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HARMONIC ANALYSIS OF
ABELIAN INNER AUTOMORPHISM GROUPS
OF VON NEUMANN ALGEBRAS

HERBERT HALPERN

1. Introduction.

From work done over the last decade, it is apparent that automorphism
groups play a central role in the theory of operators algebras. Therefore, it
would be desirable to have a spectral theory for automorphism groups. This
paper continues the author’s work [9], [10] along these lines.

Let A be a von Neumann algebra, let G be a locally compact abelian group,
and let ¢ be a representation (i.e. a homomorphism of G into the group of *-
automorphisms of A such that the map t — ¢(0,(x)) is continuous on G for all
x in A and ¢ in the predual A, of A). The representation o is said to be inner if
there is a unitary representation u of G in A4 (i.e. each u, is in A) such that u
unitarily implements ¢ in the sense that

o,(x) = adu,(x) = uxu}

for all tin G and x in A. If fis in L!(G), let a(f) be the element of the algebra
L(A) of all g-weakly continuous linear maps of A4 into itself given by

o(f)x = f f(t)a,(x)dt

and let L (o) be the commutative Banach algebra equal to the closure in L(A4) of
the set of all o(f) (f € L*(G)). The spectrum Spo of ¢ given by

Spo = N {N()| fe LY (G), a(f)=0},

where N(f) is the set of all y in the dual group I' of G at which the Fourier
transform f~ of f vanishes, is identified with the carrier space Q of L(s) under
the map y —» w,, such that a(f)A(w),)=fA(y) for y € Spo. Here a(f) is the
Gelfand transform of o(f) [4; 2.3.7]. This correspondence sets up the elements
of a spectral theory of linear maps on von Neumann algebras.

In this paper we show that L(o) is semisimple (i.e. the Gelfand transform is
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one-one) if G is a discrete group. Combining this with our earlier work, we
show that L (o) is semisimple whenever its carrier space Sp g is compact. The
proof of this can also be used to extend some results of Stermer [16] by
showing that the Banach algebra B® B in L(A) generated by maps of the form

n(x)y = xy, w(x)y = yx,

where x lies in an abelian C*-algebra B in A, is semisimple.

Now let B be an abelian von Neumann algebra in 4 containing the center of
A and let L be the commutative Banach algebra in L(A) generated by all L(o),
where o runs through the set of all representations of G on A with compact
support unitarily implemented in B. A representation ¢ has compact support if
and only if it is continuous in the norm topology of L(A) [13], and a norm
continuous representation of a connected abelian group is inner [12]. We show
that the algebra L is equal to the Banach algebra L(r) generated by the
representation t on A of the unitary group or the self-adjoint unitary group of
B given by 1,=ad u if G has an element ¢ not equal to t ! or if t=¢"! for every
t in G, respectively. We give the exact form of the projections in L and the
spectrum of L in terms of those of B. The projections of L generate L in the norm
topology. Finally, the form of the spectrum allows us to extend Stermer’s
notion [16] of positive definite element in L and to characterize an
automorphism implemented in B in terms of its spectral properties in L.

2. Semisimplicity.
We show that a representation ¢ with compact spectrum produces a

semisimple algebra L (o). The main part of the proof consists of analyzing the
representation of a discrete abelian group.

THEOREM 1. If o is a representation with compact spectrum of the locally
compact abelian group G on the von Neumann algebra A, then the algebra L (o)
generated by o(f) (f € L'(G)) in L(A) is semisimple.

Proor. First assume that G is discrete. The spectrum of any representation o
of G, being a closed subset of the dual I' of G which is a compact group, is
compact. Let A” be the enveloping von Neumann algebra of 4, let C be the
center of A", and let p, be the sum of the set {p;} all nonzero minimal
projections in C such that p,4” is a factor of type 1. For each g, there is a
unique 6, in Aut A” that coincides with o, on A. In fact, the algebra 4" is
identified with the second dual of A and 0, is then identified with the second
transpose of a,. The map t — 6, is a representation 8 of G on A". Since each 6,
maps a minimal projection of C onto a minimal projection of C, the projection
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po must be invariant under the action of 6. Thus, the representation 6 induces a
representation o of G on the von Neumann algebra A4”p,,.

We show that L(o¢) is isometric isomorphic to L(x) under the map @
satisfying @(c(f))=a(f) for all fin L!(G). In fact, we have that

() (xpo)ll = 11X f (B, (xpo)ll
12 f(8)a,(x)poll
(e ()X)poll = la(fHI ,

for all x in A, due to the fact that x — xp, is an isometric embedding of A4 into
A"po. By the Kaplansky density theorem [6, 1,3, Theorem 3], we get that

(NI = Tub{la(NCIl | IxIIS1, x € 4,

and so we get that

e (O = Na (NIl -

Since the sets {o(f) | fe LY(G)} and {a(f) l fe L*(G)} are norm dense in
L(o) and L(a), respectively, we can conclude that ¢ is an isometric
isomorphism of L(o¢) onto L(a).

