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SOME INFINITE FAMILIES
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Dedicated to the memory of Adrienne Hand

0. Introduction.

Since Milnor first calculated the complex bordism ring MU, [6] and thus
initiated the study of the bordism functor MU (), its algebraic properties have
been exhaustively investigated. However, many geometric questions concern-
ing the ring remain unanswered, and, with current techniques, unanswerable.

We consider here one such question, inspired by work in [4] and [11]
connected with finding the least embedding codimension of a representative
for a given bordism class. More precisely, we investigate those bordism classes
carried by hypersurfaces, i.e. submanifolds of R"*! with codimension 1.

The structure defined by these classes seems interestingly rich, and this is a
natural consequence of our observations in section 1 relating the problem to
computing 7, (Q(S' A SO/U)). Of course, this also tells us that we cannot
expect a complete solution!

However, the methods we use, and the small gains we make, are entirely
inspired by the geometry of MU, and might not otherwise suggest themselves
when attacking the homotopy problem by more conventional means.

In section 1 we give a precise formulation of the hypersurface question, and
relate it to Q(S' ASO/U) via a Pontrjagin-Thom construction. In section 2
we discuss in detail the topology of our hypersurfaces, and explain how to
describe their U structures.

We develop our calculational machinery in section 3, showing in particular
how the problem collapses over the rationals, and proving an interesting result
(3.8) on hypersurfaces which are stably a wedge of spheres.

Our main section is section 4, where we investigate hypersurfaces which arise
as the boundaries of regular neighbourhoods of embedded 2 cell complexes. It
is here that we uncover the infinite families noted in our title. An interesting
relationship emerges with the well-known summands ImJ of the stable
homotopy groups of spheres.
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In the concluding section we tie up some loose ends, and describe work
currently in progress to improve our understanding of the hypersurface ring.

It is a pleasure to acknowledge the crucial assistance rendered by Sam Gitler,
both in the way of suggestions for section 4, and hospitality at the
Inst. Politecnico Nac. The referee was also most helpful in preventing us from
obscuring our results by clouds of unnecessary elaboration.

1. Preliminary constructions.

Consider, by analogy with [4] and [11], the bordism group QY, of n-
manifolds M embedded in S"** for some fixed k, and with a U structure (i.c. a
lift to BU) on their stable normal bundle. The bordisms are required to be of
codimension k also, in S"** x I.

The images of QY , in MU, we shall denote by F%. For stability reasons F2"
=MU,,, so {F% : k=0,1,2,...} gives a finite filtration of MU, by increasing
subgroups. Moreover, with respect to the cartesian product structure,
Py FLe Py

Note that F% arises from QY , merely by allowing the bordisms to be
arbitrary U manifolds.

We are interested here in the groups F,. For a detailed analysis of the higher
filtration groups, see [2]. It suffices here to note

(1.1) ProposiTION. Y | is a ring, and each QY , is a module over this ring for
k>1.

Proor. Each x € QY, is represented by some hypersurface M"<S"*!
carrying a U structure (U-hypersurface, for brevity). Similarly, y € QE,,( is
represented by some N™<S™*k

So xye Q,‘,{Lm‘ «+1 1s represented by the product U-structure on M"x N™,
But M" is oriented by its U structure, so there is a compatible embedding M"
xR<=S"*! since any hypersurface has trivial normal bundle. So we have

M"x N™ < Manm+k = ManXRm+k~1 - Sn+1me+k—l .

This yields an embedding in S"*™** which on suspension is isotopic to the
product embedding M"x N"<S"*m+k+1 S0 xy e QY . .

Note that the construction also applies to bordisms, and therefore is
independent of the representatives chosen for x and y.

Restricting to k=1 gives the first part of the result: the second then follows
by choosing arbitrary k.

(1.2) CoroLLARY. F, is a graded subring of MU ,, and F%_is a module over this
ring for k> 1.
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Proor. Apply (1.1) to images in MU,,.

