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POWER FACTORIZATION IN
BANACH MODULES OVER COMMUTATIVE
RADICAL BANACH ALGEBRAS

NIELS GRONBAK

1. Introduction.

Let o/ be a Banach algebra with a bounded approximate identity and let X
be a left Banach «/-module. Cohen’s factorization theorem states that for each
x € («.X)” thereare a € .o« and y € X such that x=a.y. Furthermore we can
obtain |a||£d and |[x—y||<e¢ where d is the bound of the bounded
approximate identity and ¢>0 is a given constant, see [3] and [4]. A number
of generalizations have been achieved since Cohen’s original result. We want to
focus on a paper by G. R. Allan and A. M. Sinclair ([1]), where the authors
proved a power factorization result x=a".y,, n € N with estimates of the
norms of the factors. Our main theorem generalizes this result when A is
commutative and radical by weakening the hypothesis that .o/ has a bounded
approximate identity.

To have a bounded appriximate identity has been the basic assumption on
& in proofs of Cohen factorization results, i.e. one supposes that there is a
constant d >0 and there exists a net (e;) bounded by d such that for all a € .o/
we have lim, e,;a=lim;, ae, = a. In [5] this was weakened by requiring only that
the bounded net (e,) satisfies lim, e;e =lim, ee,=e¢ for all e € {e,}. However, it
has been pertinent that the net (e;) in addition to being an approximation of
the identity on the Banach module X also satisfied some specified
approximation property for elements in the Banach algebra .o even though the
factorization was to take place in the module.

When .o/ is commutative and radical we are able to prove G. R. Allan’s and
A. M. Sinclair’s power factorization theorem for modules with estimates of the
norms of the factors without assuming that .o/ has a bounded approximate
identity. Our hypothesis is described in the following definition.

DEFINITION 1.1. Let .« be a Banach algebra and let X be a left Banach .«/-
module. The algebra .o/ is said to have a bounded approximate identity for X
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bounded by d>0 if for each finite set x,,...,x, € X and for each ¢>0
there is e € «, |e| =d, such that |e.x;—x;| Z¢, j=1,...,n.

Hence the usual meaning of “.o/ has a bounded (left) approximate identity”
is in this terminology “</ has a bounded approximate identity for ./ when
regarded as a (left) module over itself” or just “.o/ has a bounded (left)
approximate identity for itself”.

Definition 1.1 is the weakest possible hypothesis if one wants to prove Cohen
factorization results, i.e. if one wants to factorize finite sets in a (left) Banach
of/-module X simultaneously with prescribed estimates of the norms of the
factors. One sees readily that if X has Cohen factorization over .o, then .o/ has
a bounded approximate identity for X. It follows as a corollary of our main
theorem that the converse holds if .o/ is commutative and radical, thus showing
that the connection between Cohen factorization in modules and bounded
approximate identities for modules is deeper for commutative radical Banach
algebras than for Banach algebras in general. An example will illustrate this
(example 5.1). We exhibit a semisimple Banach algebra and a module over the
algebra such that the algebra has a bounded approximate identity for the
module but such that not every element in the module can be factored, the
more impossible to do Cohen factorization.

G. R. Allan and A. M. Sinclair noted as a corollary of their power
factorization theorem that if a radical Banach algebra # has a bounded
approximate identity for itself, then there is arbitrarily slow decrease of powers
in &, i.e. for each sequence («,) of positive reals tending to zero there is x € #
such that

n|l/n
lim”x 1" = 4+
o

This extended an observation by J. K. Miziotek, T. Miildner, and A. Rek who
showed that a radical Banach algebra with bounded approximate identity for
itself cannot have |x"|!" tending uniformly to zero in the unit ball
(Proposition 2.4 and Lemma 3.1 of [6]). The corollary of G. R. Allan and A.
M. Sinclair can be frased as follows: Let # be a radical Banach algebra and
view # as an algebra of operators on itself via the left regular representation. If
there is a positive sequence (o,) tending to zero such that for each r in #
nji/n
lim inf M&"—— < +%,

then no bounded net in & tends strongly to the identity operator on #. We
strengthen this proving that if # is a commutative radical Banach algebra of
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operators on a Banach space X for which there is a positive sequence (a,)
tending to zero such that

nil/n
fiminf "]

<+ forallreZ,

oy

then no operator on X with a non-zero eigenvalue is a strong limit of a
bounded net in Z.

