (2) are accounted for.
To complete the proof, we apply Theorem 3.7.

7. Homeotopy groups of surfaces as branched covering spaces.

It is apparent from Theorem 6.8, that an understanding of surface
homeomorphism groups is necessary in order to compute motion groups of
links. The main tools in this section are Claims 7.2, 7.3, which compare the
symmetric subgroup (with respect to covering translations) of the homeotopy
group X (F) of a branched covering space F — T, ,, to the braid group of the
branch points in T, ,, and # (T, ,). (Here, T, , is the n-punctured 2-sphere).
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Applications are made to the particular branched covering spaces defined in
Section 2 (on torus links), which will then be used in Section 8. Finally,
presentations are given for the n-braid groups of the disk and the annulus.

NotaTiON 7.1. Let #7/(M, N) denote ny(H(M, N)). (This is the analogue of
# (M, N), without compact support required for maps or isotopies. The letter f
stands for “free”.)

As in Notation 5.17, if [g] € #/(M,N), then let ,}f{(M,N) denote the
centralizer of [g] in #/(M,N).

Cramm 7.2. Let T, , be the 2-sphere with n=1 points removed. Let n: F
— T,,, be an m-fold, cyclic branched covering space, with branch points
Pis- - -5 Dy Where k2 1. Assume that either n=2 or k=2. Let p; have branching
index m;>1, where m;#m; if i%j. Finally, let t € H(F, p,,...,p,) generate the
cyclic group of covering translations.

Then the map

‘#f(TO,mpl,- . -’pk) - L;ftf(F)/[t]

induced by lifting, is an isomorphism.
Prooor. This follows from Theorem 8.2 in [27]. (See also [10], [23].)
In Claim 7.3, let @,: R? —» R? be as defined in Notation 2.1.

CraM 7.3. Let n: F — R? be an m-fold, cyclic branched covering of R?, with
branch points p,,. . .,p, € R2. Let p; have branching index m;> 1, where m,%m if
i%j. Let X<R*—={p,,...,py} be a collection of n=1 points, and let X =n"1(X)
 F. We will assume that X U {p,,. . ., p,} <int (D), where D is the unit disk in R2.
Finally, let ¢ € H,(F,X) be the unique lift of ¢, € H.(R?) which has compact
support in F.

Then the map

HRLX,py,. .., p) = H4(F,X)
induced by lifting, is an isomorphism.
ProoF. Let the homomorphism H,(R% X,p,,...,p) — H.(F,X) map each
h: R? - R? to its unique lift i € H,(F,X) which has compact support in F.
Clearly, this induces a homomorphism #(R%, X, p,,...,p) — #(F, X).

Next, note that ¢ is isotopic, in H(F, X), to t, where t generates the cyclic
group of covering translations of n: F — R2 Let.f=t| (F — X). Then, by Claim

Math. Scand. 50 — 13
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7.2, the map
HIR*—X,p,,....,p) = HNF—X)/[f]

induced by lifting, is an isomorphism. This may be reformulated, the map
HI(R% X, pys. ., p) — HH(F, X)/[4]

induced by lifting, is an isomorphism.
In the commutative diagram:

1 1 1

l ! l
Ado]) —=— (L[oD LoD

! I L

HRELX,py,. .00 — H4(F,X)— HL(F,X)
l l
"ff{RZ,X’plapk) = fj(}:(Fa X)/[(»a]
! l
1 1

the vertical sequences are exact, and all the horizontal arrows, except for

H(F,X)—» #/(F,X) and <{[$]) — {[$]), are induced by lifting. The

isomorphism <{[¢,]1> — {[@]) is a consequence of the hypotheses n=>1, k= 1.
It follows from diagram chasing that the map J#(R2X,p,,...,D

— H 4(F, X) is injective, and the composition #(R2, X,p,,...,p)

— H4(F, X - #g(F ,X) is surjective. Now the sequence

1 ([§"]) — H4(F,X) > #LF,X) - 1
is exact. Let g € o ;4 (F, X). Then there is g’ € #(R%, X, p,,...,p,) such that g’

— [¢™]°g, for some integers s. Then [¢ ~™]g — g, and, therefore, the map
H(RL,X,py,....p) = #y(F,X) is surjective.

