A PROJECTIVE GAUSS MAP ASSOCIATED WITH A HYPERSURFACE AND A HYPERPLANE

F. J. CRAVEIRO DE CARVALHO

1. Introduction.

In this note we study a map associated with a hypersurface M and a fixed affine n-plane Π in (n+1)-Euclidean space. Roughly speaking such a map can be described by associating to each point $m \in M$ the intersection point with Π of the normal line to M at m. The points $m \in M$ such that the normal line is parallel to Π are associated with appropriate points at infinity.

We interpret the critical set of this map in terms of the geometry of the hypersurface, calculate its mod 2 degree and apply it to gain some information about the location of the focal set of M in \mathbb{R}^{n+1} .

Thanks are due to David Chillingworth, Stewart Robertson and the referee Karsten Grove for suggesting several improvements, particularly the insertion of corollary 3.1.

2. The projective Gauss map associated with (M, Π) .

Let M be a compact, connected, smooth $(=C^{\infty})$ hypersurface of \mathbb{R}^{n+1} . Through each $m \in M$ there passes a line N_m normal to M at m.

Let Π be an affine *n*-plane in \mathbb{R}^{n+1} such that no normal line to M is contained in Π . We fix $p_0 \in \Pi$ and an orthonormal basis (e_i) in the vector subspace associated with Π . Using p_o and (e_i) we compactify Π to real projective *n*-space p^n .

DEFINITION 2.1. The projective Gauss map associated with (M, Π) is the map $\Phi: M \to p^n$ defined as follows:

if $N_m \cap \Pi = \{p\}$ is such that $p - p_0 = \sum_i \lambda_i e_i$, then $\Phi(m) = [\lambda_1, \dots, \lambda_n, 1]$; if $N_m \cap \Pi = \emptyset$ and the direction of N_m is given by $\sum_i \lambda_i e_i$, then $\Phi(m) = [\lambda_1, \dots, \lambda_n, 0]$.

Remarks. Φ is a smooth map.

Received July 15, 1980; in revised form December 9, 1980.

Sometimes we shall identify $\Phi(m)$ with $N_m \cap \Pi$ if this intersection is non-empty.

3. The results.

Let Δ be the set of elements $m \in M$ such that $N_m \cap \Pi = \emptyset$. Regarding p^{n-1} as a submanifold of p^n , then $\Delta = \Phi^{-1}(p^{n-1})$.

THEOREM 3.1. If $m \in M \setminus \Delta$, then m is a critical point iff $\Phi(m)$ is a focal point of M with base m.

If $m \in \Delta$, then m is a critical point iff K(m) = 0, where K(m) is the Gaussian curvature of M at m.

PROOF: We denote by i the inclusion map $M \to \mathbb{R}^{n+1}$ and assume Π to be determined by $x_{n+1} = 0$.

If $m \in M \setminus \Delta$, then there is a chart $\varphi \colon U \to U'$ of M such that $m \in U$ and $i \circ \varphi^{-1}(x) = (x_1, \ldots, x_n, g(x))$, where we write x for $(x_1, \ldots, x_n) \in \mathbb{R}^n$. We obtain a local representative Φ_1 for Φ such that

$$\Phi_1(x) = (x_1 + g(x) D_1 g(x), \dots, x_n + g(x) D_n g(x)).$$

If $\{q\} = N_m \cap \Pi$ and we consider $L_q(x) = \|i(x) - q\|^2$, where $\|\cdot\|$ is the standard norm in \mathbb{R}^{n+1} , we conclude that m is a critical point of Φ iff m is a degenerate critical point of L_q . The theorem now follows (cf.[3]).

If $m \in \Delta$ we may assume without any loss of generality that there is a chart $\varphi \colon U \to U'$ such that

$$m \in U$$
, $i \circ \varphi^{-1}(x) = (g(x), x_1, \dots, x_n)$, $\varphi(m) = (0, \dots, 0, \bar{x}_n)$,
$$D_i g(0, \dots, 0, \bar{x}_n) = 0, \quad i = 1, \dots, n$$
.

A local representative Φ_1 for Φ is then given by

$$\Phi_1(x) = \left(\frac{x_1 D_n g(x) - x_n D_1 g(x)}{g(x) D_n g(x) + x_n}, \dots, \frac{x_{n-1} D_n g(x) - x_n D_{n-1} g(x)}{g(x) D_n g(x) + x_n}, \frac{D_n g(x)}{g(x) D_n g(x) + x_n}\right)$$

As K(m) is given either by the determinant of the matrix $[D_{ij}g(0,\ldots,0,\bar{x}_n)]$ or by the determinant of $[-D_{ij}g(0,\ldots,0,\bar{x}_n)]$ a straightforward calculation shows that m is a critical point iff K(m) = 0.