In Section 2 we state the main theorem and discuss the method of proof. In
Section 3 we prove the theorem. In Section 4 we give some applications and in
Section S5 we give two examples, the one alluded to above showing that the
theorem is not necessarily true when the algebra is semisimple and an example
of a power factorization in a module over a radical commutative Banach
algebra that does not have a bounded approximate identity for itself.

2. Statement of the theorem and method of proof.

THEOREM 2.1. Let & be a commutative radical Banach algebra and let X be a
left Banach #-module. Assume that ® has a bounded approximate identity for X
bounded by d>0. Let (a,) be a sequence diverging to infinity such that a,>1 for
all ne N, let x € X, and let 5>0. Then there exist a sequence (y,) in X, an
element r € R, and a natural number N € N such that

(i) x=r.y, for j=1,2,...
(i) |ri=d
(i) y;e (Z.x)~ forj=1,2,...
i) lIx—=yilgé  forj=1,2,...,N
V) Ayl odlix| for j=1,2,...

In proving this we shall follow the idea of G. R. Allan’s and A. M. Sinclair’s
proof of the noncommutative version of their theorem. Their slicker proof in
the commutative case does not work here even though we do assume that £ is
commutative, precisely because we are not supposing that £ has a bounded
approximate identity for itself. Let #* denote the algebra # with a unit
adjoined. We shall construct by induction a sequence (b,) in Inv (%£*) that
converges to an element r € # and such that b, /x is Cauchy in X for each fixed
Jj € N with limit y;. As in [1] the control of growth of the sequence (|y;l|) is
obtained by considering a subsequence (ak ) of (,) that diverges to infinity fast
and doing the construction for the jth power b, ix for j belonging to the
interval [K,, K, ]

One more word about the construction may be in place. In Cohen’s original
proof a crucial step in the construction of b,,, was to define a certain element
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u,+, from b, and note that if ||u,,,—b,|| is sufficiently small, then u,,, is
invertible and ||u,!; —b, !| is also small. What will help us through this step is
of course that if { € C\ (0) then {+r is invertible for all r € # since # is
radical.

3. Proof of Theorem 2.1.

In order to prove the theorem we need two approximation lemmas of which
the first is standard in Cohen factorization proofs. Throughout # denotes a
commutative radical Banach algebra and X is a Banach #-module. The
constant M is the bound of the module action, that is ||r. x| < M||r|| |x]|| for all
r € & and all x € X. The number 4 is chosen so that 0<A<(d+1)"! and AM
<1 and the number 7y is defined as y=(1—4—Ad)™".

LEMMA 3.1. Let e € &, |le|| £d, and let f(e)= ((1—A4)+Ae)~*. Then

. 1
@ Ifel = 1=i=d "
(i) For all ke N and for all x e X
k
If(ef. x—x| < <Z v’)lle.x—xl}.
i=1

PrOOF.

. . i\
(): Ilf(e)||=“(1—i) (1+1—_7e) .

< (1=2 Y AH1=2) ek
k=0

_ 1

T 1—A—-id’

k
@) 1S x=xI = || ¥ [P (1—((1=D+de)).x

J

k
SIM Y Yle.x—x| .
ji=1

LeEMMma 3.2. Let e and f (e) be as above. Let u>0 and let r € R. Defineb=u—r
and E(e)=u—f(e)r. Then there is a function F: N — R, whose construction
depends only on b such that
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W FOG¥Y -1 asj— .
(i) [(E(/=b7).x|SF()I(1—eb ™ .x|| forall xe X and all j e N.

Proor. First we look at

1 &1
E()™'b = — - kpk (1 —
(e) p k‘éo 7 f@ri(u—r)
= Si -l_f(e)k k_oi 1 f(e)frk+1
k=0 #k k=0 llkJrl
X1
=1+ ) ™f@~fl*),
k=1 H
so that
1 E(e)™'b = 1+4 i (—rf( )> (1—¢).
k=1

Using (1) and the binomial formula we get

E(e) ' —b~7 = ((E(e)"'by—1)b~

(5 (ra-of3 (o))
3 (J)ra-e g (Grer)foo.