Now it is sufficient to show that L(«) is semisimple. We have that 4"p, is
isomorphic to the product [T A"p;. Each algebra A"p; is a type I factor. Let ¢,
be the canonical trace of A”p, that sends an abelian projection into 1. Then the
map ¢ =Y ¢; is a semifinite, faithful, normal trace of A”p,. We show that ¢ is
invariant under o. Let a, be given. For each i there is an index ¢ (i) with o,(p;)
=p, If an element a in A”p;" is in the ideal of definition of ¢, then there is an
orthogonal sequence of abelian projections {g;} in A”p; and a sequence {4;} of
positive scalars such that a=3 4,q; and ¥ 4;<~0. We have that

(@) = ) 4o (q)

and {a,(g;)} are orthogonal abelian projections in A"p,;. This means that

oa) = (Pi(a) = z ;“i = (Pt(i)(ax(a)) = (p(a,(a)) .

Because the positive part of the ideal of definition of ¢ is equal to countable
sums Y a; with g; in the positive part of the ideal of definition of ¢, such that
> @;(a;) < >, we see that a, leaves ¢ invariant. By Theorem 2 [10], we conclude
that L(a), and consequently, that L(c) are semisimple.

Now let o be a representation on A with compact spectrum of an arbitrary
locally compact abelian group. There is a representation o, with compact
spectrum of a locally compact abelian group having a compactly generated
dual such that L(s)=L(s,) [10, Proposition 10]. Then there is a representation
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o, of a discrete abelian group such that L(g,)=L(s,) [10, Proposition 17].
Thus, the algebra L(o) is semisimple.

REMARK 2. Let M(G) be the algebra of bounded measures on G. If ¢ is a
representation of G on A4,

@(v(0)) = J‘P(G.(a))dv(t) (ped,)

defines an operator v(o) in L(A) for every v in M(G). Then one can prove that
closure M(o) of the set of all v(s) (v e M(G)) is also a semisimple Banach
algebra if ¢ has compact spectrum.

3. Spectra.

Let B be an abelian von Neumann subalgebra of the von Neumann algebra
A. Suppose B contains the center of 4. Let R be the family of all inner
representations on 4 with compact spectrum of a fixed nontrivial locally
compact abelian group G such that each representation is unitarily
implemented by a unitary representation in B. The commutative Banach
algebra L in L(A) generated by all L(o) for o in R is equal to an algebra of the
form L(o,) for a certain inner representation g, on A of a discrete abelian
group and o, is unitarily implemerited in B. The algebra L is generated by its
projections (i.e. elements T with T>=T) of norm 1 [10, Theorem 22]. We now
obtain a better description of L. First we need to analyze the projections of L.

LEMMA 3. Let p and q be orthogonal projections in B. Then there is in L a
projection T of the form

(1 Tx = pxq
(respectively,
) Tx = pxq+qxp),

if G contains an element t+t~' (respectively, if t=t"! for every t in G).

PROOF. Suppose G contains a ¢t with t? # 1; then there is a y in the dual group
I of G with y?>#1. The relations
u = 1-qg+{pt)q, v =1-p+{pt)7p

define unitary representations of G in B such that

adu(f)x = (1-g)xq, adv(f)x = px(1—p)
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for any integrable function f on G with " (y)=1 and " (y~')=f"(1)=0. Then
the element (ad v)(f)ad u(f) maps x into pxgq.
The projections mapping x into

px(1-p)+(1—=p)xp and gx(1—q)+(1—q)xq

respectively, are in L for a group G in which every element is its own inverse.
Thus the operator

Tx = pxq+qxp

isin L.

Out of two orthogonal projections p,,p, in B of sum 1 together with the
projection p,=0, we may form six projections in L, viz.,

(i) x = pyxp; = pyXpy+Pp,Xxpo,

(i) x - p,xpy,

(iii) x — p;xp,+Pp2Xpy,

(iv) x = pyxpy +pyxps,

V) x - x,

(vi) x = 0.
The complete description of projections in L is an extension of the preceding.

PROPOSITION 4. Suppose the locally compact abelian group G contains an
element not equal to is own inverse. An operator T in L(A) is a projection in B if
and only if it can be written in the form

(3) Tx =3 (px X in| ieX)),

where p,=0,p,,...,p, are orthogonal projections of sum 1 in B and
X, X,...,X, are subsets of {0,1,2,...,n} such that i is in X; for one
particular i implies i is in X; for every i.

ProoF. First we obtain formulae to express the combination of elements of
the form (3) under certain algebraic operations. The formulae will show that
each element of the form (3) is a projection, and that the set of elements of the
form (3) is closed under multiplication and orthogonal summation.