Applications.

In Application 7.4, let the pq-fold, cyclic branched covering space n: F
— R?, branched about 0 € R? with branching index p, and about 1 € R? with
branching index g, be defined in Definition 4.8. (We think of R? as being

the complex plane). Let P,, 4 be as in Notation 49, and let
X eH,F,P,P,..., P, A) be defined as in Remark 4.11.
APPLICATION 7.4. Suppose q>1. Then the map
.9?§<F,P1, U P,‘> /[2] - %f(F, U Pk) / [z]
k=2 k=2

induced by restriction is an isomorphism.
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Proor. Case 1 (p>1). In the commutative diagram:

xg(F,Pl, U Pk>/[21 - f%(ﬂ U Pk>/[21
k=2 k=2

~

R

ff(kl, L, U 1,0),
k=2 k

the vertical arrows are induced by lifting, and the horizontal arrow, by
restriction. The vertical arrows are isomorphisms by Claim 7.2 (where T, ,
=R2—-Up_, 1/k). The precise conclusion of Claim 7.2 is that the maps

H(T,,,,1,0) > Jff(F—— U P,,,P1>/[2]
k=2

and
H' (T, 1,0) — Jff(F— U Pk>/[z]
k=2
induced by lifting, are isomorphisms.) Application 7.4 follows.

Case 2 (p=1). In the commutative diagram:

Jf§<F, 2 ﬁ,‘,ﬁl)/ma #4(r. () a)/m

k=2

C=

k

il

~

Mf<R2, U 1, 1) ,
k=2 k
the vertical arrows are induced by lifting, and the horizontal arrow is induced

by restriction. As in Case 1, the vertical arrows are isomorphisms, which gives
the desired conclusion.

-4

In Application 7.5, let m,: R? — R? be the p-fold cyclic covering branched
about 0 € R? with index p, and let ¢,: RZ — R, t € R, be defined in Notation
2.1. Note that n,((1/k)P,)=1/k.

AppLICATION 7.5, If p> 1, the map:

#(ry, (Lo e, (R () 1p
xSy K Par\ "1 kP

induced by lifting, is an isomorphism.
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Proor. The diagram:
RZ Paip Rz
1% 17
RZ Pqg ) R2
commutes; thus, there is a homomorphism:
LI | 5 no1
* #, (R"', U —,o>a >, (Rz, U ——Pp,0>
q k=1 k a/p k=1 k

induced by lifting.
Now, ¢, generates Center (# (R%4,Us_,1/k,0). (See Theorem 7.10).
Therefore,

9
=1 k=1k

x,,,q(m, U %,0) = x<R2, U 10).

If p>1, because g.c.d. (p,q)=1, there exists an integer k such that kg=1
(mod p). Then

(q’q/p)k = Qpr1pP1/p = PuPuyp >

for some integer k. Since ¢, generates Center (# (R?,Uj_, (1/k)P,)), this
implies that

LA | no1
”wm(Rz’ kL—-J1 -]EPP> = ”wm(Rz’ kL=J1 EPP> :

Finally, in the commutative diagram:

k=1 k=1
l: l:
LA | no1
2 1 _ 2 1
e (.0.50) a0 20)

the vertical arrows are the homomorphisms (), for g=1 and g. Since p> 1, the
vertical arrow on the left is an isomorphism, by Claim 7.3. Application 7.5 is
immediate.

The braid groups of the disk and the annulus.

