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AN LP-ESTIMATE FOR THE GRADIENT
OF EXTREMALS
SEPPO GRANLUND

1. Introduction.
Let G=R" be a bounded domain. We study variational integrals

(1.1) I(u) = J‘ F(x,Vu(x))dm(x) ,
G
where the function u belongs to the Sobolev space W2(G) and the kernel F:
G x R" — R satisfies the following structure conditions
(1.2). The functions x — F (x, Vu(x)) are measurable for all u € W} (G) .

(1.3). For ae. x € G the function z —» F(x,z) is convex and a|z["< F(x,2)
<pBlz|" for all z € R", where a, >0 .

Fix ¢ € W} (G), and let W} ,(G) denote the closure of C§ (G)-functions in
W!(G). We define

Fo(G) = {ue WG) | u—p e W.,(G)}.

A function u, € # ,(G) is an extremal for the integral (1.1) if I(u) = I(u,) for all
ue #,G)

In this paper we prove local and global L"*‘-integrability results for the
gradient of the extremal u,. The local version is as follows:

1.4. THEOREM. The extremal u, belongs locally to the space W}, .(G). The
constant £>0 depends only on n and o/p.

The first result of this type has been proved by Bojarski [1]. He studied
solutions of two dimensional, first order, uniformly elliptic systems. Linear
équations and systems in R" have been considered by Meyers [8]. In 1973
Gehring [2] proved the local L"**-integrability for the derivatives of quasi-
conformal mappings in R". The corresponding result for quasiregular
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mappings has been proved by Martio [6] and Meyers-Elcrat [9]. Our proof
for Theorem 1.4 is based on a modification of the important lemma of Gehring
in [2]. Such a modification has been proved by Giaquinta-Modica [3], see also
Stredulinsky [12].

Next we consider global integrability. We show that if the boundary

function ¢ is in W1, (G), and if G satisfies certain additional restrictions, then

the gradient of the extremal belongs to L"**(G) for some &, >0. The condition
for 0G is the following.

Suppose x, € R" and r>0. We consider cubes on R".
Q) = {xeR"| |xh—x| <r, i=1,...,n}.

Let G<R" be a bounded domain. Take an arbitrary cube Q(3r). Now either (i)
0BGNNR"\G)= or (i) QENN(R"\ G)+ . We assume that there is a
constant >0 such that for all cubes in the case (ii)

m(Q(2r) N (R"™\ G))/m(Q(2r)) = .
Clearly all convex domains satisfy this condition.
1.5. THEOREM. Assume that the above boundary condition is satisfied with a

constant 6>0. There is a constant t=t(n,d,a/B)>0 such that if ¢ € W}, .(G),
then the gradient of the extremal u, belongs to L"**(G), where &,=min {g,t}.

2. Proof for the integrability results.
2.1. Auxiliary lemmas.

We need three lemmas on Sobolev functions defined in cubes Q(r) in R". The
last lemma is the essential tool and it is due to Giaquinta-Modica [3].

2.2. LEMMA. Let u € W(Q(r)) and [y udm=0. Then the following inequality
is valid:

2.3) ( I Iul"dm)n §c0(n)< J |Vu|%dm)"
Q) Q)

ProoF. See {5, p. 45] and [4, pp. 148-151, p. 164].

2.4. LEMMA. Suppose that u € W} (Q(r)). Write
S={xeQ(r)| ux) = 0}.
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If there is a constant pu>0 such that m(S)=um(Q(r)), then

@.5) ( f |u|"dm>"gcl(n,y)< J |Vu|%dm)".
Q(r) a(n)

Proor. First observe that the following inequality is valid
(2.6) f [utdm < c,(n, pyr j |Vultdm .
(U] (Ut
For a proof of (2.6) see [5, p. 54, Lemma 3.4]. Now write

1
m(Q0) Lm udm.

We use Minkowski’s inequality and Lemma 2.2

(j |u|"dm)"g(f |u~h|"dm)"+m(Q(r»*|h|
Q(r) Q(r)
r 2 1
Vultd > ——————————j d
cO(n)<~ Q(r)' ubdm )+ (Q( )! oM f dem

< [ Vultd ' — td >%
ScO(n)(. Q(r)l “ m) (Q( )t m(Qe)'” <.[Q(r) uf

2

[ 3 : _ 2 2 a0\
cO(n)<d o0 v dm) +"1(Q(r))* ) r([ oM vl dm)

2
¢ (n, #)( j [Vul? dm) -
00

2.7. LEMMA. Let Q(2a) be a cube in R". Assume that g and f are non-negative
functions in Q(2a) and that g € L*(Q(2a)), ¢> 1, f e L*(Q(2a)), s>q. Suppose
that for every x € Q(2a) and r <% dist (x,dQ(2a)) the following estimate holds

IIA

IIA

IIA

1 1 q
28) ——— 1dm < —
29 o) ng m = ”{(m(Qar» ngg"m) *

1
T mo@n) f o d"’} ’

where b>0. Then there exist constants ¢,>0, ¢>0
such that for p € [q,9+¢.], g € L. (Q(2a)) and
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1 ¥ 1 H
29 Pd _— of
@9 (m(Q(a)) J 0w m) CK'"(QQ“)) j 0ca® dm) "

1 Y
+<M(Q(2a)) ova’ "'">}'

The constants c and ¢, depend only on b,q,s, and n.

I\

Proor. See [3, p. 164, Proposition 5.1].

