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EXTENSIONS OF DERIVATIONS II

ERIK CHRISTENSEN

1. Introduction.

Recall that a derivation 4, of an algebra .o/ of operators on a Hilbert space H
into the bounded operators B(H) on this space, is a linear map, which for any
two elements a and b in o satisfies

d(ab) = ad(b)+d(a)b .

The main result of this article tells that any C*-algebra ./ on a Hilbert space H
with a cyclic vector has the property, that to any derivation 6 of < into B(H)
there exists an operator x in B(H) such that:

YVae o/ 0(a) = [x,a] = xa—ax .

In [6] we proved a similar result for properly infinite von Neumann
algebras. The present result shows that the general problem is linked to the
particular representation rather than to some internal algebraic properties.

In Section 3 we have tried to show why it is interesting to know whether all
derivations of a C*-algebra &/ into B(H) are implemented by bounded
operators on H (such derivations are said to be inner). One of the main reasons
is, that if this is the case, then there exists a k >0 such that for any operator x in
B(H) we have the inequalities (1) below. In order to explain the inequalities we
remind the reader that .o/’ denotes the commutant of ., i.e. all the operators
in B(H) which commute with all operators in .«/. Moreover d(x, ') is the
distance from x to &', ad (x) denotes the derivation on B(H) implemented by x
and |ad (x)| &/| is the norm of the restriction of this map to «/. We can now
state the inequality which is fulfilled when all derivations of .« into B(H) are
implemented by elements in B(H):

(1) zlad ()| || < d(x, o) < klad (x)| ] .

This means that one can estimate the distance to the commutant by measuring
norms of commutators. In the papers [2, 3, 4, 5, 6, 7, 8] it has been proved that a
lot of algebras satisfy an inequality as (1) and the inequality has also been
used to prove various results related to perturbations of operator algebras.
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The main argument of this paper comes in Section 4 and is based upon
Pisiers’ non-commutative Grothendieck inequality. Via this inequality we prove
that derivations on C*-algebras with values in C*-algebras always satisfy a
certain inequality, which in turn shows that derivations between concretely
represented C*-algebras are always ultrastrongly continuous.

In Section 5 we prove that in various cases all derivations of a C*-algebra .o/
on a Hilbert space H into B(H) are inner, Moreover we prove that for any
cyclic projection ¢ in &’ and any derivation ¢ of .« into B(H) the derivation dq
of & into B(H) is always inner.

2. Preliminaries.

The notation and terminology follows Dixmier’s book [10], except that we
use script capital letters for C*-algebras and capital Roman letters for von
Neumann algebras. Hilbert spaces are denoted by the capital Roman letters
H, K, whereas vectors in these spaces are denoted by greek letters. Given a
Hilbert space H, B(H) denotes the bounded operators on H, C(H) the compact
operators, and B(H), the predual, or the space of ultraweakly continuous
functionals on B(H). The special algebra of all complex nxn matrices with
entries from an algebra & is denoted 4/ ®M,,

Since a great deal of this paper is devoted to the study of derivations, we
want to introduce some notation which shortens some of the statements. First
we remind the reader that a linear map & of an algebra &/ into a bigger
algebra 4 is called a derivation if for any two operators x and y in .7, §(xy)
=x0(y)+J(x)y. The linear space of all derivations of .« into # is denoted by
Z'(o/,B). The linear space of all derivations of &/ into # which are
implemented by operators in 4 i.e. has the form d(a)=[b, a] =ba — ab, is called
B'(«,#). The quotient space Z!(<o/,%B)/B'(4,B) is called the first
cohomology group for o/ which coefficients in # and the space is denoted by
H' (oA, B). If H' (o, B)=0 we say that all derivations of .o into # are inner.
For an element b in 4 the inner derivation of .« into & given by a — (ba— ab)
is called ad (b)| <.

Finally we will mention the concept, completely boundedness, which is very
important in this context. We say that a linear map ¢ of a C*-algebra ./ into a
C*-algebra 4 is completely bounded, if there exists a positive real ¢ such that
for each n in N p®id: L QOM, > BR®M, is bounded and ||p®id| =Zc.

3. On some properties of C*-algebras.

‘It has been the aim of much of our work recently to prove that all C*-
algebras have the properties listed in Theorem 3.1. We do think this is the case
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and we find strong evidence of this assumption in the results presented in
Section 5 together with the results presented in [5, 6].