(2) E(e7i=b" = A[.Zj; <{:>/l"_1(1 —e)"“{kil (%f(e)r)k}i:l(l—e)b_".

In order to finish we must estimate the expression in the bracket [...]. Using
that [|A(1 —e)l<1 and ||f(e)|| Sy we get

£ 0 ra-a {3 (o)
;@@ewﬁ

J j oc oc y ky+...+k;
z <> Z Z (_) "rk|+.‘.+k,” .
i=o \!/ k=1 k=1 \M

We estimate this expression by means of a weighted powerseries algebra in an
indeterminate z. Let

A

A
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g»={z 3,2 S Az <oo}.
n=0 n=0

Since r is quasinilpotent the algebra £ is, with the usual operations on
powerseries, a commutative radical Banach algebra with unit adjoined.

Consider the element
oo k
Y ok
p= S Fal
kgo <ﬂ>

]

2 Al
n=0

We have

]
ng..

j o [’} y ki+...+k
(l) Z . Z (_) ”rk,+..‘+k,"
k=1 k=1 \H

where we have used that since the coefficients of p are positive we can
interchange summation and taking norms freely (Lebesgue’s monotone
convergence theorem). If we put F(j)= ||p’|| and note that the spectral radius of
p is 1 we are done, since then

I(E(©)™/=b7)).x|l < AMF(j)I(1-e)b™ . x|

F(Hli(1—eb™ . x|

A

for all x € X and all j e N.

ProoF OF THEOREM 2.1. From here on we shall follow G. R. Allan’s and A.
M. Sinclair’s construction. Without loss of generality we may assume that | x||
=1 and d<min{l,a"—1|ne N}. Choose a constant C>0 so that C/
2 My/(2+1) for all j e N, choose K,=N so that o;2C+1 for j=K,, and
choose an increasing sequence K, K,,... with K; > K| so that for all n e N,
;2 C"+1 for j= K,. These choices are possible since a,>1 for all n € N and
a, — 00. Then we inductively choose a sequence ey, e,,. .. in £ bounded by d
such that if we define e, =0 and

b, = (1—iy+ Y A(l—iy™ e
i=0

E(e,+1) = (1-4)+f(ens1) Z l(l—l)i—lei
i=o0

we have
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(D) by . x=b;ix|| £ 270*15 forall ne N and j<K,,,,

(D) |E(e,41) .x—=b . x| < 2)|b;i.x|| forallneN andall jeN.

Note that if we put u=(1—4)" and r= —./'.Z;;(,(l—/l)"“ei, Lemma 3.2 is
applicable with b=b,. The choice of ¢, is just Lemma 3.1. We have that b’

=f(e,) and E(e,)=by=1. Now suppose we have chosen e,,...,e, Let |le, |
<d. Then

bn+1 = ((1 _/1)+;“en+l)E(en+1) s
hence
lbady.x—=by 7. x|

I

”f(en+l)jE(en+l)-j'x_bn_j'x”
“f(en+l)j(E(en+l)_j—bn_j)'x“
+1(Sf Cepa ) = )by o x]l

Hence using Lemma 3.2 on the first term and Lemma 3.1 (ii) on the second
term we see that if we choose e, so that |e,,,.x— x|| is sufficiently small we
can get (I) satisfied.

By Lemma 3.2 there is m € N depending only on b,, so that for j=m we have
I(E(en+1) ™ =by?).xll < F()lI(enss— Dby 7. x|
< MA+DF()Iby 7 x|l
< 2, x|

IIA

IA

since F(j)!¥ — 1 as j — ~o. Choose ||e,,;.x— x| so small that (I) is satisfied
and such that also for j<m we have

I(E(ens )™ = b, ). xIl < 2/Ib, 7. x] .