Now consider F9, awhile. The only closed codimension zero submanifold of
S* is S" itself, so Q,l,fo;n,,(SO/U) and F? is represented by bordism classes
containing U-structures on S". This is precisely the group ImJ,=MU,
determined in [8], being the image of J: n,(SO/U) - MU,. The result is

(1.3) PROPOSITION.
ImJ,, =Z ifnodd
=0 ifneven.

In addition, if n=1 or n=3(4), the group is a direct summand, whereas if n> 1
and n=1(4) it is divisible by 2.

Also in MU,, as explained in [8], there is the subring JS consisting of the
image of the stable J homomorphism JS: ni (SO/U) - MU, This contains
elements representable on frameable manifolds.

(1.4) NotaTioNn. Let Hyp, denote the subring FL, <MU,, and let RImJ
denote the polynomial subring generated by ImJ,.

(1.5) PROPOSITION. There are inclusions of subrings
RImJ, < Hyp, < JS.

Proor. The first inclusion holds since a product of spheres is a hypersurface,
and the second since a hypersurface is always frameable.

One of our main interests is the extent to which the above inclusions are
strict.

Before proceeding, it is important to record the homotopy interpretation of
the above geometry. We shall write QMU (o0) for the space lim Q2"MU (n),
and QX for the space lim Q"(S" A X).

Now recall (e.g. from [8]) the commutative triangle

SO/U

Q*MU (00)

Q(SO/U,)

where jS is the infinite loop extension of j. Then on homotopy groups Je=J,
whilst j5 =J5.
We may restrict j5 to a map j' defined on Q(S' A (SO/U),).
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(1.6) ProposITION. There is an isomorphism
¢: QY, - m,(Q(S' ASO/U,),

and the map 95),1 — MU, is induced by j (and so may be written as J' =j,).

Proof. To define ¢, suppose given a U-hypersurface M <=S"*!. It has
normal bundle trivialised by the orientation, so the U-structure corresponds to
a map v: M — SO/U. Performing a Pontrjagin-Thom collapse ¢ onto a
tubular neighbourhood of M yields the composition

S — S' A M, — S' A SO/U, .

This process sends bordisms to homotopies, so, after adjointing, ¢ is well
defined.

To construct ¢ ™!, start by adjointing a map S" — Q(S! A SO/U.) to a map
S"*! — S! ASO/U,. Making this transverse to SO/U produces (up to
bordism) an oriented hypersurface M x R=S"*!. M is equipped with a map
into SO/U, applying which to the normal line yields a compatible U-structure.
Such a ¢! sends homotopies to bordisms, and so is well defined.

Clearly ¢ and ¢ ~! are mutually inverse, whilst j forgets the restrictive nature
of the bordism.

The other filtration groups F% have a more complicated homotopy
interpretation, fully documented in [2].

Once (1.6) is established, we should note that the product structure in QY ,
is induced by smashing two homotopy classes together via the map

u: Q(S' ASO/UL) A Q(ST ASO/U,) — Q(ST ASO/U,) .
u is defined on the pair (/;,1,) to be the composite
Sl T’ S1 A SO/U+ W St A SO/U+ A SO/U+ TAE St A SO/U+ .

Under j', u maps to A on Q*MU(o0) (since on spheres, A and composition
are stably homotopic).

(1.7) Nores. (i) So far as Hyp,, and Ji are concerned, it is sufficient to limit
attention to

Q(S! A SO/U)

QMU (00)

Q(SO/u)
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and discard the disjoint base point, since =, (QS°) is torsion (in positive

dimensions) and so maps to zero in MU,
(ii) Since (SO/U, @) is an infinite loop space (e.g. see [5]) there are retractions

oSO —5

which exhibit 7, (SO/U) as a direct summand of QY , and of n5,(SO/U). Thus
ImJ, is a direct summand of Hyp, and J3.

Q(S! A SO/U)

The geometrical significance of these facts will become clear in section 3.

To conclude, we explain how the complementary summand to =, (SO/U) in
QY | (and hence to ImJ, in Hyp,) has an interesting interpretation.