3.1. THEOREM. Let o/ be a C*-algebra on a Hilbert space H and let M denote
the ultraweak closure of .
The following properties are equivalent.

1) There exists a constant k>0 such that for any operator x in B(H):
d(x,o’) = kllad (x)| ]| .

2) H'(s/, B(H))=0.

3) B'(«, B(H)) is closed in Z'(«/, B(H)).

4) Any derivation of o into B(H) is completely bounded.

S) There exists a constant ¢>0 such that to any trace class operator h on H
which is orthogonal to ' there exist sequences (a;);cn of elements from of
and (h);.N of traceclass operators such that

S lad by < clhly  and b= Ylhya].

6) There exists a constant ¢>0 such that to any ultraweakly continuous
functional @, which vanishes on A’ there exists a sequence wg, of
vectorfunctionals all vanishing on o' such that

L& ml < cllell  and ¢ =} wg,, .

Proofr. By [17] every derivation of & into B(H) has a unique extension to a
derivation of M into B(H). Therefore we may always consider derivations of .o/
into B(H) as being restrictions of derivations of M into B(H).

[1=2]. This result is the main content of [6], more precisely the result
follows from [6, Theorem 3.2 and Theorem 4.2].

[2 = 3]. Obvious.

[3 = 1]. As in the proof of Theorem 2.4 of [6] we define a complete norm ||| |||
on the quotient space B(H)/<«/’ by

x € B(H) |lIxlll = llad (x)| <] .

By the closed graph theorem the norm ||| ||| is equivalent to the quotient norm,
but that implies the existence of a constant k>0 such that

d(x, ') £ klad (x)| ]| .
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[2 = 4]. Obvious.

[4 = 2]. Suppose J is a derivation of & into B(H) then d®id is a bounded
derivation of the spatial C* tensorproduct o/ ®C(£%(N)) into B(H®¢*(N)).
Let § denote the unique extension of d®id to a derivation of the properly
infinite von Neumann algebra M®B(/*(N)) into B(H®¢?(N)). By [6,
Theorem 3.2] there exists an operator x in B(H®¢2(N)) such that §
=ad (x)| M®B(¢*(N)). Now § is trivial on C®B(/%(N)), so x belongs to
B(H)®C. Consequently there exists an operator y in B(H) such that x=y®]I
and d=ad (y)| .

[1 = 5]. Let
= {[a,h] | ae o, h trace class, |la| [|hll, <1} .

We want to consider K as a subset of the predual of B(H), and we prove the
theorem by showing that the closed convex hull of K contains k™ *((/')%),.
Let now z in B(H) be an element of the polar K° of K,

= {ye B(H)| VkeK: |tr (yk)|s1}.

Since z belongs to K° we get for any a in o/ with |a| <1 and any h with
Ihl, <1 that

1 2 |tr (z(ah—ha))| = |tr ((za—az)h)| .
Therefore |ad (z)| /|| £1, and then d(z, &) <k. We have then proved that
K° < k(s«'+ B(H),),
which implies
((29)*); < k(K®°) = k(closed convex hull of K) .

A usual approximation argument shows that any ¢ >k will do.

[5 = 1]. Let x be in B(H) then the distance from x to &’ is

sup {lp(x)| | ¢ € BH),, oI <1, ¢ € ()"

for any such ¢ there exist sequences (x;);cn, (h);cn Of Operators in &/ and
traceclass operators respectively such that ||a;| <1, 3; |kl Scllell and the
density of ¢ with respect to the trace on B(H) is 3 ;[a;, h;]. We then get

lp(x) = Z [tr (x(a;h; — ha))|
= Z |tr ((xa; — a;x)h;)]

< 2 lad (@)@l IAlly £ cllad (x)| 2| .
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Consequently d(x, &)< cllad (x)| /||

[1 =6]. As in [1 == 5] we consider the closed convex hull of a set
functionals vanishing on &/’
Define

K = {og| I€linI<1  and  w,|s =0}

and suppose z in the polar K°. For any non-trivial projection p in M and any
two unit vectors ¢ in pH and 7 in (I —p)H, w,, belongs to K and therefore
|(z&€| )= 1, This shows that for any projection p in M we have ||(I —p)zp|| £ 1.
Hence we get for projections p from M, that

Iz P12 = |lpz*( —p)zp+ I —p)z*pz(I—p)|| £ 1.