This finishes the induction.
We now want to estimate ||b, /. x|. We have for all n € N and all j € N that

Ibaiy-xll = 11f(ens1YE(€qss) ™ xI|
1f (ens 1V (E(ens 1)/ =by7). X[ +1f (ens )by 7. x|
(My2 + My)|b, 7. x]|

I\

A

so that with the choice of C>0 we have
Ibady-xl < Collby 7 x|
for all j,n € N. Using by =1 we get
(I b4 .x|| £ C¥ forall jneN.

Math. Scand. 50 — 9
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Clearly the sequence b, is convergent. Denote the limit by r. Then

Il = 2| & (1=4"e
\ 1
é/{dm=d

By (I) the sequence (b, /. x) is convergent for each j € N. Denote the limit by y,.
Since x € (#.x)", we get y; € (#.x)” for all j e N. Let j<K,. Then

00

Ix=y;l = || ¥ bady.x—b;7.x

and by the choice of
Iyl £ 6+1 5 of.
If K,<j<K,,;, we get

byi.x+ Y bif . x—bi.x
k

Iyl =

A

Ibyd.xll+ Y, Ibeéy.x—by . x|

k=n

Ch+6

A

<O+ S o

by the choice of the sequence (K,). Finally since x= (b}). (b, /.x) for all j,n € N,
we see that the power factorization holds.

4. Applications.
The first two corollaries are strengthenings of the corresponding observations

in [1].

COROLLARY 4.1. Let & be a commutative radical Banach algebra and suppose
that R has a bounded approximate identity for some Banach ®-module X. Then
there is arbitrary slow decrease of powers in R, i.e. for each positive sequence (8,)
tending to zero there is r € R such that ||r"||'"2> B, for all n e N.
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Proor. Let a,=f,'v3, let |x|=1, and let x=r".y, be the power
factorization from Theorem 2.1. Then for n sufficiently large we have

]\
rm 1/n > > .
I = (Ily,.ll> z P

By multiplying r with a suitable constant, we get ||r"||}"=> B, for all n € N.

COROLLARY 4.2. Let # be a commutative Banach algebra of quasinilpotent
operators on a Banach space X. Suppose there is a positive sequence (f,) tending
to zero such that

nil/n
liminfu' < 4+ forallreZ.
Let Te B(X) be the strong operator topology limit of a bounded net (r,) in X.
Then 0 is the only possible eigenvalue for T.

ProOF. Suppose x is a nonzero eigenvalue for T and let x € X\ (0) be an
eigenvector. Then (1/x)r,.x — x, and so # has a bounded approximate
identity for the Banach #£-module Y= (£.x)". This contradicts Corollary 4.1.

ExampLE 4.3. Let £=C,[0, 1], the continuous functions on [0, 1] with the
uniform norm and algebra product given by

t

(f*g)t) = J f(t—x)g(x)dx .

0

Let e(t)=1 for all t € [0,1] and let || f||<1. Then

IF*" = lle*l = forallneN.

1
(n—1)!
So | f"|*" tends uniformly to zero in the unit ball. Hence if X is a Banach
C,[0,1]-module we have for all bounded nets (f;) in C,[0,1] and all
x € X\ (0) that liminf || f,.x — x| >0.

We shall now discuss the connection between Cohen factorization and
bounded approximate identities for modules. First let us make the notion of
Cohen factorization precise.

DEFINITION 4.4. Let o/ be a Banach algebra and let X be a left Banach /-
module. We shall say that X has Cohen factorization over ./ bounded by d>0
if for each finite set x,,...,x, and for each ¢>0 there exists a € & and
Y1is- - -»¥n € X such that
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1) x;=a.y, i=1,...,n
(i) |lall =d,
(iii) Ix;—y;ll Se, i=1,...,n

ProposiTioN 4.5. If X has Cohen factorization over of bounded by d, then of
has a bounded approximate identity for X bounded by d.

Proor. Let x;,...,x, € X and let $>0. Choose y,,...,y,€ X and a € &
such that (i), (i), and (iii) in Definition 4.4 hold with £¢=J/dM, where M is the
boud of the module action. Then

llx;—a.xll la.y;—a.x|

IIA

Miall lly; = x;ll
0

A

fori=1,...,n

It is surprising that the converse holds for commutative radical Banach
algebras. This follows readily from Theorem 2.1.