For any topological group G (and in fact for any loop space), G acts on the
join G*G to give a principal G bundle

G- GxG—>S'AG

(see [7]). The projection is the hopf construction H(m) on the group
multiplication m: Gx G — G.
Extending the sequence, we obtain a fibration

QG*G) - QS'AG) - G

with splitting map G — Q(S! A G) the standard inclusion.

Applying this to G=SO/U, r becomes r' of (1.7). We deduce

(1.8) PROPOSITION.

QY| = n,(SO/U)® n,(2(SO/U *SO/U)).

Hence, under J', we obtain a splitting of Hyp,. It is convenient to label the
second summand as J;. So we have

(1.9) COROLLARY.

Hyp, = ImJ, ®J; .

2. The topology of U-hypersurfaces.

We now investigate some simple properties of our hypersurfaces.

Suppose that M =S"*! is an oriented hypersurface, which we may assume
connected when studying Q(S! A SO/U). M determines a division of S"*! into



154 ANDREW BAKER AND NIGEL RAY

two compact submanifolds 4 and B, such that S"*'=A4UB and M=ANB,
their common boundary. One of these, say A, is distinguished by the
orientation of M.

As CW complexes A and B have dimension <n, and they are n-duals in the
sense of Spanier, admitting duality maps

0:8""' 5 S'AA4AB and ¢:S'AAAB- St

Vice versa, given a reasonable embedding of a complex A’ in S"*!, we may
thicken it into a regular neighbourhood A and take its boundary M, an
oriented hypersurface. Then B=S"*! —int (A4) is an n-dual to A, so we shall
label it henceforth as DA.

Note that the hypersurfaces described above are oriented (and, of course,
framed) boundaries by A.

Now regard the Mayer—Vietoris cofibration

AV DA—— AUDA > S' A (ANDA) — S! A (A v DA)

I I
Sn+l Sl AM

where ¢ is the Pontrjagin-Thom collapse. Both i and i’ have images within
n+1discs in S"*!, and so create an explicit nul-homotopy for i v i'. So there is
a homotopy equivalence

h:S"™* 1y (S'AA)v (S'ADA) > SLA M.

Restricting h to $"* ! recovers c, i.e. a splitting for the suspension of the collapse
M — S" onto the top cell. Similarly, h|S! A 4 splits the suspension of the
boundary inclusion j: M — A, whilst h|S! A DA splits the suspension of
j: M — DA (up to sign).

Returning to the U structure on M, it is given as a map M — SO/U, which
may be thought of as twisting the given framing. Homotopic maps give
equivalent U structures. Since the group [M, SO/U] is exactly KO ~2(M), we
have to calculate the KO groups of M. Using the above splittings, we obtain

(2.1) LEMMA
KO 3(M) = KO 2(4)@KO 3(DA)®KO (5" .

Of course, such a formula holds for any (co) homology functor.

So we can now investigate the contribution made by each summand of (3.1)
to the bordism class of M, first in QY | and then in MU,

For any twist 6 € KO™2(M) we shall write these bordism classes as
{M,é} € QY and [M,8]=J'{M,d} € MU,. :
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(2.2) PROPOSITION.

(i) {M,a} = (M} =0 VaeKO 2(4), « e KO"2(DA)
(i) {M,q} € n,(SO/U) Voe KO 2(S).

Proor. (i) If we twist the framing on M by «, it bounds 4 with framing
twisted by a. Similarly for DA.

(i) M is diffeomorphic to the connected sum M # S", and ¢ may be displayed
trivially on M" and as ¢ on S". Thus the new U structure is equivalent to
retaining the original on M and twisting S" by o. But the original framing on
M bounds A4, so

(M"¢} = {S" o).

(2.3) CoROLLARY. With the data above, in MU,
(1) [M,a] = [M,d] =0
(i) [M,o] = J(o).

The above observations give substance to the splittings of (1.7), for if M is
initially a sphere then KO~ 2(M)=KO~2(S" in (2.1). Furthermore, the
splitting is the same if M is merely framed, since the top cell is still stably
trivially attached.

