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AF ALGEBRAS WITH
A LATTICE OF PROJECTIONS

ALDO J. LAZAR

1. Introduction.

AF algebras are abundant in projections. It is therefore natural to ask in
what AF algebras the projections form a lattice. We shall say that an AF
algebra has the lattice property (L.p.) if its family of projection with the natural
order is a lattice. Our main result states that an AF algebra has the Lp. if and
only if it has the directed set property (d.s.p.) that is, its collection of finite
dimensional *-subalgebras is directed by inclusion. That the d.s.p. implies the
L.p. is obvious. We were not able to give a direct proof for the converse and had
to use a characterization of the d.s.p. given in [8]. The paper contains also a
characterization of the Lp. in terms of the non commutative topology
developed in [1], [2], and [6]: the greatest lower bound of each pair of open
projections is an open projection in the enveloping von Neumann algebras of a
unital AF algebra A if and only if 4 has the Lp.

The L.p. is not preserved by tensoring with LC (H), the algebra of all compact
operators on the Hilbert space H. Also it may happen that the dimension
group of an AF algebra A4, K,(A), is lattice ordered but A does not have the L.p.
This is the case for the fermion algebra, for instance, which, according to
Proposition 2.4, does not have the Lp.

Most of our notation is standard. For a C*-algebra A we denote by 2(A)
the set of all projections in A. If p,q € 2(A) we denote by p A g and p v q their
greatest lower bound and least upper bound in #(A), respectively, whenever
they exist. The space of a representation n is denoted H,. A" denotes the
enveloping von Neumann algebra of 4 and if = is a representation of A we shall
use n” to denote its normal extension to A”. The C*-algebra of all the
sequences of 2 x 2 complex matrices which converge to matrices of the form

a 0

00
will be named .o/ throughout the paper. Another special notation is the
following:
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o, = 2" {1+[1-4(n+1)"2]%},
B = (n+1)71,

27H{1-[1-4(n+ 17?14},

Tn

n being a natural number.

We are grateful to Professor L. Brown for suggesting to us to explore the
possibility of a connection between the L.p. and the d.s.p. Credit must be given
to the referee for the proofs of Lemma 2.1 and Proposition 2.4 and many other
improvements to the manuscript.

2. Primitive quotients of AF algebras with the Lp.

In this section we shall describe the images of the unital AF algebras with the
l.p. by irreducible representations. First, we shall single out some classes of AF
algebras without the l.p.

LEMMA 2.1. A separable C*-algebra A which contains a C*-subalgebra
*-isamorphic to o does not have the l.p.

Proor. To simplify the notation we shall suppose that o is a C*-subalgebra
of A. We assume that A has the Lp. and argue by contradiction.

Put
1 0
pn - (O 0)’ n_1)2939"~ )

p={pa}a= € . For each set of natural numbers E let pg={(pg).}>, € & be
given by

Pus nek,
(PE)n = <°‘n ﬂn>’ né¢E.
Bn
Define also r,={r,.jo-, € o by
0, m=£n,

r"mz 10 m=n
0 0/ o

For any projection p, g and r, if r commutes with p and g, then r commutes
also with p A g and r(p A q)=rp Arq. (Consider the automorphism Ad (1—2r)
and use the uniqueness of p A gq.) Hence, in particular,
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r, nek

(pAqE)r..={0, neE.

Therefore, if E;, E, are sets of natural numbers and n e E,\ E,,

Ip A pe, =P APEN 2 (P APE,~PADPEI = lIr,l = 1.

The famoly of projections {P A Pg} is uncountable, so we obtained a
contradiction to the separability of A.

In the proof of the next lemma we shall use the terminology and the notation
introduced in section 2 of [9].

LEMMA 2.2. If an AF algebra has a quotient *-isomorphic to </ then it has a
C*-subalgebra *-isomorphic to .

Proor. Suppose that the AF algebra 4 has a quotient *-isomorphic to <. It
is easily seen that this quotient has a diagram (D’,d".U’) as illustrated
graphically by Figure 1.

(1)
(1
(1)

(1)

(1)

Figure 1.