Let T be the element in L(A) of the form (3) given in the hypothesis of
Proposition 4, and let {g;} be a finite set of orthogonal projections in B of sum
1. Let {r; | 1 £i<m} be any enumeration of the nonzero projections p;q, and
let ry=0. Then we can write T as

Tx = Z_(r,-xZ{r:I iel)
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for such suitable subsets I,,I,,...,I, of {0,1,...,m}. This is a simple
rearrangement of

Tx = z (pjaxx Z {rii | i€ Xj})-

Jrk,1

Now we have that

Sr=Ypa=YpYa=1.

Furthermore, if some i is in I, then T(r)=r;+0 and thus T(p;)#0 for that p;
with p;q, =r,. In fact, we have that T(r;) = q, T (p;). This means that j is in X for
this particular j, and consequently, that j is in X; for every j. Thus, the term
Pjaxxp;dx appears in the sum for T for every p;q,+0, that is i € I; for every i.
This shows that the representation for T in terms of the projections {r;} is still
of the form (3).

Now let S be the operator of the form (3) given by

Sx=2qjx2{q,.| eeY;}).

We have just shown that T and likewise S can be written in the form (3) in
terms of the same set {r;} of orthogonal projections of B of sum 1. So there is
no loss in generality in the assumption that p;=g;=r; Then we get that

STx =Y (rx Y {r; | ie X;NY}
J
and

S+Dx) =Y {rx X {r]| ieX;U Y.
J

Here U’ denotes the disjoint union. We see that i in X;N Y, for one particular
index i implies i in X; N Y, for all indices so that the representation for ST is still
in the form (3). We also see that ST=0 implies that X ;N Y; is contained in the
set {0} for all j. This means that the representation for S+ T is still in the form
(3) if ST=0. In fact, we have that X;U'Y;=X;UY, In addition, if one
particular i is in X;U Y, then i isin X, or Y; and thusiisin Y;U Y, for every i.
Thus, we have that each element of the form (3) is a projection and that set of
such elements is closed under multiplication and orthogonal summation.

Now we have that the projection T in L(A4) given in (3) is actually in L.
Suppose i is not in X for every i; then Tis in L by Lemma 3. If " p,=1, then
the operator

Rx = x—z pi(x Z {p: | i%j}) = Z piXxp;

i

is also in L since the identity operator is in L [10, Theorem 22].
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As the first step in showing the converse that every projection in L has the
form (3), we show that linear combinations of projection of the form (3) are
dense in L. Given a representation ¢ in the set R, an integrable function fon G,
and an £>0, then we can find a compact subset G, of G and an 5 >0 such that

10(f)—a(NIl = J 16, —a.ll If(t)ldt+2j If@ldt <e,

o

whenever 0 is in R and |0, —¢,|| <7 for all t in G,. There are a finite number of
norm continuous unitary representations u; of G in the center C of 4 and a
corresponding number ¢; of orthogonal projections in B of sum 1 such that

01 = ad Z U q;
is in R and satisfies the relation
"01_61" < '7/2

for t in G, For this we limit ourselves to sketching the partition argument
presented in detail in [10]. We can find a unitary represention v of G into B
with compact support that implements ¢ [10, Proposition 20]. Let e be the
spectral resolution of v in B and let W be a compact Baire set in the dual group
I' of G. If p is the central support of e(W) in C, there is a continuous function x
of the support of the Gelfand transform of p in the carrier space of C into W.
The relation

u () = @ 0p O+ 1-p) Q)
for { in the carrier space of C defines a unitary operator u, in C and the map
t — u, defines a norm continuous unitary representation u of G in C. A
rearrangement of sums of elements of the form u,e(W) gives 0, [10, Proposition
21]. Now working with the spectral resolution of the u, given by Stone’s
Theorem, we can find a finite set {r;} of orthogonal projections in C and a
corresponding finite subset {y;} in the carrier space of C such that the
representation o in R given by
a, = ad Z “;(#j)‘h"j
satisfies the relation
o — 6,1l < n/2
on G, Thus, we have that

la(f)—oNIl < e.

The spectrum of « is finite since it is contained in the subset of I' given by
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t— Gipt) ™ = uiAr(I»‘j)“k:(llj)w

[10, Proposition 21]. We can find a finite set {g,} of integrable functions on G
whose Fourier transforms act as the Kronecker delta on the spectrum {y,} of a.
Using the fact that L(x) is semisimple (Theorem 1) and the fact that f~
=Y " (7.)g, on the carrier space Spa of L(a), we get

a(f) = ¥/ (e -

However, the operators «(g,) are projections because (g,*g,) and g, coincide
on Spa and so a(g,)?=a(g,*g,) and a(g,) coincide. We have that

a(g)x = ‘[8"([) ad (2; “};(M)‘h"::) (x)dt

= Jgn(t) Z Z ijio )~ ixqyer; dt

j ik

= Z Z g;(yijk)qiqurj
J ik

= ) {axqu; l (i,j,k) e I} .