Thus when investigating Hyp,, our interest should centre on twistings ¢
which are non-zero in both KO ~%(4) and KO ~?(DA), yet which vanish on the
top cell. Such U-hypersurfaces constitute the summands 7, (Q(SO/U *SO/U))
and J of (1.9). They can be obtained directly from a representative f: S"
— Q(SO/U xS0O/U) as follows.

Adjoint f, and regard the join as the space

(C(SO/U) x SO/U) U (SO/U x C(SO/U)) ,

where the cones are thought of as attached to SO/U xSO/U in opposite
directions. Now make the map transverse to SO/U xSO/U, giving a
hypersurface M =S"*! equipped with a map

axo': M — SO/UxSO/U .

By construction, o extends over 4 and o extends over DA.

Enthusiasts may verify that this process yields a Pontrjagin-Thom
isomorphism between the geometry and the homotopy theory.

Our programme is to begin by restricting the defining complex A4, and hence
the hypersurface M, to be of a simple type. Note that if 4 is a point (i.e. a O cell
complex), M will be a sphere and so represent an element of Im J «> Whilst if 4
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is a wedge of spheres (ie. 1 cell complexes), M will be a connected sum of
products of spheres, and so represent an element in RImJ .

Therefore we propose to study the situation when A is either a (wedge of) 2
cell complexes, or else is stably a wedge of spheres. As we shall see, both these
choices yield interesting, and apparently new information.

3. Sample calculations.

In this section we set up the calculational procedures we shall adopt in
section 4. But first we note some general facts.

(3.1) ProposiTioN. RImJ,®Q=J5®Q as subrings of MU, ®C.

ProoF. The following diagram of Hurewicz homomorphisms is commutative
(e.g. see [8])

*(SO/U) 1, MU,

*(SO/U) l"A
\H (SO/U)—> H,(BU)

(and i, is a monomorphism of Pontrjagin rings). Thus i_h, has image
hy(ImJ ).

In addition, h, maps n,(SO/U) onto multiples of ring generators for
H,(SO/U). Thus when we apply ®Q to the above diagram, we observe that

(h:®@D)(RImJ,®Q) = (i,®1)(H,(SO/U)®Q)
(ixh, ®1)(73,(SO/V)®Q) .
But both h,®1 and hy;®1 are isomorphisms.

]

(3.2) COROLLARY.
RImJ,®Q = Hyp,®Q = J5®Q.

Proor. Apply (3.1) to (1.5).

Thus the problem of relating the three subrings of MU, described in (1.5) is
entirely concerned with subgroups of maximal rank in a free abelian group. In
other words the issues are of divisibility, and as such may be investigated by
taking quotients.

The “smallest” subring involved is RImJ,, and MU,/RImJ, is
theoretically determinable by KU theory. Passing to BP may well be a fruitful
method for organising the algebra. On the other hand we know of no sure
method for computing Ji, the “largest” subring.
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Note from (1.3) that none of RIm J,, Hyp,, J5, are summands of MU .. And
we shall see below that Hyp, is not polynomial.

To put these matters into perspective, consider the stabilisation map
st: Q(S' A SO/U) — Q(SO/U). It gives

QY ,®Q 2L, 3 (so/U)eQ
ret| h®| =
Hyp,®Q —— H,(SO/U)®Q

Thus the free part of QE'I consists of two summands. Firstly those elements
which survive under st,, say &; and secondly Ker (st,). Then J' is a
monomorphism on @, so Hyp, is the image of faithful representation of &.
This alone suggests that our divisibility problems will be intractible!

To make more precise computations, we must recall some notation
pertaining to MU,. We may write MU, as a polynomial algebra
Z[x;,X5,. . ., Xps. . . ], Where x, has real dimension 2k. Several authors have
given procedures for choosing the x,’s, but no canonical choice has emerged.

Over Q, the requirement for a generator is simple, viz. s,(x,)+0, where
s, € H*(BU) is the additive characteristic class corresponding to the
symmetric polynomial 3 t* in H2¥( x CP¥) (e.g. see [10]).

For example, amongst the results needed to prove (1.3) is the following. Let
[S***2] be the U bordism class represented by a generator of m,, . ,(SO/U)
~Z. Then

2(2k+1)!  keven

S a [ = <(2k+1)! k odd

) = x(k), say .