Let (D,d,U) be a diagram of A. It has an ideal subdiagram (E,d|E, Ug) such
that (D\E,d|D\E,Up g) is equivalent to (D',d,U’). Thus A contains
sequences of projections {e,}o,, {f1}2%,, {f7}o2, and a sequence of partial
isometries {u,}3%, such that:

1 _ 1 * 1
€ 2 fastr €nr1 = €—fastr Unsilnsr = fas1s

n
Upiqlppy = f5+17f3+1<e1+ Y ff) =0
K=2
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for every natural number n. Let F, be the four dimensional C*-subalgebra of A
generated by {f1,u,} and put B,={le,: A € C}®F,, n=2,3,.... Clearly

B,cB,,, and B = |J B,
is a C*-subalgebra of 4 *-isomorphic to .

LEMMA 2.3. Let A be an AF algebra and B a quotient of A which contains a
C*-subalgebra *-isomorphic to o/. Then A does not have the l.p.

PRrOOF. Suppose B, is a C*-subalgebra of B *-isomorphic to /. By [7,
Theorem 2.4] there is an AF subalgebra 4, of A whose image by the quotient
map is B,. Lemma 2.2 yields a C*-subalgebra of A; which is *-isomorphic to
&/ and the conclusion follows from Lemma 2.1.

PROPOSITION 2.4. An AF algebra with the l.p. is postliminal.

PRrROOF. Let 4 be a non-postliminal AF algebra; we shall show that 4 does
not have the l.p. Then

A=\ 4,,
n=1

where {4,}32, is an increasing sequence of finite dimensional *-subalgebras.
By [7, Theorem 1.1], A contains an AF subalgebra with unit which has a
diagram represented by Figure 2.

@)
2
(4)
2
®)
2
(16)
2
(32

Figure 2.

By inspection one sees that this diagram contains row by row the diagram for
& given in Figure 1. Hence by Lemma 2.1 A does not have the Lp.



AF ALGEBRAS WITH A LATTICE OF PROJECTIONS 139

As in [8], we can now prove

PROPOSITION 2.5. If = is an infinite dimensional irreducible representation of a
unital AF algebra A with the 1.p. then n(A)=LC (H,). Each primitive ideal of A
is contained in precisely one maximal two-sided ideal. A maximal two-sided ideal
which properly contains a primitive ideal has codimension one.

PROOF. Proposition 2.4 implies n(4)> LC (H,). If n(4) % LC (H,), then there
is a projection in n(A) not contained in LC (H,). It is readily seen then that
n(A) must contain a C*-subalgebra *-isomorphic to &, a contradiction to the
conclusion of Lemma 2.3. The other assertions of the proposition are
immediate consequences of the first.

3. The equivalence of the Lp. and the d.s.p.

Most of the proofs of this section follow closely those of section 3 in [8]. To
avoid repetition the reader will be often referred to [8] for details.

LEMMA 3.1. Let A be a unital AF algebra with the L.p. The set of all primitive
ideals which are contained in a given maximal two-sided ideal of A is closed in
Prim (A). Those which are properly contained form a discrete set in the relative
topology.

PrOOF. Let M be a maximal two-sided ideal of A4; if no primitive ideal is
properly contained in M, then there is nothing to prove. Suppose {P;: i € £} is
the collection of all primitive ideals properly contained by M. Let P=(,_, P,,
B=A/P, N=M/P, and Q,=P,/P.

Choose an open dense subset U of Prim (N)=Prim (B)\ {N} which is
Hausdorff in tis relative topology (cf. [10, Theorem 6.2.11]). Clearly U is open
and dense in Prim (B) and {Q;: Q; € U} is dense in Prim (B). There is a two-
sided ideal Q of B such that Prim (Q) can be identified with U.

We claim that each Q; e U is isolated in U. Assume not. Then there is
Q;, € U and a sequence of distinct points {Q; }3%, = U which converges to Q.
Reasoning as in the proof of [8, Lemma 3.1], we can find in @/, (Q; NQ) a
C*-subalgebra *-isomorphic to /. Thus B (hence A too) has a quotient which
contains a C*-subalgebra *-isomorphic to .«/. According to Lemma 2.3 this is
impossible.

