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A PROJECTIVE GAUSS MAP
ASSOCIATED WITH A
HYPERSURFACE AND A HYPERPLANE

F. J. CRAVEIRO DE CARVALHO

1. Introduction.

In this note we study a map associated with a hypersurface M and a fixed
affine n-plane IT in (n+ 1)-Euclidean space. Roughly speaking such a map can
be described by associating to each point m € M the intersection point with IT
of the normal line to M at m. The points m € M such that the normal line is
parallel to IT are associated with appropriate points at infinity.

We interpret the critical set of this map in terms of the geometry of the
hypersurface, calculate its mod 2 degree and apply it to gain some information
about the location of the focal set of M in R"*!,

Thanks are due to David Chillingworth, Stewart Robertson and the referee
Karsten Grove for suggesting several improvements, particularly the insertion
of corollary 3.1.

2. The projective Gauss map associated with (M, IT).

Let M be a compact, connected, smooth (=C>) hypersurface of R"*1,
Through each m € M there passes a line N, normal to M at m.

Let IT be an affine n-plane in R"*! such that no normal line to M is
contained in IT. We fix p, € IT and an orthonormal basis (e;) in the vector
subspace associated with I1. Using p, and (e]) we compactify IT to real
projective n-space p".

DEFINITION 2.1. The projective Gauss map associated with (M, IT) is the map
®: M — p" defined as follows:

if N,,NIT={p} is such that p—p,=3; 4;e; then ®(m)=[4,,...,4,1];

if N,NII=¢ and the direction of N, is given by > ,4e, then &(m)
=[Ah'la o ~a’1m0]'

REMARKS. @ is a smooth map.
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Sometimes we shall identify @(m) with N, NIT if this intersection is non-
empty.

3. The results.
Let 4 be the set of elements m € M such that N,, N IT= . Regarding p" '
as a submanifold of p", then A=®~1(p""").

THEOREM 3.1. If m € M\ A4, then m is a critical point iff ®(m) is a focal point

of M with base m.
If m € A, then m is a critical point iff K(m)=0, where K(m) is the Gaussian
curvature of M at m.

ProoOF: We denote by i the inclusion map M — R"*! and assume IT to be
determined by x,,,=0.

If m € M\ 4, then there is a chart ¢: U — U’ of M such that m e U and
io@ 1 (x)=(xy,. . ., X, (X)), where we write x for (x,,...,x,) € R". We obtain
a local representative @, for @ such that

®,(x) = (x,+g(x)D; g(x),...,x,+8(x)D,g(x)) .

If {g} =N,NIT and we consider L,(x)= li(x)—q||?, where || - || is the standard
norm in R"*!, we conclude that m is a critical point of & iff m is a degenerate
critical point of L, The theorem now follows (cf.[3]).

If m € 4 we may assume without any loss of generality that there is a chart
¢@: U — U’ such that

meU, iop~'(x) = (g(X)xy,...,%,), o(m = (0,...,0%,),
Dg(,...0,x,) =0, i=1,...,n.

A local representative @, for & is then given by

xang(x)—anlg(x) xn—ang(x)—ann—lg(x) Dng(x) )
g)Dg(x)+x, 7 g(x)Dg(x)+x, g(x)D,g(x)+x,
As K(m) is given either by the determinant of the matrix [D;;g(0,...,0,%,)]

or by the determinant of [ -D,;;g(0,...,0,x,)] a straightforward calculation
shows that m is a critical point iff K(m)=0.

P (x) = (

THEOREM 3.2. Deg,® =e(M) (mod 2), where e(M) is the Euler number of M.
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ProoFr. Choose a regular value g € I1. By Sard’s theorem we know that such
regular value exists. Then ®~(q)={p;, ...,ps}, Where p,, i=1, ...k, are the
critical points of L;: M — R and all of them are non-degenerate. As

™M=

(=N, = e(M)

i=0

where N; denotes the number of critical points of L, of index i, we conclude
that k=a+e(M) with o even.

The following well known result is usually proved using the Gauss map [5].
We give a proof which basically follows the same pattern but now using &.

THEOREM 3.3. Let M be a hypersurface such that, for every m € M, K(m)=+0.
Then M is diffeomorphic to S".

Proor. If the Gaussian curvature is never zero, then the focal set F(M) of M
is bounded. Choose an n-plane IT sufficiently far away from F(M). Define @
associated with (M, II). Then @ has no critical points and therefore it is a

covering map. The order of the covering is greater than one and consequently
M is diffeomorphic to S".

The projective map can be used to give us some information about the focal
set F(M) in R"*!, For results concerning the relation between the topological
structure of M and the location of F(M), see [1].

THEOREM 3.4, Let M\ A= M'. If there is no focal point of M in I, then all the
components of M’ are diffeomorphic to R™.

Proor. Let us consider in p" the set U of elements of the form [4,, ..., 4,,1]
4;€R,i=1,...,n It is an open set diffeomorphic to R". We also have M’
=¢ (V) and consequently & | M’ can be looked at as a map &: M’ — R".
This map is a surjection. In fact, for g € R"*!, the map L,: M — R has always
critical points and therefore there are normal lines to M passing through g [3].
Moreover if we assume that no focal point lies in II, then @' is a covering map.
This is a consequence of the fact that if y is a regular value of @, then there is an
open neighbourhood V of y such that @~ '(V)=V, U ... UV,, where the V}s
are open, V,NV,=F for i%j, and @: V; > V, i=1,.. .k, is a diffeomor-

phism. The theorem now follows from standard results in the theory of
covering spaces [4].

If IT and IT' are parallel hyperplanes in R"*! containing no normal line to M,
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then the associated subsets 4 and 4’ are identical, and the following corollary
can be deduced from theorem 3.4.

COROLLARY 3.1. If the focal set F(M) is bounded then the components of
M 4 are diffeomorphic to R" for all IT containing no normal line to M.

Note, however, that if F(M) is not bounded, it may happen that some
component of M\ 4 is not difftomorphic to R". The standard “anchor-ring”
torus in R? illustrates this phenomenon.

THEOREM 3.5. Let M be a hypersurface of R"*', n=2, such that, for every
me A, K(m)+0. If A is not connected then there is a focal point of M in II.

Proor. If there is no focal point of M in II, then @ is a covering map. The
inclusion i: p"~' — p" induces an epimorphism i, : IT,(p"" ') — II,(p").
Therefore A=¢~*(p"~*!) is connected [2].

Theorem 3.5 is false, if we let n=1. To obtain a counterexample take a round
1-sphere and any straight line not through the centre of the sphere.

REFERENCES

1. S. Carter and S. A. Robertson, Relations between a manifold and its focal set, Invent. Math. 3
(1967), 300-307.

2. W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace, and World, Inc., New
York, 1967.

3. J. Milnor, Morse Theory (Annals of Mathematics Studies 51), Princeton University Press,
Princeton, 1963.

4. E. Spanier, Algebraic Topology, Tata McGraw-Hill, New Delhi, 1966.

5. M. Spivak, A Comprehensive Introduction to Differential Geometry, vols. III and IV, Publish or
Perish, Inc., Berkeley, California, 1975.

DEPARTAMENTO DE MATEMATICA
UNIVERSIDADE DE COIMBRA

3000 COIMBRA

PORTUGAL