Thus [S**?2] is an acceptable choice for x,,,, over Q. We deduce

(3.3) NotE. All the rings of (3.2) may be described as
Q[[S%],[S°],...,[S**2],...].

Thus our overall strategy is to describe our (integral) bordism classes in
MU, as rational combinations of these sphere classes.
We start by recalling that

H*(BU; Q) =~ Q[sy,525. -+ 5Sp- - -]

and that in dimension 2n a basis is given by monomials

Sw = (5" (5™ ... (s)™ where Y iw, =n.
i=1
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We write W(n) for the set of such sequences (w,,w,,...,w,), so that a U-
bordism class y, is determined by the Chern numbers {s,,(y,); w € W(n)}.

Equivalently, and dually, we have to evaluate the image of y, under the
Hurewicz isomorphism

h®1: MU, ®Q —» H,(MU; Q) =~ H,(BU; Q).
But we may write
H,(BU; Q) = Q{s¥; we W(nVn}

where s* is the basis element dual to s,. Moreover h®1 identifies [S***2] with
x(k)s@** 1) where 4(i) is the sequence (0,. . .,0,1) with i —1 zeros. By (3.2) and
(3.3), these elements are ring generators for the image of H,(SO/U; Q) in
H,(BU; Q).

Now given a twisting §: M — SO/U, we note that the new normal structure
on the hypersurface M is given by the composition

M 5 SO/U + BU .

which we label 8. Hence the s classes of [M, §] arise by evaluating monomials
5,,(8) on the fundamental class ¢ € H,,(M). Such calculations are aided by the
fact that the diagram

KO~%(M) <> KU~ 3(M)
Kuemy© *

is commutative, where { is the Bott isomorphism. So s,,(8)=s,,({c5) may be
read off from ch (cd).

The most systematic way of organising this information is to utilise the
scheme laid out in [9].

(3.4) LEMMA. Let M" be framed, and 6 ¢ KO~ 2(M), and let ¥: KO~ 2(M)
— MU, be given by ¥Y(8)=[M,5]. Then ¥ may be factorised as

KO~2(M) 5 MU°(M,) 5 MU, ,
where J,=1+1J, is induced by j: SO/U — Q*MU(cc) (and is exponential)

whereas D=<{-,X) is the duality homomorphism induced by the fundamental
class £ e MU, (M ,).

Our plan is to use the characteristic class calculations discussed earlier in
order to trace this factorisation of ¥ in (co)homology, using the Hurewicz and
Boardman maps
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h: MU, (M) -» H,(BU,)®H ,(M)®Q
h: MU* (M) - H,(BU,)®H*(M)®Q .

To this end, we need the following useful formula:

(3.5) ForMuLA. Let 6 e KO™2(M). Then
hJ,(8) = Y ,S°®ch,(expd) .

v

Here exp§ is to be interpreted as the usual power series in the (nilpotent)
ring KU (M)®Q. Also, v ranges over the non-decreasing elements in the
set V consisting of all sequences of odd integers, so if v=(v(1),...,v(1),
ch, (8)=chy,y, () ... ch,, (5. Similarly, S'=[S?V] ..  [S**®] whilst &
=¢g(v(1)) ... e(v(t)), where

v

34

1
e(v(i) = {1 as v(i) = {1(4).

2
Proor. In H*(BU; Q), ch,,,, is dual to (2k+1)!s4?** D Thus the linear
terms in hJ,(5) have the form

¥ e@k+D[S* T ®chyes s (5) -

k

Considering product terms in the same fashion, remark that ch, (8" has
value t!/e, on [S?"™M] ... [S**™], and zero on other monomials of the same
dimension. Thus a typical non-linear term of hJ,(d) is S°®(1/t!)ch,(5"). Now
sum over t.

This formula neatly captures the idea that J, is exponential: applied to a
sum it yields

hJ, (8,43, = ¥ e, .,S""ch,(exp8,)ch,(exp3d,) .
To crystallise these ideas, we conclude with an interesting application: it
requires two lemmas.