NoraTtioN 7.6. Let B,(R?), B,(R?>—{0}) denote the Artin n-braid group (see
[1]-[5]) and the n-braid group of the annulus, respectively
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REMARK. It was proved in [20] that:

B,(R?) = Jl(RZ, U %) and B,(R*—{0}) = J{<R2~.{0}, U %)
1

k=1 k=

DeriNiTioN 7.7. Let o) € B,(R?) and o; € B,(R?—{0}), j=1,...,n—1, be
represented by the braid (motion) which interchanges 1/j and 1/(j+1), as in
Figure 7.8.

Let ¢; € B,(R*—{0}),j=1,...,n, be represented by the braid (motion) which
winds the point 1/j about 0 € R? as in Figure 7.8. (We will let ¢; and ¢; denote
both the motion, and its equivalence class.)

Figure 7.8. The braids ¢;, j=1,...,n—1.

i
1/(j+1)

The braids g;, j=1,...,n.

1/j

THEOREM 7.9. (Due to E. Artin). The group B,(R?) is:
{o,i=1,...,n—1: 0, 0; if li—=jl22, 06i6,,,0,=0,4+10i0;+,
if 1Sign-2}.
Proor. See [5].

THEOREM 7.10. The group B,(R*—{0}) is:

g; <> 0 if [i—jlz2,
0i0i4+10; = 041004+, if 1sisn-2,
Qi <> Q; if 154, j<n,
Qi <0 if j+i—1,

Qj+1 = 0j...0,010,0:0,...0; if 1SjSn—1}.
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ProOF. A presentation for this group is given in [8], and the above
presentation may be deduced from this, or any other known presentation.

8. Motions of torus links in S3.

As an application of Theorem 6.8, I will now calculate the group
M (S, L. ngy) Of motions of the torus link Lup, ng of type (np,nq), in §3. 1 will
give generators and a complete set of defining relations for this group.

Recall the definition of L, ,,, the axes a and g for L, ,,, and the map

no1 L |
Ogip' (RZ, U —Pp>—> (Rz, U =P,
k=1 k k=1 k
from Notation 2.1.

The key theorem.

To increase the readability of the argument which follows, I will present
the proof of Theorem 8.1 in its most natural order, which is backwards.

THEOREM 8.1. Suppose q>1, n>0. Then the map
‘/”(Saa L(np, nq)® B) - '/”(Ss’ L(np,nq))

induced by restriction is an isomorphism.

Proor. In the commutative diagram

1 - <[27T]> — "”(Ss’ L(np,nq)) __(3_) ”+(S3, L(np,nq)) - 1
1= ! =
1 - <[27t]> R "”(83’ L(np,nq)9 ﬂ) _(3_) .%p+ (S3, L(np,nq)’ B) - 1 3

the vertical arrows are induced by restriction, and the rows are exact, by
Corollary 1.13.

The vertical arrow on the left is an isomorphism, by Theorem 6.7. The
vertical arrow on the right is an isomorphism by Lemma 8.2. By the Five
Lemma, the map #(S> L, ng B) = #(S*, L. ny) induced by restriction, is
an isomorphism.

Lemma 8.2. If g>1, n>0, the homomorphism

H (Ss, L(np,nq)’ p) — H* (S3’ L(np, nq))
induced by restriction, is an isomorphism.
Proor. Let L, ., have components K,,. . ., K,. Let the homomorphisms

‘#+ (Ss’ L(np, m;))’ ‘#.’- (S3’ L(np.nq)’ ﬂ) - S(n)
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to the group S(n) of permutations of n objects, map each homomorphism A to
its permutation of the components K,. .., K,.

Now, in the commutative diagram which follows, the rows are exact, and
the vertical arrows are induced by restriction:

1— #*SLK,,...,K,) = H#(S*Lopngy) — Sh)
1 1 T
1o #H (S Ky,. . . KpB) = H (S Ligp,ngy B) = S().
It follows from the definition of the motions of L, ,,, in S* in the next section,
that the homomorphisms #*(S* Ly n), # " (5% Liwp. ngy B) = S(n) are

surjective. It is a consequence of Lemma 8.3, that the vertical arrow on the left
is an isomorphism. Lemma 8.2 now follows from the Five Lemma.