Here, 1, will denote the set of all (i, j, k) with y;; =y, If y, is equal to the
identity of I, then the set I, contains the set {(i, j, k) | i=k}; on the other hand,
if y,# 1, then the set I, is disjoint from {(i, j, k) l i=k}. In either case a(g,) is of
the form (3). Hence, linear combinations of projections of the form (3) are
dense on L.

Now we show that an arbitrary projection T in L has the form (3). Let {T;}
be a finite set of projections of the form (3) and let {4;} be scalars such that

IT-Y 4Tl < 1/3.

We may assume that T,T;=0 for i +j. We show that T'is equal to the projection
S =Y {T| N-il<1/3}.

Since L is semisimple, it is sufficient to show that the support of their Gelfand
transforms on the carrier space Q of L are equal. Let |4;— 1] <1/3 and let w be a
point in  with T;(w)=1. We have that

I(1-T) (@) = (T;=T) (w)
=X 4T, = T) (@) +]1 -4
S Y AT, —TI+1-4) < 1.

Thus, we get that T" (w)=1. Conversely, let T (w)=1. Since we have that
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IE 4T,=T)Y (@) S IX 4T,=TI < 1/3,
there is precisely one T; with T (w)=1. We have that
=4 = (X 4T;=T) (w) < 1/3.

This shows that §” and T  have the same support and thus are equal. So we get
S=T.

The two classes of projections described in Proposition 4 can also be
described more conveniently as

®) {T| i¢ X, inform 3)} = {T| T"(1)=0} = {T| T(1)=0}
and
6) {T| ieX;inform 3)} = {T| T"()=1} = {T| T)=1}.

Here 1 denotes the identity of dual of the discrete abelian group.
Using of proof similar to that of Proposition 4, we can also prove the
following.

PROPOSITION 5. Suppose every element of the locally compact abelian group G
is equal to its own inverse. An operator T in L(A) is a projection in L if and only
if it can be written in the following form.

4 Tx = Z(pixZ{ij je Xy,

where p,=0,p,,...,p, are orthogonal projections in B and X,,X,,...,X, are
subsets of {0, 1,. . .,n} such that i is in X for one i implies i is in X for every i and
Y pi=1,and iis in X; implies j is in X,

Now it is possible to identify the algebra L with L(t) for a concrete
representation .

THEOREM 6. Let A be a von Neumann algebra and let G be a locally compact
abelian group. Let L be the commutative Banach algebra generated by all the
algebras L (o) for representations ¢ of G on A with compact spectrum that are
unitarily implemented by unitary representations of G into the abelian von
Neumann subalgebra B of A containing the center of A. Then the algebra L is
equal to the algebra L(7) for the representation t on A of the discrete group of
unitary (respectively, self-adjoint unitary) operators of B given by t,=adu
provided G contains an element not equal to its own inverse (respectively every
element in G is its own inverse).
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ProoFr. Let G contain an element that is not equal to its own inverse. Let u
be a unitary operator in B. Given a positive number ¢, there are orthogonal
projections py,. . ., p, of sum 1 in B and complex numbers 4,,. . ., 4, of modulus
1 such that

IS Api—ull <.
The operator

Tx = ) 4] pixp;
is in L (Proposition 4) and

IT—adu| < 2¢.

This proves that L(t) is contained in L.

Conversely, let ¢ be a representation in R. Let I’y be a compactly generated
subgroup of the dual I" of G that contains Sp g. The representation ¢ induces a
representation ¢’ of G modulo the annihilator G, of I'y by tG, — ¢, [4; 2.3.9].
Since the unitary representation v of G in B implementing ¢ can be chosen so
that its spectrum lies in Spo [10, Proposition 21], the relation tG, — v,
induces a unitary representation of G/G, in B that implements ¢'. There is a
discrete subgroup D of G/G, such that the Banach algebra L(¢"’) generated by
the restriction ¢” to D coincides with the original algebra L(o) [10, Proof of
Theorem 22]. This means that L (o) is contained in L(z). Thus, we have that L
is equal to L(7).

If every element is its own inverse, then a suitable modification of the
preceding argument based on Lemma 3 shows that L is generated by the
representation of the discrete group of self-adjoint unitary operators of B given
by u — adu.

The preceding theorem show that some of the harmonic analysis inherent in
the analysis of inner representations with compact spectrum of G on A
disappear in favor of the harmonic analysis of the representations induced by
a canonical discrete abelian group of unitarires.

