A PROJECTIVE GAUSS MAP ASSOCIATED WITH A HYPERSURFACE AND A HYPERPLANE ## F. J. CRAVEIRO DE CARVALHO ### 1. Introduction. In this note we study a map associated with a hypersurface M and a fixed affine n-plane Π in (n+1)-Euclidean space. Roughly speaking such a map can be described by associating to each point $m \in M$ the intersection point with Π of the normal line to M at m. The points $m \in M$ such that the normal line is parallel to Π are associated with appropriate points at infinity. We interpret the critical set of this map in terms of the geometry of the hypersurface, calculate its mod 2 degree and apply it to gain some information about the location of the focal set of M in \mathbb{R}^{n+1} . Thanks are due to David Chillingworth, Stewart Robertson and the referee Karsten Grove for suggesting several improvements, particularly the insertion of corollary 3.1. # 2. The projective Gauss map associated with (M, Π) . Let M be a compact, connected, smooth $(=C^{\infty})$ hypersurface of \mathbb{R}^{n+1} . Through each $m \in M$ there passes a line N_m normal to M at m. Let Π be an affine *n*-plane in \mathbb{R}^{n+1} such that no normal line to M is contained in Π . We fix $p_0 \in \Pi$ and an orthonormal basis (e_i) in the vector subspace associated with Π . Using p_o and (e_i) we compactify Π to real projective *n*-space p^n . DEFINITION 2.1. The projective Gauss map associated with (M, Π) is the map $\Phi: M \to p^n$ defined as follows: if $N_m \cap \Pi = \{p\}$ is such that $p - p_0 = \sum_i \lambda_i e_i$, then $\Phi(m) = [\lambda_1, \dots, \lambda_n, 1]$; if $N_m \cap \Pi = \emptyset$ and the direction of N_m is given by $\sum_i \lambda_i e_i$, then $\Phi(m) = [\lambda_1, \dots, \lambda_n, 0]$. Remarks. Φ is a smooth map. Received July 15, 1980; in revised form December 9, 1980. Sometimes we shall identify $\Phi(m)$ with $N_m \cap \Pi$ if this intersection is non-empty. ## 3. The results. Let Δ be the set of elements $m \in M$ such that $N_m \cap \Pi = \emptyset$. Regarding p^{n-1} as a submanifold of p^n , then $\Delta = \Phi^{-1}(p^{n-1})$. THEOREM 3.1. If $m \in M \setminus \Delta$, then m is a critical point iff $\Phi(m)$ is a focal point of M with base m. If $m \in \Delta$, then m is a critical point iff K(m) = 0, where K(m) is the Gaussian curvature of M at m. PROOF: We denote by i the inclusion map $M \to \mathbb{R}^{n+1}$ and assume Π to be determined by $x_{n+1} = 0$. If $m \in M \setminus \Delta$, then there is a chart $\varphi \colon U \to U'$ of M such that $m \in U$ and $i \circ \varphi^{-1}(x) = (x_1, \ldots, x_n, g(x))$, where we write x for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. We obtain a local representative Φ_1 for Φ such that $$\Phi_1(x) = (x_1 + g(x) D_1 g(x), \dots, x_n + g(x) D_n g(x)).$$ If $\{q\} = N_m \cap \Pi$ and we consider $L_q(x) = \|i(x) - q\|^2$, where $\|\cdot\|$ is the standard norm in \mathbb{R}^{n+1} , we conclude that m is a critical point of Φ iff m is a degenerate critical point of L_q . The theorem now follows (cf.[3]). If $m \in \Delta$ we may assume without any loss of generality that there is a chart $\varphi \colon U \to U'$ such that $$m \in U$$, $i \circ \varphi^{-1}(x) = (g(x), x_1, \dots, x_n)$, $\varphi(m) = (0, \dots, 0, \bar{x}_n)$, $$D_i g(0, \dots, 0, \bar{x}_n) = 0, \quad i = 1, \dots, n$$. A local representative Φ_1 for Φ is then given by $$\Phi_1(x) = \left(\frac{x_1 D_n g(x) - x_n D_1 g(x)}{g(x) D_n g(x) + x_n}, \dots, \frac{x_{n-1} D_n g(x) - x_n D_{n-1} g(x)}{g(x) D_n g(x) + x_n}, \frac{D_n g(x)}{g(x) D_n g(x) + x_n}\right)$$ As K(m) is given either by the determinant of the matrix $[D_{ij}g(0,\ldots,0,\bar{x}_n)]$ or by the determinant of $[-D_{ij}g(0,\ldots,0,\bar{x}_n)]$ a straightforward calculation shows that m is a critical point iff K(m) = 0. THEOREM 3.2. $\text{Deg}_2 \Phi \equiv e(M) \pmod{2}$, where e(M) is the Euler number of M. PROOF. Choose a regular value $q \in \Pi$. By Sard's theorem we know that such regular value exists. Then $\Phi^{-1}(q) = \{p_1, \ldots, p_k\}$, where p_i , $i = 1, \ldots, k$, are the critical points of $L_q: M \to \mathbb{R}$ and all of them are non-degenerate. As $$\sum_{i=0}^{n} (-1)^{i} N_{i} = e(M) ,$$ where N_i denotes the number of critical points of L_q of index i, we conclude that $k = \alpha + e(M)$ with α even. The following well known result is usually proved using the Gauss map [5]. We give a proof which basically follows the same pattern but now using Φ . THEOREM 3.3. Let M be a hypersurface such that, for every $m \in M$, $K(m) \neq 0$. Then M is diffeomorphic to S^n . PROOF. If the Gaussian curvature is never zero, then the focal set F(M) of M is bounded. Choose an n-plane Π sufficiently far away from F(M). Define Φ associated with (M,Π) . Then Φ has no critical points and therefore it is a covering map. The order of the covering is greater than one and consequently M is diffeomorphic to S^n . The projective map can be used to give us some information about the focal set F(M) in \mathbb{R}^{n+1} . For results concerning the relation between the topological structure of M and the location of F(M), see $\lceil 1 \rceil$. THEOREM 3.4. Let $M \setminus \Delta = M'$. If there is no focal point of M in Π , then all the components of M' are diffeomorphic to \mathbb{R}^n . PROOF. Let us consider in p^n the set U of elements of the form $[\lambda_1, \ldots, \lambda_n, 1]$ $\lambda_i \in \mathbb{R}, i=1,\ldots,n$. It is an open set diffeomorphic to \mathbb{R}^n . We also have $M' = \Phi^{-1}(U)$ and consequently $\Phi \mid M'$ can be looked at as a map $\Phi' \colon M' \to \mathbb{R}^n$. This map is a surjection. In fact, for $q \in \mathbb{R}^{n+1}$, the map $L_q \colon M \to \mathbb{R}$ has always critical points and therefore there are normal lines to M passing through q [3]. Moreover if we assume that no focal point lies in Π , then Φ' is a covering map. This is a consequence of the fact that if y is a regular value of Φ , then there is an open neighbourhood V of y such that $\Phi^{-1}(V) = V_1 \cup \ldots \cup V_k$, where the V_i 's are open, $V_i \cap V_j = \emptyset$ for $i \neq j$, and $\Phi \colon V_i \to V$, $i = 1, \ldots, k$, is a diffeomorphism. The theorem now follows from standard results in the theory of covering spaces [4]. If Π and Π' are parallel hyperplanes in \mathbb{R}^{n+1} containing no normal line to M, then the associated subsets Δ and Δ' are identical, and the following corollary can be deduced from theorem 3.4. COROLLARY 3.1. If the focal set F(M) is bounded then the components of $M \setminus \Delta$ are diffeomorphic to \mathbb{R}^n for all Π containing no normal line to M. Note, however, that if F(M) is not bounded, it may happen that some component of $M \setminus \Delta$ is not diffeomorphic to R^n . The standard "anchor-ring" torus in R^3 illustrates this phenomenon. THEOREM 3.5. Let M be a hypersurface of \mathbb{R}^{n+1} , $n \ge 2$, such that, for every $m \in \Delta$, $K(m) \ne 0$. If Δ is not connected then there is a focal point of M in Π . PROOF. If there is no focal point of M in Π , then Φ is a covering map. The inclusion $i: p^{n-1} \to p^n$ induces an epimorphism $i_*: \Pi_1(p^{n-1}) \to \Pi_1(p^n)$. Therefore $\Delta = \Phi^{-1}(p^{n-1})$ is connected [2]. Theorem 3.5 is false, if we let n = 1. To obtain a counterexample take a round 1-sphere and any straight line not through the centre of the sphere. #### REFERENCES - S. Carter and S. A. Robertson, Relations between a manifold and its focal set, Invent. Math. 3 (1967), 300-307. - W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace, and World, Inc., New York, 1967. - J. Milnor, Morse Theory (Annals of Mathematics Studies 51), Princeton University Press, Princeton, 1963. - 4. E. Spanier, Algebraic Topology, Tata McGraw-Hill, New Delhi, 1966. - M. Spivak, A Comprehensive Introduction to Differential Geometry, vols. III and IV, Publish or Perish, Inc., Berkeley, California, 1975. DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE DE COIMBRA 3000 COIMBRA PORTUGAL