In Lemma 8.3, let L,, ,,,=K,;U ... UK, have components K;.

LemMma 8.3. Suppose q>1, n>0. Then the homomorphism
%*(83, U K,.,Kl,ﬁ>—> ]t”(S:’, U K,-,K1>
i=2 i=2

induced by restriction, is an isomorphism.

ProoF. Let n: F — R? be as in Definition 4.8, and P, and A be defined in
Notation 4.9. Let X: F — F be as in Remark 4.11.

By Remarks 4.10 and 4.11, the component K, is a generalized axis for the
link K, U ...UK,, with monodromy X € H.(F,P,,...,P,). By Theorem 5.28,
the sequence:

- ([ZL[) — yfz<F, .L:JZ Pi> VAN ;f+<s3, Qz Ki,K,) ~z,

Pi> = sz(F, ‘ P.-) / (7]

(see Notation 7.1 and Definition 5.22), we may rewrite the exact sequence:

is exact. Since

-

xg(a

[t

1

(%) L= #4(r, ) Pi)/[z] 5 .;w(ss, U K,-,K1> - Z,.
i=2 i=2

Again by Remark 4.11 and Corollary 4.13, the component K, is a generalized
axis for the link [U"_, K, JU B, with monodromy X € H,(F,P,,...,P,). By
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Theorem 5.28, the sequence:

1 - ([ZLI) — %;(F, U P, P1> - x*(sa .-L:Jz K. Ky, /}) -2,
is exact. Rewriting this exact sequence using

%£(Fa Pi1ﬁ1>=fE<F’UPbP1>/[T]’
i i=2

13

Cs

2

we have:
(%) 1— Jf§<F, U Pi,Pl)/[E]—» J(*(S{ U Ki,Kl,ﬁ>—> Z,.
i=2 i=2

We now have a commutative diagram, in which the rows (), (**), are exact,
and the vertical arrows are induced by restriction:

(%) | — x’g(F, U P,-)/[Z] SN yf+(s3, () K,.,K1>—-> Z,
i=2 i=2
n N Tn T:
(%) 1 - Jfﬁ(F’ ‘92 Pi,ﬁl>/[2] - .}f+<S3, .92 Ki’KhB) - Z,.

—

By the definition of the flip motion fin the next section (The motions of L, ,,,
in §3), it follows that f; maps onto the generator of Z,; whereby the maps

‘#+<S3, {Uz Ki, Kl)a x+<s3’ ‘UZ Ki:K1’ﬂ> - e%(1<1) = ZZ

are surjective. The vertical arrow on the left is an isomorphism by Application
7.4. Lemma 8.3 now follows from the Five Lemma.

The motions of L, ., in S
1. o,(p,q), i=1,...,n—1: interchange K, with K, .
2. 9;(p,q), i=1,...,n: rotate K; by 2n/p about the axis a.

The motions o;(p,q), i=1,...,n—1, are defined as follows (and the motions
0:(p, q) are defined similarly):

Let the motion o, i=1,...,n—1, of Uj_, 1/k in R*—{0} be given by
0,,.(p) € H(R%0), t € [0,1], where o, ,(p) is the unique homeomorphism with
compact support, which makes the diagram:

R2 6...(p) R2

i 7

RZ Ti,¢ R2
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commute. (See Figure 8.4). (Clearly o,(p) and g,;(p) are symmetric with respect
to rotation by 2m/p.)

Figure 8.4.

a;(p) 2:(p)

Qi

-—
B
<
-—
A
<

We wish to extend the motion a,(p) of [U?_, (1/k)P,] in R2, to a motion of
the torus link L, ,, in $* —o— B. Recall from Example 4.4, that f is an axis for
the link L, ., U o, with monodromy

Pu: (RZ, LL:JI %Pp] u o) - (RZ, [kgx -};Pp] u 0) .