Now let =; be the irreducible representation of B whose kernel is Q; and
define the representation n of B by
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n(x) =)@ m(x), xeB.
QeU

Since {Q;: Q; € U} is dense in Prim B, = is a *-isomorphism. Proposition 2.5
and the fact that each Q; € U is isolated in U imply that n(N) contains the
restricted sum > ®g .y LC(H,). If n(N)+X®g.vLC(H,), then there is
p € 2(N) such that =;(p)+0 for infinitely many Q; € U. This leads to the
existence in (N) of a C*-subalgebra *-isomorphic to <7, again a contradiction
to the conclusion of Lemma 2.3. Thus n(N)=3@®¢ v LC (H,) hence B is
*.isomorphic to the C*-algebra obtained by adjoining a unit to
> ®g,ev LC (H,). Since each H,, is infinite dimensional, this C*-algebra has a
unique maximal two-sided ideal and the primitive ideals which are not
maximal form a discrete set. Now, B is a quotient of A so the conclusions of the
lemma follow immediately.

LeMMA 3.2. Let  be an irreducible representation of a unital AF algebra with
the Lp. If dim H, > 1, then = is isolated in A.

ProOF. Suppose dim H, > 1 but = is not isolated in A. By using the previous
lemma one can construct as in the proof of [8, Lemma 3.3] a sequence {x,}5% ,
such that = is a limit of it and each {r,,} is open in {=,}3% ;. There is a quotient
B of A whose spectrum can be identified with {r,}>,. Let g,, ¢ € B satisfy @og,
=mn,, pog=m, where ¢ is the quotient map of 4 onto B. There is p € #(B) such
that g(p) +04 g(e—p), e being the unit of B. By [ 10, Proposition 4.4.4] we have
eventually g,(p)*+0=g,(e—p). In order to keep the notation simple we shall
suppose that this is true for every natural number n. The open and discrete set
{0.}5% is the spectrum of some ideal I of B. Clearly there are p,,q,u, € I
such that g,(p,), 0,(¢,) are one dimensional projections ,(p,)<0.(p), 2.(4,)
Sonle—p) (). (u¥)=0,(P),  Quur)en(u)=04(q,) and @,(p,)=0m(qn
=0,,(u,) =0 for every m=n. It is then readily seen that the C*-subalgebra of B
generated by p and {p,, ., #,}5%, is *-isomorphic to.«, a contradiction.

LEMMA 3.3. Let A be a unital AF algebra with the .p. Then {n € A: dimH,
< oo} is Hausdorff in its relative topology. If for n € A one defines ¢(m) to be
that irreducible representation of A whose kernel is the unique maximal two-sided
ideal containing n~1(0), then @ is a continuous map of A onto {m € A: dimH,
<o00}.

PRrOOF. See the proofs of Lemmas 3.4, 3.5, and 3.6 in [8].

THEOREM 3.4. An AF algebra has the Lp. if and only if it has the d.s.p.
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Proor. Suppose the AF algebra A has the Lp. and let 4,, A, be two finite
dimensional *-subalgebras of A with units p,, p,, respectively. Put p=p, v p,.
Then pAp is a unital AF subalgebra of A (cf. [5, Theorem 3.1]) which,
obviously, has the 1.p. Clearly 4, <pAp, A, <pAp. It follows from Proposition
2.5, Lemma 3.2, Lemma 3.3, and [8, Theorem 3.7] that pAp has the d.s.p. Thus,
there is a finite dimensional *-subalgebra of pAp which contains 4, and A4,.
This proves that 4 has the d.s.p. The converse is obvious.

COROLLARY 3.5. An AF algebra A has the L.p. if and only if 4 has the L.p. If an
AF algebra has the 1.p. then all its quotients and AF subalgebras have the l.p.

PrOOF. If 4 has the L.p. then A4 has the Lp. by [8, Proposition 2.1] and the
above theorem. The other assertions are immediate for AF algebras with the
d.s.p.