THEOREM 3.2. $\text{Deg}_2 \Phi \equiv e(M) \pmod{2}$, where e(M) is the Euler number of M.

PROOF. Choose a regular value $q \in \Pi$. By Sard's theorem we know that such regular value exists. Then $\Phi^{-1}(q) = \{p_1, \ldots, p_k\}$, where p_i , $i = 1, \ldots, k$, are the critical points of $L_q: M \to \mathbb{R}$ and all of them are non-degenerate. As

$$\sum_{i=0}^{n} (-1)^{i} N_{i} = e(M) ,$$

where N_i denotes the number of critical points of L_q of index i, we conclude that $k = \alpha + e(M)$ with α even.

The following well known result is usually proved using the Gauss map [5]. We give a proof which basically follows the same pattern but now using Φ .

THEOREM 3.3. Let M be a hypersurface such that, for every $m \in M$, $K(m) \neq 0$. Then M is diffeomorphic to S^n .

PROOF. If the Gaussian curvature is never zero, then the focal set F(M) of M is bounded. Choose an n-plane Π sufficiently far away from F(M). Define Φ associated with (M,Π) . Then Φ has no critical points and therefore it is a covering map. The order of the covering is greater than one and consequently M is diffeomorphic to S^n .

The projective map can be used to give us some information about the focal set F(M) in \mathbb{R}^{n+1} . For results concerning the relation between the topological structure of M and the location of F(M), see $\lceil 1 \rceil$.

THEOREM 3.4. Let $M \setminus \Delta = M'$. If there is no focal point of M in Π , then all the components of M' are diffeomorphic to \mathbb{R}^n .

PROOF. Let us consider in p^n the set U of elements of the form $[\lambda_1, \ldots, \lambda_n, 1]$ $\lambda_i \in \mathbb{R}, i=1,\ldots,n$. It is an open set diffeomorphic to \mathbb{R}^n . We also have $M' = \Phi^{-1}(U)$ and consequently $\Phi \mid M'$ can be looked at as a map $\Phi' \colon M' \to \mathbb{R}^n$. This map is a surjection. In fact, for $q \in \mathbb{R}^{n+1}$, the map $L_q \colon M \to \mathbb{R}$ has always critical points and therefore there are normal lines to M passing through q [3]. Moreover if we assume that no focal point lies in Π , then Φ' is a covering map. This is a consequence of the fact that if y is a regular value of Φ , then there is an open neighbourhood V of y such that $\Phi^{-1}(V) = V_1 \cup \ldots \cup V_k$, where the V_i 's are open, $V_i \cap V_j = \emptyset$ for $i \neq j$, and $\Phi \colon V_i \to V$, $i = 1, \ldots, k$, is a diffeomorphism. The theorem now follows from standard results in the theory of covering spaces [4].

If Π and Π' are parallel hyperplanes in \mathbb{R}^{n+1} containing no normal line to M,

then the associated subsets Δ and Δ' are identical, and the following corollary can be deduced from theorem 3.4.

COROLLARY 3.1. If the focal set F(M) is bounded then the components of $M \setminus \Delta$ are diffeomorphic to \mathbb{R}^n for all Π containing no normal line to M.

Note, however, that if F(M) is not bounded, it may happen that some component of $M \setminus \Delta$ is not diffeomorphic to R^n . The standard "anchor-ring" torus in R^3 illustrates this phenomenon.

THEOREM 3.5. Let M be a hypersurface of \mathbb{R}^{n+1} , $n \ge 2$, such that, for every $m \in \Delta$, $K(m) \ne 0$. If Δ is not connected then there is a focal point of M in Π .

PROOF. If there is no focal point of M in Π , then Φ is a covering map. The inclusion $i: p^{n-1} \to p^n$ induces an epimorphism $i_*: \Pi_1(p^{n-1}) \to \Pi_1(p^n)$. Therefore $\Delta = \Phi^{-1}(p^{n-1})$ is connected [2].

Theorem 3.5 is false, if we let n = 1. To obtain a counterexample take a round 1-sphere and any straight line not through the centre of the sphere.

REFERENCES

- S. Carter and S. A. Robertson, Relations between a manifold and its focal set, Invent. Math. 3 (1967), 300-307.
- W. S. Massey, Algebraic Topology: An Introduction, Harcourt, Brace, and World, Inc., New York, 1967.
- J. Milnor, Morse Theory (Annals of Mathematics Studies 51), Princeton University Press, Princeton, 1963.
- 4. E. Spanier, Algebraic Topology, Tata McGraw-Hill, New Delhi, 1966.
- M. Spivak, A Comprehensive Introduction to Differential Geometry, vols. III and IV, Publish or Perish, Inc., Berkeley, California, 1975.

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE DE COIMBRA 3000 COIMBRA PORTUGAL