Since the motion o,(p) commutes with the monodromy ¢, at every ¢, the
extension is possible by elementary arguments. We will denote the extension by
Gi(P’ q)

ReMark 8.5. The motions o,(p,q), i=1,...,n—1, g;(p,q), i=1,...,n, are
invariant under the rotation ry,,,: S* — S* of the sphere (defined in
Notation 2.1).

REMARK 8.6. Certain products of the motions g;, i=1,. . .,n, can be described
as follows (for readability, I will exclude the pair (p, q) from the notation; but it
must be kept in mind that when I write g,, I intend to write g;(p, q)):

1) @10, - .. @, rotate all of L,
2) (0,0, ...0,) ': rotate all of L

by 2n/p about a.
by 2m/q about f.

(np, nq)

3. fiflip Ly, ng)
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The motion fis a rotation of S3 by =, which carries o to ™!, B to 71, and

Ly ngy 10 itself with opposite orientation on every component.
fi € H(S?, Liyp,ng) is the map

(re’®, se'?) — (re %, se %),

where S3=C x S'US* x C/(re®®, ') ~ (¢'®,r ~'¢'%), as in Notation 2.1.
We are now ready to state the main theorem. In Theorem 8.7, let a;(p, g),

2:(p, q) and fdenote both the motion of L, ,,, in $3 and its equivalence class in
M(S?, Ly ng)-

TueoreM 8.7. (The Main Theorem). Let .#(S> L, .,) be the group of
motions of the torus link L,, .., of type (np,nq) in S3.

Generating motions for this group are o,(p,q), i=1,...,n—1, 0,(p,q), i
=1,...,n, fand [2n].

A complete set of defining relations are:

L. oi(p,q) < ai(p,q) if li-1|22.
2. 0i(p,9)0:+1(p,Qo:(p,q) = 0:41(p,@Po:(p,9)0:+1(p,q) if 1Sisn—2.
3. 0i(p.q) < ¢i(pq)  if 1Sij=n.
4. 0:(p,q) « o;(p.q) if jFi—1L
5. 0j+1(p,9) = 0;(p,q) - .. 02(p,q)a,(p.9)e1(p,9)0,(p,9)02(p.q) - - . ;(P,q)
if 1sjsn-1.
6. f2 = [2n].
7. (01(p.9)02(P,q) - - - €u(P, Q) = [27] = (0:1(P, D22(P,q) - - - 24P 9) " .
8. [2n]PT9(mod2) = 1.
9. floip)f = 67 (pg), i=1,...,n—1.

10. f7leip,@)f = o '(pq),  i=1,...,n.
1L (fp=1) g, = 1.
12. (if q=1) ¢, = 1.

Proor. Suppose g>1. By Theorem 8.1, the homomorphism
'/”(SJ’ L(np. nq)’ ﬂ) I VI{(SS, L

(np, nq))

induced by restriction, is an isomorphism. We will compute # (S, L, o), B)-
By Theorem 6.8, and Example 4.4, we have an exact sequence:

L
(*) 1 - <[(pq/p]9 [t]=[0‘]> = '#wq/‘,(Rz’ kL=Jl EPP) _L(‘") (839 L(np,nq)a ﬁ) —» 2/2

where Z/2Z = # (f), and the motion f maps to the generator of 3 (f).
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Cast 1. (p>1). By Application 7.5, the homomorphism:

LS| LS|
K4 RZ - &~ 2 _
( > kL—;-JI k’ O> - %‘qup(R ’ kL=Jl k PP)

induced by lifting under the p-fold, cyclic branched covering

LA LA |
n,: <R2, ktzjl EP”> — (RZ, kL:Jl —> ,

branched about 0 € R?%, is an isomorphism. The exact sequence (*) then
becomes:

n

1
1 = ([og). [0,]> — f("\z, kL=Jl E’0> = M (S*, Linp,ngy B) > Z/2Z,

where the map (R%,Uj_, (1/k),0) —» #(S> L., B) is the composition:
LA | LS|
(R 0 30) > (ke 0 ) > 0 L)
k=1 k=1