4. Non-commutative topology and the Lp.

For the next two lemmas 4 will be an AF algebra with the 1.p. having e as
unit. We let E={n € A: dim H, <o}

LemMa 4.1. Let p € (A). Then

(i) {n € E: n(p)*0} is open and closed in E;

(i) if n(p)=*0 for n € A with dim H_=1, then there is a neighbourhood U of n
in A such that o(p)=o(e) for all ¢ € U except possible finitely many elements of
U whose kernels are contained in the kernel of m;

(iii) The set of all n € A with dimH, =1, n(p)=0 for which there is some
o € A satisfying o~ (0)cn~1(0) and ¢(p) =0 is finite.

Proor. The first statement follows from [10, Proposition 4.4.4] and
[8, Theorem 3.7]. Suppose now = € A, dim H,=1 and n(p)+0. We have then
n(e—p)=0, so by [8, Lemma 3.4] and [4, 3.9.4] there is a neighbourhood U’
of # in

AN{oeAd: g7 (0)=n"1(0), o#*n}
such that ¢(e — p)=0 for every 6 € U’. Lemma 3.2 and the proof of Lemma 3.1
show that

U=UUf{ed: ¢7'(0)cn'(0)}

has the required properties so (ii) is established.
The set E'={ne A: dimH,=1, n(p)=0} is closed by [10, Proposition
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4.4.10], Lemma 3.2 and (i). As in the proof of (ii) we can find foreach n € E' a
neighbourhood U, such that ¢(p)=0 for every ¢ € U, except possibly finitely
many irreducible representations whose kernels are contained in the kernel of
. Then open covering {U,: n € E'} has a finite sub-covering {U, }!_,. Suppose
neE, né¢{n}!.,. We claim that if g e 4, ¢~ *(0)=n~*(0), then o(p)=0.
Indeed = € U,, for some i hence ¢ € U,,. Since the kernel of x; does not include
the kernel of ¢ we must have o(p)=0. It follows that if = € E’, and thereisp € 4
with ¢ 7' (0)cn~'(0) and g(p)+0, then n € {r;}]-,.

The notions of Borel operator and open projection which we shall use
below are defined in [10, 3.11.10, and 4.5.6], respectively.

LeMMA 4.2. Let p € 2(A”) be a Borel operator. Then p is open if and only if
the following are satisfied:

(i) {m € E: n"(p)£0} is open in E;

(ii) for n € A withdim H_ =1, n" (p)+0, there is a neighbourhood U, of m in A
such that ¢"(p)=o(e) for each g € U, except possibly finitely many irreducible
representations all whose kernels are contained in the kernel of ©; the image of p
by such an exceptional representation is a projection of finite codimension,;

(iii) The set of all m € A with dim H_=1, n” (p)=0 for which there is g € A
with o~ *(0)c = 1(0), ¢”(p) +0 is countable.

ProoOF. Let p be an open projection in A”. Then the hereditary C*-
subalgebra (pA”p)N A4 of A has an increasing approximate unit {p,},
consisting of projections by [5, Theorem 3.1]. The sequence {p,}5~, strongly
converges to p by the proof of [10, Proposition 3.11.9].

Clearly (i) follows immediately from

{neE: n'(p)*+0} = Q {reE: n(p,)+0}

n

and Lemma 4.1 (i).

Suppose 7 € 4, dim H, =1, n”(p)*0. Then =n(p,) +0 for some n. The needed
neighbourhood U, is the neighbourhood given by Lemma 4.1 (ii) for p,. From
e(p)= o(p,) for every o € A one obtains (ii).

Next, if n € 4, dimH,=1, n”(p)=0 and there is ¢ € 4 with ¢~ '(0)=n~1(0),
¢" (p)*0, then ¢o(p,)+0 for some n. Thus (iii) is a consequence of Lemma 4.1
(iii).