(3.6) LEMMA. Suppose X is stably a finite wedge of spheres. Then in KU° (X),
x' is divisible by t! Y x or t (i.e. “expx is integral”).

PRrOOF. Let Y be the Adams operation for the prime p, so that Y/?(x) = x?(p)
in the free abelian group KU (X). Using the stable structure of X, y?(x)=0(p),
whence p|x? for any prime. So t!|x".
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Note that replacing KU (X) by H*(X; Z), and y” by the Steenrod power
(or square) gives the same result for integral cohomology.

(3.7) LEMMA. With X as in (3.6), and x in the image of c: KO~ *(X)
— KU™2(X), then ch,(x") is divisible by t!/e, Vv e V.

Proor. We can rewrite x as 2x'+x”, where x’ incorporates all the
components of ch, in dimensions =2(8). Thus

t
k

and by (3.6) (t—k)!| (x)' "% and k!|(x")~
The result now follows by a simple induction.

Xt = 20 ... +< )2""(x’)'“"(x”)"+ o X)

Hence we can prove

(3.8) THEOREM. Suppose that the hypersurface M =S"*! is stably a wedge of
spheres. Then

¥(M) c RImJ, .

ProoF. Let 6 e KO™2(M), so that
h¥(8) = <hJ,(8),hZ) in H,,(BU).

Now the splitting of M discussed in section 2 ensures that hZ=1®oc in
H,(BU,)®H (M), so by (3.5),

h¥(8) = T <ch,(expd),0)e,S* ,

summing over all v with Y v())=n.
But from (3.7), ech,(expd) e H*(M;Z), so h¥(§) is an integral
combination of S¥s. So ¥(d) e RImJ .

(3.9) Nortes. (i) We have shown that RImJ, consists precisely of those
classes representable on hypersurfaces which are stably a wedge of spheres.

(ii) The given proof, with minimal modification, applies to a framed M of
arbitrary codimension. :

4. 2 cell complexes.

We now concentrate on hypersurfaces defined by 2 cell complexes.

Let x € Hyp,, be represented by M <S?"*!, with defining complex A
=8%U, ¢®. We shall see below that it suffices to restrict a and b by a=2 and
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b<2n—2. According to [3], we may then assume that DA~S>""*U e>" "%,
where s2" P19~ (—1)®s% .

(4.1) LEMMA. Let X be one of A, DA (or M) as above. Then MU (X) and
MU*(X) are free modules on 2 (or 5) generators over MU, if b>a+ 1.

PROOF. Since 6 is stably torsion, the result it true for A and DA (for MU is
free). It follows for M from (2.1).

As both an illustration and a general explanation of our method, we now
examine a typical case;

(4.2) EXAMPLE. Let v € n;(S*) be the Hopf map. Choose an embedding A4
=8°U,e'®=S?! (say by suspending a smooth embedding HP? =S'®). Then
DA is given by S!°U e!'*. Thus

M = S®Ue!l®Uel®Uel*Ue?®
SUAM ~ (STU, e v (S U, e'%) v $2 .

It is advantageous to consider 4 and DA as Thom complexes of the “adjoint
bundles” v: $* — BSO(6) and v: S* — BSO(10) respectively (for v lies in the
classical Im J). Being Spin bundles, these are KO orientable, so we have

KO~2(4) = KO($%) = Z@Z.
KO~2(DA) = KO™*(S%) =~ ZZ .

We may choose generators ay,f3; for KO~%(A4) and a,,f, for KO~ 2(DA)
related by

a, = xa; and  yB; = xB,,

where x generates KO, =~Z, y generates KOg=Z, and x2=4y.