Since the self-adjoint projections are the extremal elements among the positive
operators of norm at most one in M, we have proved that for all operators z in
K° the norm |lad (z)| M| is less than or equal to 4.

The assumption 1) then implies that

K° < 4k(«' +B(H),),
which by polarisation gives
() € 4k(K*™).
An approximation argument shows that any ¢ >4k will do.

[6 = 1]. The method from [5 = 1] applies here too.

The theorem has some corollaries, which follow below. Although these
results are partly presented in [5, 6, 7] we find it convenient to include them
here too.

3.2 COROLLARY. Suppose &/ is a C*-algebra on a Hilbert space H and that of
for a positive k satisfies 1) in Theorem 3.1.

To any derivation & of s/ into B(H) there exists an operator x in B(H) such
that

d=adx)|o and x| = klo] .

Prook. Since 1) is fulfilled, H (7, B(H))=0 and there exists y in B(H) such
that 6=ad (y)| «. By 1) and the weak compactness of the unitball in .o/’ there
exists a z in & such that |y —z| £k||&||. Define x=y—z and x has the desired
properties.
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3.3. COROLLARY. Let M be a von Neumann algebra on a Hilbert space H and
let & be a derivation of M into B(H).

1) If M is injective then, there exists an operator x in B(H) implementing & such
that ||x|| <.

2) If M is properly infinite, then x can be chosen such that |x|| <3|4]|.

3) If M is finite of type 11, and M is isomorphic to M®R, where R is the
hyperfinite 11, factor, then x can be found such that ||x| <3|6]|.

ProoF. By [9] and [11], M has property P of Schwartz, when M is injective
and 1) follows from [5, Theorem 2.3].

If M is properly infinite we use [5, Theorem 2.4] to obtain the statement.

The last statement follows from [5, Corollary 2.9].

4. An inequality for derivations.

In our first work on perturbations [3], the key lemma [3, Lemma 2.5] says
that if ¥ is a linear map of a C*-algebra ./ into another C*-algebra 4, then for
any finite family of pairwise orthogonal projections (p,, p,,. . .,p,) in o

W (p)*¥(p)+¥()*P(P)+ ... +P(R)* PRI < P17

It has been clear to us since 1975 that a more general inequality of this type, as
presented in Theorem 4.1 below, is valid for all ultrastrongly continuous
maps [6, pp. 239-240] and moreover, that such an inequality has to be useful
in the study of linear maps on operatoralgebras.

In 1975 in [18] Ringrose discussed the problem whether ultraweakly
continuous linear maps on operatoralgebras are automatically ultrastrong-star
continuous, and he proved that it is so if and only if there exists a constant
H >0 such that any linear map ¢ of a C*-algebra o into another & satisfies

(*) Va,,...,a,€ A

< H|lo|?

Y. [0(@)*p(a)+p(a)p(a)*]

Y. [a*a;+aar]
i=1

In 1976 Pisier proved in [16, Corollary 2.3], that (*) is valid and that H?> £6.
We will now study how (*) yields the desired inequality for derivations on
operator algebras.

4.1 THEOREM. Let 8 be a C*-algebra, o a C*-subalgebra and & a derivation
of & into B.
For any finite set a,,...,a, in o
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¢
i 4

';1 6(a)*o(ay)

PrOOF. Suppose first that 6 is hermitian and also that 2 is represented
faithfully as operators on a Hilbert space. Then it is possible [17] to extend ¢
to a derivation § of the ultraweak closed & of & into the ultraweak closure
2 of #. Inside 4 the elements q; all have polardecompositions a;=v;h;, with
h;=0, h=a*a, and v; partial isometries. Hence d(a)=0v;6(h;)+5(v)h;, and

Z d(a)*o(a;)

‘; [8(h)v¥ + hd(v)* [, (hy) + b (v)h;]

Y. [3h)oroSih)+hdw)*3w)h
i=1

+ 8 (h;)v¥*8(v)h; +h,d(v)*v;6(h)] .
Since for arbitrary operators x and y
(x=y*(x—y) 2 0.
We also have
x*y+y*x < x*x+y*y,
and then

2 Y [3(hyotvd(h)+hd () *3(w)hi]

i=1

™M=

(1 d(a)*d(a)

IIA

]
-

A

2 Y [8(h)3(h)+1161%k}] .

i=1
Since h?=a¥a;=h*h;=hh¥ and & is hermitian we get from (1) and next
from (*)

T s@)*s@)| < |3 (5hy*3(h)+3hp3hy*|| + 20612 3 ata,
i=1 i=1
< 6||(5||2 i 2afa; +2||5||2 i a*a
i=1 i=1
= Faili .