COROLLARY 4.6. Let # be a commutative radical Banach algebra and let X be a
(left) Banach R-module. Then R has a bounded approximate identity for X
bounded by d if and only if X has Cohen factorization over & bounded by d.

Proor. Let x4,...,x, € X and let £>0. Define Y=Xx ... x X (n copies).
Make Y a (left) Banach Z-module by defining

1> Ell = max {[I&]l,. . ., I&,lI}

and r.(&,...,&)=(r.&,...,r.£,). The statement now follows from (i), (ii),
and (iv) of Theorem 2.1.

It is clear that Corollary 4.6 is also true for a Banach algebra with a bounded
left approximate identity for itself, since if . has a bounded approximate
identity for a left Banach .«/-module X, then («/.X)” =X and a bounded left
approximate identity for ./ will also be a bounded approximate identity for X
so that the usual proof of Cohen’s factorization theorem works. Example 5.1
below shows that Corollary 4.6 does not hold for all Banach algebras. It would
be interesting to know exactly for which class of Banach algebras Corollary 4.6
is true.
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5. Examples.
ExAaMPLE 5.1. Let &/ =1"(R,) and let X=L*(R,). Let §,, t € R, denote the

characteristic function of the set {t}. If fe .o/ we can write

f=2 4, XM =IfI.

t>0 t>0

We define a product on .« by

(5,24)-(5.00) - £,( 2, 5)p-

It is easily seen that with * as product &/ becomes a commutative Banach
algebra. If we view d, as the Dirac measure at {t}, this product is nothing but
convolution of measures, and the norm on [*(R.) is just absolute value of
measures. We make X a Banach .&/-module by defining the module action to
be convolution. Then 7 has a bounded approximate identity for X since for all
x € X we have lim,_q ||6,*x—x| =0.

Let now x € X be a function with a(x)=inf supp x =0 and suppose we have
a factorization x=f+y, fe ['(R,), y € L'(R,). Then clearly a(f)=0 so that f
=>,5040, and for each d>0 there is t <J such that 4,+0. If we apply the
Laplace transform we get Z(x)=2(f)Z (). Now Z(f))=X ie % Re(>0
so Z(f)() is an almost periodic analytic function. By a result of H. Bohr (Satz
27 of [2]) Z(f) has zeros in any halfplane {Re {>n} forcing #(x) to have the
same property. But clearly there exist functions x € L*(R,) with a(x)=0 and
£ (x) zero free. Take for instance x(t)=e ‘. Hence factorization is not always
possible.

In the same way we see that if we have a power factorization x =f*"xy,, then
x=0. If a(f)=B>0, then a(x)=nB for all n € N, so that x=0 and if a(f)=0,
then ¥ (x) has a zero of infinite order and consequently is identically zero.

ExaMpPLE 5.2. We now modify Example S5.1. Let w(t)=e“2, t>0. Then
o(t+s)Sw(t)w(s) for all s,t>0. Define

R =Ry, 0) = {(Aso| X Ido@®=1(A)soll <0}

and

X = L'R,,0) = {f‘ fis Lebesgue measurable and J |f|wsl|f|\<oo}.
R,

One checks easily that we can define convolution as before so that X is a
Banach #-module and # has a bounded approximate identity for X. Since

R M N
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as n — oo for all t>0, # is a commutative radical Banach algebra. But &£ does
not have a bounded approximate identity for itself. To see this suppose that (e;)
is a net in # bounded by d >0 such that for all r € # we have lim, |e;xr—r|
=0. By passing to a subnet if necessary we may assume that the net (e;) is
pointwise convergent to a function e: R, — C. We claim that e € #. Let
F<=R, be a finite set. Then

2. le(®lw() = lim ZF le;(low() = d.

teF i

Since F was arbitrary it follows that e € # and |e| <d. Now for all t>0 the
products e; *J, converge to J, in norm and pointwise to e*J,, so that e is an
identity for #. This is clearly impossible.

Using Theorem 2.1 we see that each x € L!(R,, ) can be power factorized
over I'(R,,w); x=f"+y,, n € N, with estimates of norms of the factors and
from corollary 4.1 it follows that there is arbitrarily slow decrease to zero of
I} in # even though # does not have a bounded approximate identity for
itself.
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