We now compute the spectrum of L. We have already computed it in terms
of the implementing unitary representation [9]. Here we compute it in terms of
the carrier space of B. We first consider a more general subalgebra B®B in
L(A) generated by left and right multiplications by elements of B on 4. This
was studied by E. Stermer [14], when B is a closed *-subalgebra of the algebra
A of all bounded linear operators on Hilbert space. The next proposition

extends Stermer’s results by reducing the present case to the case considered
by Stermer.
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THEOREM 7. Let A be a von Neumann algebra with center C, let B be an
abelian C*-algebra in A containing C, let Z be the carrier space of B, and let
B® B be the Banach algebra of operators on A generated by the left and right
multiplications n(x)y=xy and ' (x)y=yx (y € A, x € B) of elements of B on A.
Then BB is a semisimple Banach algebra with carrier space

{(GHezZxZ| (nC=¢Ncy,
and the carrier space acts on B® B according to the relation

rITG) (8 = x Qy (@)

Proor. Let M be the carrier space of C, let u be in M, and let Z,, be the set
Z,={ezZ| (NC=y}.

There is an irreducible representation ¢ =g, of A on a Hilbert space H=H,
with kernel equal to the ideal p in 4 generated by u [8]. We note that the
carrier space of the C*-algebra ¢(B) can be identified with Z, by the relation

P:(e(x) = x (0).

Let ¢(B)®g(B) be the Banach algebra in the algebra L(L(H)) of o-weakly
continuous linear operators on the algebra L(H) of bounded linear operators
on H generated by left and right multiplications by the C*-algebra ¢(B). If T'is
in B®B; then there is a unique operator ¢(T) in ¢(B)®g¢(B)

e(Me(X) = o(Tx)

for x in A. In fact, we can pass from the generating set of BB to the full
algebra because of the relation

lub {}. m(e,(x))m (Wl | e M} = ¥ nlx)m' Gl ,

which follows from the Kaplansky Density Theorem. If T has spectrum equal
to {0} in B®B, then g,(T) has spectrum equal to 0 in ¢(B)®g(B). Since
0(B)®g(B) is semisimple [14, Proposition 4.2], we have that o(T)=0 for all g,
and thus, that T=0. This shows that B®B is semisimple.

The center C is isometrically isomorphically embedded in B® B by the map
x — m(x)=mn'(x). This means that any nonzero multiplicative linear functional
¢ on B® B induces a multiplicative linear functional on the center C. So there
is a unique p in M with

p(n(x) = x (n)

for every x in C. Setting ¢ =g,, we show that there is a unique multiplicative
linear functional § on ¢(B)®g(B) such that
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@(T) = y(e(T))
for every Tin B®B by showing that

lo(T) = lle(D
for every T of the form

T=7Y {nx)n' ()| 15i<n}
with x;,y; in B. To prove this we use the fact that
n— lle,(l
is continuous on M for every fixed x in A [7, Lemma 9]. Since the relation
@(Tn(p) = @(Me(n(p) = ¢(Tp (W) = o(T)

holds for every p in the set of projections P, in the complement of u in C, we
see that

lo(T)| < gb{ITr(p)ll | pe P} = 4.

We show that |o(T)| coincides with 4. Because g(p)=1 for every p in P, it is
clear that |o(T)| £ A. There is no loss of generality in the assumption that 1> 0.
Let 0 <e< /2. If p is a projection in C with || Tr(p)| > A —¢, there is an element
x in A with

ITe(p)x|| > (A—e)lm(p)x] .

This means that there is a nonzero projection ¢q in C, such that for every
nonzero projection r in C,, the relation

ITe(r)x|| > (A—e)lm(r)x]|

holds; otherwise, a maximal set {r;} of nonzero orthogonal projection in C,
with

ITr(r)x] £ (A—¢e)lm(r)x]
must have sum p and this would mean that
I Tr(e)x|| = lub;[|Tra(r)x|| = (A—¢)lub |rx]|
< (A-9ln(p)x]l .
So there is a nonzero projection g in C, with
ITr(r)xl > (A—¢)lrx]|

for every nonzero projection r in C,. Since the norm of gx is given by
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lgx = lub{lle,@) | vesuppq }

(cf. [8, p. 210]) and since the map v — ||g,(x)|| is continuous on M, we may
replace g by perhaps a smaller projection and multiply x by an element of C,
given by ¢ (v)=|¢,(x)| ! to obtain a nonzero projection q in C, and a vector x
in A, such that [o,(x)| =1 for every v in supp q , and such that

ITe(rx| 2 (A—2e)lrx|| = A—2¢

for nonzero every projection r in C,. Now we are in a position to show |[l¢(T)]|
=/ —2¢ by a maximality argument. Let {g;} be a maximal orthogonal set of
nonzero projections in C such that there is a corresponding set {x;} of elements
of A such that g,x;=x, llo,(x)ll=1 for v in suppgq;, and

[Tr(r)x;ll 2 A—2e
for every nonzero projection r in C,. Setting x=3 x; we have that
e, = lle@)l =1

since p is in closure of the union of the supports of the g; due to the

maximality of the set {q;} and the previous construction for q. We also have
that

e (Tx)|

glb {lln(Tx|| | re P}
2 (A-2¢)
for every v in suppg; so that

le(D

v

le(Te(¥)Il 2 4-2¢.
This shows that
le(MI 2 4.
Thus, we have that
lp(T)l = 4 = lle(D] -
There exists a multiplicative linear functional ¥ on ¢(B)®¢(B) such that
@(T) = ¥(e(T)

for all Tin B® B. Using [14, § 5], we can find a point ({, £) in the carrier space
Z,xZ, of ¢(B)®g(B) such that