If 6 is non hermitian, then the derivation 4 of & ® Cc: into #QM, given by
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A(a 0\ (0 &@m*
0 a/  \6(a) 0

has the same norm as & and is hermitian,

0 y x*x 0
x 0 0 ¥

From above we then get for any set (a,,...,aq,) in o/ that
z a; 0)\\* a O

i i < 14 2
EAG )l ) 5w

A linear ultraweakly continuous map between concrete C*-algebras &/ and
4 is ultrastrongly continuous if and only if, it satisfies an inequality similar to
the one presented in Theorem 4.1. This was proved in [6], but we did not state
the result in the form needed here. We therefore reformulate some arguments
from [6].

2

IIA

S 8(a)*5(a)
i=1

n
Z ara;
i=1

The theorem follows.

4.2. PROPOSITION. Let ¢ be an ultraweakly continuous linear map of a von
Neumann algebra M into a von Neumann algebra N.
Suppose that for any finite set (m,,...,m,)

-3

‘; e(m)*a(m,)

n
z m?‘mi ’
i=1

then to any normal state ¢ on N there exists a normal state y on M such that for
any min N

ole(m*e(m)) < Y(m*m).

ProoF. As mentioned the proof follows the version given in [6, p. 240] of
arguments from [18]. Let

S, = {me M| olem*em) = 1}

and let S, be the convex hull of the set {m*m | m € S,}, then for x=3 Aim¥m;
an element of §,

Ixll = 1Y (dm)*(adm)ll 2 1Y Ae(m)*e(m)l 2 1.

Since S, does not meet the open unit ball in M, there exists a hermitian
functional w with |w| £1 such that w(x)=1 for all x in S,.

Since all elements in S, are positive, the positive part of w will have the same
properties so we may assume that w is positive and satisfies
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Vme M: p(e(m)*e(m) < w(m*m).

In [6, p. 240] it is shown that since ¢ is normal, the normal part [19] o, of
o also satisfies

Vme M: ¢(e(m)*e(m) £ w,(m*m).

Since ||w,|| £1 one finds that the normal state Y = |w,|| "', has the property
that Ym € M: @(o(m)o*(m)) <y (m*m).

4.3 COROLLARY. Let o/ be a C*-algebra on a Hilbert space H and é be a
derivation of o into B(H). To any normal state ¢ on B(H) there exists a normal
state Yy on B(H) such that

Vaesod o(3(a)*5(@) < 141612¢(a*a) .

ProOOF. By [17] & can be extended to a derivation § of ./, the ultraweak
closure of &/, into B(H) with the same norm. The result then follows by
combination of 4.1 and 4.2.

5. Sone consequences of the automatic ultrastrong continuity of derivations.

Even though we can not prove in general, that derivations on C*-algebras
are completely bounded, we can through the ultrastrong continuity show this
in a fair amount of the possible cases.

5.1 DerFINITION. Let 4 be a derivation of a C*-algebra o/ on a Hilbert space

H into B(H). For any x in /', 6x denotes the derivation of .« into B(H) given
by dx(a)=4(a)x.

5.2. PROPOSITION. Let & be a C*-algebra on a Hilbert space H and let é be a
derivation of & into B(H).

For any cyclic projection q in /' —that is 3¢ € qH such that qH =ofE—the
derivation dq of « into B(H) is completely bounded. Moreover for any natural
number n, (6q®id): L ®M, — B(H)® M, has norm less than or equal to 8 4.