Suppose now that p is a Borel projection in A” which fulfills the conditions
(i)—(iii) of the lemma. Let {n,,n,,...,7,,...} be the set described in (iii). Let
also

{oe A: e 10 =m, 1(0), e+ m} = {0k 1,0k 2 - 3Ok, ise + 3
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For each i and k choose an increasing sequence {r,;.jw-; of finite
dimensional projections in the space of the representation g, ; which strongly
converges to g ;(p).

The topology of E has a basis of closed and open subsets by [3, Theorem
4.1], Lemma 3.2, and Lemma 3.3. Thus

{neE: n"(p)+0} = Ux E,,

where {E,}$% , is an increasing sequence of relatively open and closed subsets of
E. For each natural number n we shall define f,: A » U{o(4): o € 4} as
described below. Let g € A. If there is 7 € E, with o7 1(0)=n~1(0), then f,(0)
=¢"(p). If there is n € E\E,, n ¢ {n;,m,,...} with ¢! (0)c=n~!(0), then f,(0)
=0. Put f, (=) =0 for every k and f, (g, ) =ri . . if k,i<n, f,(0, ;) =0 otherwise.

It is now tedious but easy to verify that Theorem 4.15 of [8] yields a
projection p, € 4 such that f,(¢) = o(p,) for each g € A. The increasing sequence
of projections {p,} 2, converges strongly to some Borel projection in A”. Since
{o(p)}, converges strongly to g(p) for every ge A and the atomic
representation of A is faithful on the enveloping Borel *-algebra of 4 (cf. [10,
Corollary 4.5.13]), the strong limit of {p,}3% , is p. Thus p is an open projection.

THEOREM 4.3. Let A be an AF algebra with unit e. A has the L.p. if and only if
for every two open projections p,q € A" their greatest lower bound, p A q, is open
too.

ProoF. Suppose that 4 has the l.p. and p,q € A” are open projections.
Remark first that p A q is a Borel projection in 4” by [10, Proposition 4.5.7]
and

(1) n'pAg =n"(P)An’(g, mned,
by functional calculus.

Let e A, dimH,_ =1. If n"(p A q)%0, then n"(p)=n"(q)=n(e). By lemma
4.2 (ii), there is a neighbourhood U, of 7 in 4 such that g” (p)=¢" (q)=o(e) for
every g € U, except possibly finitely many irreducible representations ¢ with
6”1 (0)cn~1(0); for these representations ¢”(p) and ¢”(q) are projections of
finite codimension in H,. This together with (1) and Lemma 3.2 imply that
{m € E: n"(p A q)*0} is relatively open in E. We also see that condition (ii) of
Lemma 4.2 is satisfied by p A q.

If n € A with dim H, = 1 satisfies 7" (p)n"(q) =7"(p A q)=0 and thereis g € 4
with g~ 1(0)c=n~1(0) and ¢" (p A q)*0, then "’ (p) =0 or n"'(q) =0. Clearly ¢"(p)
+00"(q), whenever ¢”(p A q)+0, so the condition (iii) of the previous lemma
is fulfilled by p A g. We may conclude that p A g is an open projection.



144 ALDO J. LAZAR

Suppose now that p A g is an open projection whenever p,q € A” are open
projections. Let p, q € 2(A). Their greatest lower bound in A", p A g, is open by
our assumption and closed by [1, Proposition II.5]. Thus pA g€ 4 by [1,
Proposition I1.18]. Since A is unital, it follows that 2(4) is a lattice.

REMARK. The conclusion of the above theorem is valid for non unital AF
algebras as well. Indeed, by passing to 4 it is not hard to see that the “only if”
implication holds for a non unital A. In the other direction, the proof of the
theorem shows that p A g € 4, whenever p,q € #(A). The proof of Lemma 2.1
is valid with this property in place of the 1.p. For a unital algebra the Lp. itself is
not used anywhere else in the proof of Theorem 3.4,— only the consequence
of it given in Lemma 2.1. It remains to observe that if A does not contain a
C*-subalgebra *-isomorphic to ., then neither does A. Indeed, if B 4 is
*_jsomorphic to .«, then B< A, BN A has codimension one in B, hence BN 4
is *-isomorphic to ..
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