To apply (3.5), we must evaluate ch on the image of each element in
KO~2(-). Since complexification preserves Thom isomorphisms, we deduce
with the help of [1] that

chy(@;) = t;, chs(dy)
ChS(Bl) = 0, Chs(ﬁl) = 2u,,

where t,,u, are respective generators of H%(4), H'°(4) (with Z coefficients).
The 1/12 arises as the e invariant ec(v).
Substituting in (3.5) gives in H, (BU,)®H*(M)

BT Gy +pBy) = 1@1+A[SC1®¢, + (F54 +w[S' 1 @u,

1
12t

Math. Scand. 50 — 11
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Vi, u € Z. Of course, products vanish in KO* (4).
Similarly, we can write

R (Aay+ 1B, = 1®1 + (S @1, 4+ G4 + W) [S*]1®u, .
Now by duality, products in H*(M) are given by
Liu; = —ugty = gy  (e.g. see [3])

where g, € H**(M)=Z is the dual of ¢ € H,,(M).
So if d=4Aa, +up;+ Ao, +u'f, e KO™2(M), then

RJ.(0) = 1@1+{AG4 +WISCIS ] - i (e + WIS™1) ®g10

modulo the linear terms in ¢y, uy, t,, and u,.
Moreover from the splitting of (2.1),

hZ = 1®¢ in H, (BU,)®H (M).
Thus Vi, u, A, e Z
k¥ ()

I

<R, hE)
A+ WISSIS 1 - & G+ ST

Clearly we have unearthed elements of Hyp,, which do not lie in RIm J . For
example

A=i=1 p=p =0 gives F@[SIS"]-[S"])
=6, u=0 =1 gives 4S1°?.

]
>
~
Il

A
(4.3) CoroLLARY. Hyp,, is not polynomial.

(4.4) CorROLLARY. The quotients
Hyp,o/RImJ;o <> MU,o/RImJy,
have Z,, as a subgroup.

Proor. This is a simple algebraic consequence of the formulae arising in
4.2).

We now propose to let 6 range over all possible 7,_,(S%). It is therefore
convenient to write A, for S®°U,e®, and M, for the hypersurface defined by
some embedding 4, = S". Before we begin calculating, it is also helpful to divide
these complexes A4 into various types, according to how ¢ and ch work.
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(4.5) DerFiNiTIONSs. We shall say that 4, has type A if both cells are of
dimension =2 (4), and write
Ay = S* Uy e*  with c,d=1 (2).

We shall say that 4, has type B if only the top cell has dimension =2(4), and
if 0 is not stably u, € n3, ., (where d(u;)=1 € Z,: see [1]). If 6 is stably p,
we shall say that A, has type B*. In either case, we write

Ag = S Uy ex withd = 1(2).

Similarly, we shall say that A, has type C if only the bottom cell has dimension
=2(4), and 0 is not stably pu, or u, € n§*+2. Otherwise, 4, has type C*. In
either case, we write

Ay = S* U, e®  with ¢ = 1(2).

Next we note two lemmas, easily proved.

(4.6) LEMMA. The composition
KO™2 (45 — KU® (4g) o H*(4p; Q)

is trivial unless A, is of one of the above types. More, if of type B or B, then
choc is trivial on the bottom cell, and if of type C or C*, then choc is trivial
on the top cell.

(4.7) LeEMMA. If A, has type A, B or C, then the cofibration of 0 yields a
splitting
KO~2?(4,) = KO 2(S9®KO~%(SH).
If Ag has type B¥, then projection onto the top cell induces2: Z — Z in KO~2(+);

and if A, has type C¥, inclusion of the bottom cell also induces 2:Z — Z in
KO~2(+).

Armed with these tools, we can now generalise (4.2).

(4.8) THEOREM. Let A, be of type A, and suppose A;=S*"*'. Then we have
that

¥Y(My/RImJ,, = Hyp,,/RImJ,,
is a finite cyclic group. A generator is

d—c =24
Je[S¥I[S > ~[S*[S* ) if {2,, DRI

and

ge([S*][S*"~ 2] — [S*4][S*"~2%]) otherwise ,
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where

oy L jd—c=2(4) o, fd—c =209
""Z’f{cs-’»(@,znsom)’ q_zlf{2nzc—150(4)

and q=1 in all other cases. Here e=ec(0).
Note that if a=0, then e=0.

(4.9) COROLLARY. (i) The quotients
Hyp4n/R Im J4n — MU4n/R Im J4”

all have Z,, as a subgroup, where r=1 or 4 and o is the order of ImJ
cmyy-1(S%), with ¢, d, n as above.
(i) [S%***]* e Hyp, Va > 0.