PROOF. As usual we suppose that & is defined on & also. Let ¢ € H,
(a;) e #®M, and let I'=(b&b¢,...,b,¢) be in gHOgH® ... DgH (gH
= A¢) such that b, e o and Y ||b¢|><1. It is now enough to show that
I (a1 <8115

Define ¢ as the positive squareroot of 3°7_; b*b,, then there exist operators
(d,,. . .,d,) in o such that b;=d,c and ¥"_, d*d,<I. One should remark that
lelll=1.
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We will now estimate the norm |[[(d(a;))I"|l, by estimating (6(a;)I" | Q) for
vectors Q of the form (w,,...,w,) with ¥ |w;|><1. The derivation property
yields ‘

Z (5(aij)djcélwi) = Z ((5(‘1.';‘1;')"“.',‘5(‘1;»05'wi) .
ij ij

Now, we get when looking at n x n matrices

AEDTEY

dy ... d¥ d,
(aij)*(aij) 0 < (a,-j)|12
0 d,

so by Cauchy-Schwarz inequalities and Theorem 4.1 we obtain

2\% 3

< (z o(5 s ) (% o)
i J i

< \/ﬁuan‘ ) [(Z dfas’f)(Z asudk)]
i Jj k

< V/1418) I1(a;)|l -

The second term is measured in a similar way

Z (5(aijdj)cf | ;)

ij

E

= |((@)419Q)l,

%: (a;6(d))cg| ;)
where
4 = (6(d)cé,. .., o0(d,)cl) .
By Theorem 4.1 we have
1417 = T 16(d)ecg)® < 1418171 drdill lcgl® < 14)0) .

Hence

ij

¥ (aija(d,-)célw,-)l < V14481l (@)l -

Finally we get since 2[/§<8 that
(6q®id)(a;)ll = 8lId] ll(a;)l ,
and the proposition follows.

The following theorem is now at hand.
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5.3 THEOREM. Let J be a derivation of a C*-algebra o/ on a Hilbert space H

into B(H) and let q be a cyclic projection in o', then there exists an operator x in
B(H) such that

0g = ad(x)|« and x| = 12]4] .
Proor. Combine the proof of [4 = 2] in Theorem 3.1 with Corollary 3.3.
The following corollaries are also immediate.

5.4 COROLLARY. Let of be a C*-algebra on a Hilbert space H. Suppose </ has
a cyclic vector, then:

a) For any operator x in B(H), d(x, #')<12|ad (x)| &
b) Any derivation 6 of o/ into B(H) is implemented by an operator x such that
I =124

5.5 CorOLLARY. Let M be a finite von Neumann algebra on a Hilbert space H.
If M’ is finite and the coupling function [10, § 6,1 Definition 1] is essentially
bounded, say by the natural number n, then:

a) For every operator x in B(H), d(x, M')<25n|lad (x)| M|.
b) Any derivation 6 of M into B(H) is implemented by an operator x such that
x|l =25n]|5]|.

PRrOOF. Let x be in B(H) and let Z denote the center of M. Since Z is injective
there exists by Corollary 3.3 an operator y in B(H) such that

Iyl £ lad ()| Z]l, (x—y)eZ, and
lad W) M| = lad (x)| M|l .
(See [5, Proof of Theorem 2.4].)
Let z=x—y, then |lad (z)| M| £2|ad (x)| M| and ad (z) is trivial on Z.

Let (E,),.4 be a family of pairwise orthogonal central and o-finite
projections with sum 1. By [10, III § 6,3 Proposition 5 and Proposition 6] it
turns out that for any « in A, E, is the sum of n cyclic projections from M'.

The Theorem 5.3 now yields that to any a there exists an operator v, in
B(E,H) such that:

ad(v,)|ME, = ad (2)|ME, and |v,| < 24njladx| M| .
Let us then define v=(}4v,)+y, then:
ad (v)|M = ad(x)|M and |jv| £ 25nfladx|M]| .
The corollary follows.
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5.6 REMARKS. When combining Corollary 5.5 with Corollary 3.3 we find that
the question whether H!(s#, B(H)) vanishes or not is by now not linked to
algebraic properties of &/ but rather to the particular representation of .. To
be more precise we can state that if M is any von Neumann algebra in standard
position on a Hilbert space H, then H!(M, B(H))=0.

It should also be remarked that a general positive answer to the question
H'(M, B(H))=07? will be very useful in the study of perturbations of operator
algebras, and it will imply positive completions to the works [1] and [12].
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