Now, #(R?,Ur_ | (1/k),0) is the n-braid group B,(R?—{0}) of the annulus. A
presentation for the latter group is given in Theorem 7.10. Since, by the
definition of o,(p,q) and ¢;(p,q), o; — 0,(p,q) and ¢; — ¢,(p,q) under the map:

no1
f(RZ’ kL.—.Jl E’()) - ‘/”(Ssvl‘(np'"q)’ ﬂ) ’

it follows that the motions g,(p,q), i=1,...,n—1,0,(p,q),i=1,...,n,fand [2n]
generate .4 (S, L, . B)- This also accounts for the defining relations 1-5 of
the subgroup, image (K).

Relation 6 follows from the definition of f. Relation 7 follows from Remark
8.6. Relation 8 is proved in Theorem 3.7. Together, relations 1-8 are a complete
set of defining relations for the subgroup, image (K), by Theorem 6.8.

Relations 9, 10 are geometrically obvious. Since Relations 11, 12 do not
apply, this completes the proof of this case; for, Relations 9, 10 define the
particular normal extension of image (K), which defines the group
M(S®, Ly nar B) if p,g>1.

Case 2. (p=1). Since [¢,] generates the center of the group
#(R%,Us_, (1/k)), the groups »# (R%,U;_, (1/k) and #, (R?,U;_, (1/k)) are
identical. Thus, the exact sequence (%) becomes:

1
1 - [ [o,1) — %(RZ, kU E) K M(S? Linp.ng) = Z2Z .
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Now, #(R2,Ur_, (1/k)) is the n-braid group B,(R?) of the disk, a presentation
for which appears in Theorem 7.9. Since, by the definition of a;(p,q), o;
— 0;(p,q) under the map:

LA |
%(Rz’ kU E, 0) - Jl(s{ L(np,nq)’ ﬁ) >

=1

it follows that a,(p,q), i=1,...,n—1, are generating motions for the group
M(S?, Lip. ngy B), and also that g,=1. This also accounts for the defining
relations 1 and 2 and 11, of the subgroup image (K). The rest of the proof is as
in Case 1.

Now suppose g=1. The homeomorphism h(z,,z;)=(z,,z,) of $*=C
xS'US! xC/~ (as in Notation 2.1), carries a to §, f to «, and L, ,, to
Liug, npy If p>1, we may apply Theorems 8.7 to the torus link L, ., There is a
transformation of the motions as a result of conjugation by the homeo-
morphism h, (#(S>, Lig np) = (S, Linp.ng) is the transformation [f]
— [h™'of,oh], where f,, t € [0,1], is a motion of L, ,, in S*) which may be
computed without too much difficulty. I leave it to the reader to verify that the
resulting presentation of .#(S> L, ,,) is equivalent to that of Theorem 8.7.

If g=1, p=1, then each K, i=1,...,n, is unknotted; in fact, L , is
equivalent (ambient isotopic) to the link L, _, ,_;,Up in S>. Thus, setting
0,-1(p,q)=1=09,(p,q), Theorem 8.7 gives generators, and a complete set of
defining relations for the motion group (S Ly, _1 -1y P

It is easy to verify that relations 1-12 hold in .#(S>, L, »), and that they
include a complete set of defining relations for the subgroup
M(S3, U1 K, K,), by the previous paragraph. Since the addition of the
motion o,_,(p,q) (Where p=g=1) allows for all possible permutations of the
components K,,...,K,, relations 1-12 must be a complete set of defining
relations for .#(S*, Ly, ,)-

CoRoLLARY 8.8. The group (S L, ,) of motions in S* of the torus knot
L(qu) Of type (pa CI), is

“”(SS,L(p.q)) = {f (f2)p+q(mod2)=l} ;

where the generator f rotates S* by =, taking L, 4 to itself with opposite
orientation.

Proor. Set o,(p,q)=1 in Theorem 8.7.
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