Proor. For (ii), embed S8~2U e82+2 in S16a+5,

To consider the other possible types for A, we refer to (4.6) and (4.7).
Firstly, let 4 have type B* or C*: the following cases are of interest.

(4.10) LEMMA. Let 0 € mg,, 25+ 1(S?) have dp(0)=1, and suppose Ay<=S®"*3,
where 2b=0 or 2(8). Then ¥(M,y)/RImJg,,,=7Z,, generated by
AS™IS™ 4T if 2b = 2(8)
%[sSu+2b+ZJ[SS(n—a)—2b+2] lf 2b 0(8) .

Jif

Again referring to (4.6) and (4.7) we can conclude

(4.11) LEMMA. For all other types of A, and all other dimensions excluded
from (4.8) and (4.10), ¥(Mg/RImJ, = 0.

Now (4.8) and (4.10) may be combined:

(4.12) THEOREM, The subset of Hyp,/RImJ, realisable on hypersurfaces
defined by 2 cell complexes consists of the cyclic subgroups described in (4.8).

Proor. It remains only to show that (4.10) actually describes a subgroup of
(4.8).
For this, suppose we have an embedding

SSk+2 U eSI+4 - SSn+5
u .

Then n>k (even if u=n, ie. k=I). So ¥Y(M, is generated by
1rQ8k+2 8n—8k+2
p1 S | 1
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But from (4.2), we may embed S3*2U_ ¢8*¢ in S8"*5 (n>k) such that
lII(M‘,) 3 i‘[SSk+2][S8"_8h+2].

As stated, (4.12) has several unsatisfactory aspects. For example, we can offer
no general results as to the smallest values of ¢ and d for which a given e
invariant is realisable on 4,=S?* U, e*’. Moreover, even given such knowledge,
we cannot specify the least n for which A4, embeds in S*"*1,

So far as the first shortcoming is concerned, we may of course assume that 6
is a generator of ImJ = x, _,, and that 4, is the mapping cone in the smallest
stable dimension available, i.e. 4,=S**2Uye® 2 To deal with the second
drawback we recall the following lemma, which is based on the join
construction.

(4.13) LEMMA. Any complex S®Uye® may always be embedded in S**°*1.

We may then assemble a weaker, but more systematic and memorable
version of (4.12).

(4.14) THEOREM. In dimensions of the form 12d+4r =20, where r=1, 2 or 3
and d=1,2,. .., the quotients

Hyp,/RImJ, = MU,/RImJ,

all have

Z,y,®..DZ,;®... DL,y

as a subgroup, where (i) is the order of ImJcns,_,.

Moreover, each summand may be realised on a hypersurface defined by a 2 cell
complex; and each general element on a hypersurface defined by a wedge of 2 cell
complexes.

S. Epilogue.

Although the main purpose of section 4 is to study Hyp,/RImJ,, we have
deliberately included MU,/RImJ in the statement of our results, since we
previously had little information concerning the latter quotient.

This may, in theory, be thoroughly investigated via KU_(BU) and the
Hattori-Stong theorem. Of course, a full scale analysis of the situation by these
means is a formidable algebraic undertaking, involving a detailed study of the
coaction primitives in KU (BU).

However, the formulae are clearly of interest, and we hope to examine them
more closely in future, with the aid of recent calculations by Francis Clarke.
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We conclude by noting that several simple questions on Hyp, remain
unanswered. Here are a sample two which have persistently eluded us.

(5.1) PROBLEMS.
(i) Does 4[S8**2][S®**] lie in Hyp, for any k,I?

. 1 .
(ii) Does 4—;[88"‘*2] ... [S®*2] lie in Hyp, for all ky,...,k, and every r?

We can in fact partially answer (i) by proving that such classes are not
representable on any hypersurface which is stably a wedge of 2 cell complexes.
We can also partially answer (ii) by proving that such classes do indeed arise
on hypersurfaces for a large range of integers k;,...,k, and r.
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