@(r()m'(2)

Y (r(e)n' (e(2)
2(y) (De(2) (&)
y Q).
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Conversely, if ({,¢) are in Z, x Z,, then the map
T— ,(T) (£,¢)

defines a nonzero multiplicative linear functional on B® B.
Now we show that the map ¥ of the compact subset {Z,x Z,, ] ue M} of
Z x Z onto the carrier space of B®B given by

T (Y 9) = . (T) (L,

for ({,¢)in Z, x Z, is a homeomorphism onto the carrier space of B®B. It is
sufficient to verify that ¥ is continuous. We must show that, for every T in
B®B, the net {T (¥({, &)} converges to T (¥(( &) whenever {((,,¢,)}
converges to ({,&). For this it is sufficient to assume that T is of the form
T==n(y)n'(z) for y,z € B. But then we have that

lim T (Y, &) = limy ()2 (&)
YOz ©) = T(PCY).

So the map ¥ is continuous and thus a homeomorphism.

I

We now compute the carrier space of L.

THEOREM 8. Let A be a von Neumann algebra with center C, let B be an
abelian von Neumann subalgebra of A containing C, let Z be the carrier space of
B, let T be the representation of the unitary group U of B on A given by 1,=ad u,
and let L=L(t) be the Banach algebra of operators on A generated by the
operators of the form t(f) (fin L*(U)). Then the spectrum of L is the one point
compactification of the subset of Z x Z given by

Q ={(LHeZxZ| (NC=ENC, {*&

and the action of the carrier space on L is determined by

-~

0,08 = u (Qu (&)~
and
7,(00) = 1

where 0o is the point at infinity.

Proor. We preserve the notation of Theorem 7. We have that the transpose
@ of the identity map of L into B® B is a continuous map of the carrier space
of B®B onto a compact subset of the carrier space Q2 of L. Since Q has a base
of open and closed sets each one of which corresponds to the support of the
Gelfand transform of a projection in L [10, Corollary 24] and since the algebra
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B® B is semisimple (Theorem 7), the map @ is a surjection. Now we can show
by a simple exhaustion argument, which is based on the fact that the
projections of B separate the points of Z, that ¥({,,&,)= ¥ ({,,¢&,) on L if and
only if {, =&, and {,=¢&, or {; ={, and &, =¢&,. It is worthwhile noting that the
entire unitary group and not just the self-adjoint group is necessary to obtain
this separation. From this we see that @ is one-one on Q,; and that @ maps the
elements ({,{) into the identity element in the dual group of U, which is the
spectrum of 1, or equivalently, the carrier space of L (cf. [10, Theorem 11]).
Finally, we observe that @(Q,) does not contain this identity element. Thus, the
map @ induces a homeomorphism of the one point compactification of
onto the carrier of L with the stated properties. Indeed, we set the value at
infinity of the map induced by & equal to the identity of the dual group. The
only point that now needs verification is the continuity at infinity. Given a net
{({» &)} in Q, converging to oo and given a Tin L, we must show that the net
{T({,,&,)} contains a subnet converging to T  (identity). For this we show that
every subnet of {TA ({w &)} contains a subnet converging to T (identity). Then
there is no loss of generality in the assumption that {((,,&,)} converges to
(Lo, &o) In Zx Z with {[(NC=¢,NC. But if p is any projection in B different
from one and zero, the set

(€| P ©U=p)(&)=0} U {o0}

is a neighborhood of oo in the one-point compactification of @, The net
{({w &)} is eventually in this neighborhood. This means that {, =¢,. Thus, we
get

lim T™ (&) = T (9o o) = T (identity) .

If A is a factor, we note that the carrier of B B is Z x Z and the carrier of L
is the one-point compactification of the complement in Z x Z of the diagonal.

Finally, we determine the spectrum of the identity representation of U on the
Hilbert space H.

PROPOSITION 9. Let B be an abelian von Neumann algebra on the Hilbert space
H and let Z be the carrier space of B. Then the spectrum of the identity
representation 1 of the unitary group U of B on H is homeomorphic to Z under
the map { — y, where y, is the character of U given by

) =u ().