2.10. Proor ForR TEOREM 1.4. Let u € W} (G) be an extremal for the integral
(1.1) and Q(2r)= G a cube. We first prove the inequality

1
(2.11) J [Vul"dm < c,(n,o/f)— J lu|*dm .
o ™ Jea@n

Let £ € C (Q(2r)) be non-negative and such that ¢(x)=1 for x € Q(r) and 0
SE(x)=1, |[VE(x)|Zcs(n)/r. The function v=u—E"u belongs to the class
Z,(Q(2r) and it has the gradient

Vo = (1=EWu—né" Ve,

Suppose x € Q(2r) is such that £(x)>0. It follows from the convexity
condition

@12) Fv) 5 (-G v+ (x 2V

S (1=8YF(x,Vu)+ pn"lul"|Vel" .

If £(x) =0 the inequality is trivially valid. Then (2.12) is valid for a.e. x € Q(2r).
Since v € #,(Q(2r)) we obtain by integration

J F(x,Vu)dm (x) £ J F(x,Vv)dm (x)
(@) Q@r)

< ‘[ (1 =&MF(x,Vu)dm (x)+n" J [VEMul" dm .
Q@) Q(2rn)
The inequality (2.11) follows from the condition (1.3).

Next we combine the inequality (2.11) and the result of Lemma 2.2. Write

1

h = d ’
m(Q(2n) Jga,,“ "
then
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1 1
( J V" dm) (C—‘ j lu—hl" dm)
o ™ Jean

2
< ——-—C——TU |Vu|%dm> .
m(Q(2r))" \J g2n
It follows that

IIA

" . 2
2.13 Vul*dm £ ——— Vul2d .
@19 Lzml uldm = m(Q(2r) <,[Q(2r)' “ m)
Choose g=|Vul®. Then we get from (2.13)
(2.14) —1—j gtdm < b(——-l—— gdm)z.
m(Q(r) Jow = \m(Q(2r) Joen

2+¢

Now Lemma 2.7 yields g € Liyt® (G).

2.15. PrOOF FOR THEOREM 1.5. Let Q, (2r,) =R" be a cube such that G<= Q, (r,).
Suppose Q(2r)=Q,(2r,) is arbitrary. If Q(3r)= G, then we proceed as in the
proof of Theorem 1.4 and obtain the estimate

cn 2
Vul"dm £ ————— Vultd .
f@(r)l uftdm = m(Q(zr))(JQ(%r)| “ m)

The inequality (2.8) follows by choosing g=|Vu|! and f =|V¢|! in G and equal
to zero outside of G.
Next we suppose Q(3r)N (R"\ G)* . The boundary condition implies

m(Q(2r) N (R"™\ G))/m(Q(2r) = 5 .

Choose ¢ € CF(Q(2r)) non-negative and such that &(x)=1 for x € Q(r) and
0=E¢(x) 21, [VE(X)| S cy(n)/r for x € Q(2r). Define

_Ju(x)—e(x) forxeG
h(x) = {0 for x e R"\ G.

The function v=u—¢"h belongs to the class #,(G) and it has the gradient
Vo = (1=EVu+EVo—né (u—@)VE.
As before the convexity condition (1.3) yields for ae. x € Q(2r)NG
F(x,Vv) = (1=&")F(x,Vu)+AB(lu—@l"VEI" + Vol ,
where 1 depends only on n. For a.e. x € G\ Q(2r) we have F(x, Vv)=F(x, Vu).

Since v € #(G), we get by integration

j F(x,Vu)dm (x) £ J‘ F(x,Vv)dm (x)
G G
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J (1= EF (x, Vi) dm (x)+ 2538 j u— ol dm
G r 0(2nNG .

IIA

+ Aﬁf Vol dm .
Q(2r)NG

Then the condition (1.3) yields

p
(2.16) j \Vul"dm < ?EJ u—o|"dm +
QNG r-a Joennc

+;LE J IVo|"dm .
o Jo@ennG

Define g: Q,(2r,) = R and f: Q,(2ry) » R

- Vu(x)} for xeG
80 =10 for xeQ,Q2r)\G

Vo(x)f for xeG
0 for xeQ,2ro)\G.

o= |

Clearly g € L*(Q,(2ro)), f€ L**2*(Q,(2r,)). We estimate the right side of the
inequality (2.16) by using Lemma 2.4

f |Vul"dm
QNG

y 2
L — IVu-—V(pli dm) +7y J‘ |Vo!|"dm
m(Q(2r ))( .[ 02rNG 0(2rNG

" " g\
< |Vu|%dm)2+———<j % zdm) +
'"(Q(Zr))< J oG m@EN\ J oamc ¢!
+ 7 f [Veol"dm
0(2nNG

"1 2
S —r Vulﬂim) +2y J IVo|"dm .
m(Q(Zr))( ,[ 0(2rNG ! ' Joanne

Hence

1 1 2 I , }
—_— _— d —_— dmy .
m(Q(r)) _[ om g"dm < b{('"(Q(zr)) .[ Q(2r)g m) +m(Q(2r)) Q(Zr)f "

The constant b depends on n, a/, and 6. Let t =t(n, 6, a/B)="%¢,, where ¢, >0 is
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the constant of Lemma 2.7. Lemma 2.7 gives g € L**® (Q4(ro)) and our
theorem is proved.

2.17. REMARK. Suppose that f=(f,,...,f,): G - R" is a quasiregular
mapping, see [7], [10], [11]. Theorems 1.4 and 1.5 can be applied to f. By using
Theorem 1.4 a new proof for the result of Martio [6] and Meyers-Elcrat [9] is
obtained.

2.18. REMARK. Let us consider a domain G for which Sobolev’s imbedding
theorem is valid. By using Theorem 1.5 and an imbedding theorem we obtain
uniform Hélder-constants in G for the extremal u,.
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