Proor. It is clear that the relation {u,y,) = u ({)~ defines a character 7 of the
group U. We show that the spectrum Sp: of the unitary representation 1(u)=u
of U on the Hilbert space H given by
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Spt = N{N() | fe L' (UL ()=Y f(uu=0}

is precisely the set {y, | { €Z} and that map { — y, is a homeomorphism
of Z. First let 1(f)=0; then we have that

S 0) =Xy = (S Q) = 1)) =0

and consequently, that y, is in Spi. Conversely, let y be in Spi.For any
absolutely summable sequence {4,} of complex numbers and any sequence {u,}
in U, we have that 3" 4,{(u,,y>~ vanishes whenever Y 4,1(u,)=3 4,u, vanishes.
In particular, the relation

{ Auyy T Auyy>7) | Ats- - ., 4, complex numbers,
Uy,...u, in U, n=12,...}

defines a linear functional ¢ on the set of linear combination of U, viz. B due to
[6; L1, Proposition 3]. Since ¢ satisfies

@ (uv) = pue ()

for u,vin U, the functional ¢ is a multiplicative linear functional on B, i.e. there
is a { in Z with @(u)=u ({) for all u in U. Thus, we get that =7y, So the
spectrum of 1 is {y, | { € Z}.

Since the set of linear combinations of U equals B, the map { — y, is one-
one. The definition of the topology of Z shows that the map is bicontinuous.
Thus, the function { — y, is a homeomorphism of Z onto Sp1.

REMARK 10. We see from the preceding two results that the map
€O -yt
for ({,¢) in Q,, and
0o — identity

defines a homeomorphism of the one point compactification of Q, onto the
spectrum of t with

T = u QU ().

This also makes precise the relationship between Proposition 5.7 and Theorem
5.1 of [14].

ReMARK 11. The set {y, | { € Z} generates the dual group of U.
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4. Application to harmonic analysis.

Let A be a von Neumann algebra with center C, let B be an abelian C*-
algebra in A4 containing C, let Z be the carrier space of B, and let M be the
carrier space of C. An operator T in the algebra of operators B® B on A4 is said
to be positive definite if, for every u in M and every finite subset {{;} of the set
Z, of all { in Z with {NC =y, the scalar matrix (TA(‘P(Ci, C,-)))=(TA(Ci, () is
positive. Here ¥ is the map of UZ, xZ, onto the carrier space of B®B
described in Theorem 7. The operator T is said to be positive (respectively
completely positive) if T maps positive elements in A into positive elements of 4
(respectively, if for every n=1,2,..., the map induced by T on the tensor
product of 4 with the nxn scalar matrices by the formula (x;;) — (T(x;))
maps positive elements into positive elements). Then the following theorem
extends the results of Stermer [14].

THEOREM 12. Let A be a von Neumann algebra, with center C and let B be an
abelian C*-subalgebra of A containing the center C of A. Let T be an operator of
B®B. Then the following are equivalent:

1. T is positive definite;

2. T is positive; and

3. T is completely positive.

ProoF. Let p be in the carrier space M of C and let ¢ =g, be an irreducible
representation of A on the Hilbert space H with kernel equal to the ideal
generated by u (cf. proof, Theorem 7). The operator ¢(T) in the algebra
¢(B)®¢(B) acting on the algebra of all bounded operators on H is defined by
the formula

e(Te(x) = o(Tx)  (xe A).

It is positive definite if T is positive definite. This follows from Theorem 7 since
. the spectrum of ¢(B)®¢(B) is Z,x Z,, where Z, is the set of all { in Z with
{NC=p. Also, if T is positive (respectively, completely positive), the same is
true about ¢(T) since the set of positive elements of g(4) (respectively g(A4)
tensor the n x n matrices) is strongly dense in the set of positive bounded linear
operators on H (respectively the bounded linear operators tensor the nxn
matrices). Thus, if T satisfies any of the three properties of Theorem 12, T
satisfies all three [14, Corollary 5.3]. Because u is arbitrary, it follows that the
three properties are equivalent. In fact, an element x in A4 is positive if and only
if g,,(x) is positive for all u in M due to the continuity of the map u — |o,(x)|l.
A corresponding statement holds for completely positive operators.
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Let 7 be the representation on the von Neumann algebra A of the unitary
group U of the abelian von Neumann subalgebra B of 4 given by 7,=adu;
then an operator T in L(t) is positive definite if all the matrices (TA(y,.yj“))
=(T"({;,{)) are positive whenever y,=7, and {,. . .,{, elements in the carrier
space of B having the same intersection with the center of A. In particular, if A4
is a factor, the operator T is positive definite if every matrix (TA(yiyj"l)) is
positive for y;=y, with {,,...,{, in Z.

Now we characterize the operators 7, in L in terms of their spectral
properties.

ProrosITION 13. Let A be a von Neumann algebra, let B be a maximal
abelian *-subalgebra of A, and let T be a representation of the unitary group U of
B on A given by t,=ad u. Then an operator T in L(t)=L is of the form T =1z, for
same u in U if and only if T is positive definite and the spectrum of T in L is
contained in the unit circle.

ProOF. Suppose the spectrum of T in L is contained in the unit circle and
that T is positive definite. The operator T ! exists and is positive definite since
the matrices for T and T ™! are related by

(T~ @) = (T,

where the notation is the same as Theorem 8. Hence, both T and T~! are
completely positive (Theorem 12). If S is a completely positive operator, we
recall that

(Sx)*(Sx) = S(x*x)
for all x in 4 [15, Theorem 3.1]. Hence, we have that
x*x = (T 1Tx)*(T™'Tx) £ T~ ((Tx)*(Tx))
< T 'T(x*x) = x*x
for every x in X. Using the polarization identity, we see that T is a *-

automorphism of A.
We can find orthogonal projections S,,. . ., S,, in L of norm 1 in L such that

IT-3 48 < 1/4

[11, Theorem 22]. Since T(1)=1, there is a unique projection S =S, with S(1)
=1 (cf. relations (5), (6)). The projection S has the form

Sx = ZZ{PjXPkl ke X}
J



HARMONIC ANALYSIS OF ABELIAN INNER AUTOMORPHISMS . .. 97

for a set p,. .., p, of orthogonal projections in B of sum 1 with p,=0and X; a
subset of {1,...,n}. (Proposition 4). We know that j e X, for all j=1,2,. .,n
(Proposition 4). Thus, we get

(T—=1D)(ppxpl

i

I1(T—S)p;xp;l

SAT=Y A4Sl ISH+11=4] (S|
< 1/4+H(T—Z z,s,)m}
<12

for every unit vector x in A. This proves that T restricted to each subalgebra p;
Ap; is inner [6; III, § 9, Theorem 6]. Therefore, the map T is an inner
automorphism of 4 [14, 8.9.1]. Let u be a unitary operator in A with Tx =uxu*
for x in A. For x in B we have that

uxu* = Tx = T ()x = x .

Because B is a maximal commutative *-subalgebra of A, we have that u is in B.
Conversely, we see that the m x m matrix

(TG 0)) = (W @ ()7)
is positive for {,,. . .,{, in the subset of the carrier space of B whose intersection

with the center of A is fixed.

As a final application of harmonic analyses, we find the positive projections
of L(7).

PROPOSITION 14. Let A be a von Neumann algebra, let B be an abelian von
Neumann subalgebra of A, and let © be the representation of the unitary group U
of B on A given by t,=ad u. Let T be a positive projection in L(t). Then there are
orthogonal projections p,,...,p, of sum 1 in B such that

Tx = Z DiXD;

for every x in A.

Proor. There are orthogonal projections py, py,. - ., P, in A of sum 1 with p,
=0 satisfying

Tx =T {px ¥ ;| je X}

where X is a subset of {0, 1,...,n} (Proposition 4). There is a finite set {g;} of

Math. Scand. 50 — 7
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orthogonal projections in the center C of 4 of sum 1 such that each projection
p:q; is 0 or has central support g;. It is sufficient to show that T restricted to Aq;
has the desired forms. So we may assume each p; (1 <i<n) has central support
1.

For each u in the carrier space M of C, the set Z, of elements { in the carrier
space Z of B with {N C=y is nonvoid. Furthermore, given y and p=p; (1=i
<n)thereis a {={; in Zu with p ({)=1. Indeed, if p ({) vanished for every { in
Z,, then we would have that pisin N{{ € Z | {>u} which is the ideal in B
generated by u. But the central support g of p is given by

g = le,®l

for vin M. Recall that g, denotes an irreducible representation of 4 with kernel
equal to the ideal of A generated by v (cf. proof, Theorem 7). This would
contradict the assumption that the central support of p is 1. So such a point {
in Z, exists. Therefore, we get that

1 =T () = Z p:i (Cy) Z {P;(Cl) I je X}
= pi ) Y (P& | e Xy}

This shows that 1 is in X, and so i is in X; for every i (Proposition 4).
Moreover, if i is in X, then jis in X, In fact, if i is in X ;, then the 2 x 2 matrix
(T" (¢ 8)) (k,I=i, ) is positive and has the rows (1,1), (4,1). This means that 4
=T ({;,{) is 1 or that i is in X

Now we can show that X; and X are either disjoint or coincide. If k is in
X;N X then i, j are in X,. This means that i is in X;; equivalently, j is in X;;
otherwise, we would ge the 3 x3 matrix (T ({,,{,) (I, m=i,j,k) with rows
(1,0,1), (0,1,1), (1,1, 1) which is not positive. So if k is in X; N X, then i, j are in
X;N X ;. Now completing this argument, we see that if mis in X, theniisin X,
as well as X;; and thus, m is in X, N X;. This proves X; is contained in X
Likewise, we get that X is contained in X, This demonstrates that X;=X;
once X;NX; is nonvoid. So we get that

Tx = Zp.-XZ {le jeX} = ZZ {ijPkl hkeX} = qu'x‘h

where 3 {p; l j € X;}=q; and the last sum is extended over some subset of
X4,...,X, which forms a partition of the index set.
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